Articles | Volume 27, issue 5
https://doi.org/10.5194/hess-27-991-2