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S1 Map of the streamflow gauging stations 

Figure S1 below shows the modelled gauging station locations (by watershed outlet location). Notably, it emphasizes the 

positions of non-GRIP-GL stations in comparison to GRIP-GL stations. 

 

Figure S1. Locations of the streamflow gauging stations used in this study. In total, there are 224 streamflow gauging stations (shown as 5 
dots in the map). The 212 stations used in the GRIP-GL study are shown in dark blue dots (calibration) and light blue dots (validation). 

The stations of the 4 small Non-GRIP-GL basins (described in Sec 3.1 of the main article) are shown in light red dots, and the stations of 

the 8 large Non-GRIP-GL basins (described in Sec 3.2 of the main article) are shown in light green dots. 

S2 Raven configurations for the routing-only mode 

The routing-only model is defined within the Raven hydrologic modelling framework (Craig et al., 2020). It takes the 10 

LSTM-predicted subbasin-level streamflow as inputs, and then simulates the water routing through the delineated lake-river 

network. The mean daily subbasin-level streamflow is taken as precipitation at the hourly time-step (24 hours of constant 
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precipitation intensity rate) and the precipitation in each subbasin is instantly flushed to the subbasin outlet. This approach 

ensures there is no in-catchment routing delay in the simulation, as would normally occur in a typical routing application that 

move surface runoff across a subbasin into the channel with a unit hydrograph. The model combines this subbasin-level 15 

streamflow at the subbasin outlet with in-channel routed streamflow that entered the subbasin from upstream subbasins. 

Figure S2 below shows the structure of the .rvi file (the primary input file of Raven) that defines the routing-only model. 

 

Figure S2. The .rvi file structure for implementing the routing-only setup in this study.  

The ‘:CatchmentRoute’ command specifies the in-catchment routing method, which is used to represent how water is 20 

transported from the subbasin tributaries to the subbasin outlets. Since subbasins are the smallest response unit in this study, 

we choose the ‘ROUTE_DUMP’ algorithm as the in-catchment routing method, in which all of the water is instantly 

dumped to the subbasin outlet. 

The ‘:Routing’ command specifies the in-channel routing method, which is used to represent how water is transported from 

upstream to downstream within the primary subbasin channels. We choose the ‘ROUTE_DIFFUSIVE_WAVE’ algorithm as 25 

the in-channel routing method, which applies an analytical solution to the diffusive wave equation through the reach using a 

constant reference celerity (Raven Development Team, 2023). 
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The ‘:PrecipIceptFract’ command specifies the method for estimating the fraction of precipitation intercepted by canopy. 

Since the LSTM-predicted subbasin-level streamflow inputs are taken as precipitation in Raven, we used the 

‘PRECIP_ICEPT_NONE’ algorithm to indicate that there are no canopy interception processes. 30 

The ‘:PotentialMeltMethod’ command specifies the method for estimating the potential snow melt. We adopted the 

‘POTMELT_NONE’ algorithm because snow melt processes are not considered in the routing-only mode. 

The ‘:SoilModel’ command specifies the soil structure model used for routing. We used the ‘SOIL_ONE_LAYER’ mode 

which defines single soil layer structure. It is worth mentioning that soil water is not simulated in the routing-only mode but 

Raven requires an input for the ‘:SoilModel’ option, even if it is not used. 35 

The ‘:HydrologicProcesses’ block defines the hydrologic processes to be simulated. The routing-only mode only included 

two hydrologic processes, ‘:Precipitation’ and ‘:Flush’. As mentioned previously, the subbasin-level streamflow inputs are 

taken to mimic precipitation, and then flushed on the land surface to the stream reach. 

 

Figure S3. The .rvh file structure for representing lakes/reservoirs in the routing model. 40 

Furthermore, the routing-only model is configured to simulate lakes/reservoirs (water levels and outflows) with a surface 

area greater than 5 km2. Figure S3 shows the Raven command block that define a lake/reservoir in the routing network, the 

command block is automatically generated by the BasinMaker library (Han et al., 2023). All lakes are assumed to be 

vertically prismatic and are simulated with a lake outlet structure that is a broad-crested weir. Raven applies Equation S1 

below to simulate the lake/reservoir outflow:  45 

 

𝑄(𝑠) =
2

3
√2𝑔 ∗ 𝐶 ∗ 𝐿 ∗ 𝑠3/2          (S1) 
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Where 𝑔 is the gravitational constant, 𝐶 represents the weir coefficient, 𝐿 is the crest width, and 𝑠 is the lake stage relative to 

the weir crest elevation. All lakes are initialized with a water level of zero. The weir coefficient is a fixed value of 0.6. The 50 

crest width is assigned with a region-dependent value according to the delineation methodology employed in the BasinMaker 

library. Each lake is represented by its corresponding ‘lake subbasin’ in the routing network and there are no channels within 

the lake subbasin. All lake inlets are defined as upstream subbasin outlets, and the single lake outlet corresponds to the lake 

subbasin outlet. 

S3 Lumped LSTM configurations 55 

Recall that the lumped LSTM is a replicate of the LSTM built for the GRIP-GL study (Mai et al., 2022) and the 

settings/input description below is taken from the supplemental information from that study. 

  

Table S1. Hyperparameter settings used for the lumped LSTM.  

Hyperparameter value/range 

Hidden size 256 

Batch size 64 

Epochs 30 

Learning rate1 (0: 0.0005, 20: 0.0001, 30: 0.00005) 

Sequence length 365 days 

Dropout 0.4 

Loss function Nash-Sutcliffe efficiency (NSE)2 

1(0: x1, 5: x2, 10: x3) denotes learning rate x1 for epoch 0 to 4, learning rate x2 for epoch 5 to 9, and learning rate x3 after epoch 10.  60 

2Basin-averaged NSE loss – the average of the NSE values across the calibration/training basins (Kratzert et al., 2019). 

 

The loss function is shown in Equation S2 below: 

 

NSE =
1

𝐵
+ ∑  𝐵

𝑏=1 ∑
(�̂�𝑛−𝑦𝑛)2

(𝑠(𝑏)+𝜖)2
𝑁
𝑛=1            (S2) 65 

 

Where 𝐵 is the number of basins, 𝑁 is the number of samples (days) per basin 𝐵, �̂�𝑛 is the prediction of sample 𝑛 (1 ≤ n ≤ 

𝑁), 𝑦𝑛  is the observation, and 𝑠(𝑏) is the standard deviation of the discharge in basin 𝑏 (1 ≤ 𝑏 ≤ 𝐵), calculated from the 

training period (Kratzert et al., 2019). 

 70 

The input variables required to drive the LSTM are grouped into dynamic attributes (Table S2) computed at the daily time 

step, and static attributes (Table S3) which are taken as constant through the LSTM training period. 
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Table S2. CaSR-v2/RDRS-v2 forcing variables used for the lumped LSTM. For initial lumped LSTM training, these variables are derived 

for each of the gauged basins.  For the SR-model, these variables are derived for each of subbasins in the routing network.  75 

Variable name Unit 

Quantity of precipitation m 

Downward solar flux W/m2 

Minimum air temperature °C 

Maximum air temperature °C 

Specific humidity kg/kg 

U wind component kts 

V wind component kts 

Surface pressure mb 

Potential evapotranspiration (PET) mm/day 

 

Table S3. Static attributes defining lumped LSTM input variables. For initial lumped LSTM training, these variables are derived for each 

of the gauged basins.  For the SR-model, these variables are derived for each of subbasins in the routing network. 

Attribute Name Unit 

Mean daily precipitation mm/day 

Mean daily PET mm/day 

Aridity (ratio of mean PET to mean precipitation) - 

Mean daily temperature °C 

Fraction of precipitation falling on days with mean daily temperatures below 0°C - 

Frequency of days with high precipitation (≥ 5 times the mean daily precipitation) days/year 

Average duration of high-precipitation events days 

Frequency of dry days (daily precipitation less than 1 mm/day) days/year 

Average duration of dry periods days 

Catchment mean elevation meter 

Standard deviation of catchment elevation meter 

Catchment mean slope meter/kilometre 

Standard deviation of catchment slope meter/kilometre 
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Catchment area km2 

Fraction of land covered by ‘Temperate-or-sub-polar-needleleaf-forest’ - 

Fraction of land covered by ‘Temperate-or-sub-polar-grassland’ - 

Fraction of land covered by ‘Temperate-or-sub-polar-shrubland’ - 

Fraction of land covered by ‘Temperate-or-sub-polar-grassland’ - 

Fraction of land covered by ‘Mixed-Forest’ - 

Fraction of land covered by ‘Wetland’ - 

Fraction of land covered by ‘Cropland’ - 

Fraction of land covered by ‘Barren-Lands’ - 

Fraction of land covered by ‘Urban-and-Built-up’ - 

Fraction of land covered by ‘Water’ - 

Soil bulk density g/cm3 

Soil clay content % of weight 

Soil gravel content % of volume 

Soil organic carbon % of weight 

Soil sand content % of weight 

Soil silt content % of weight 
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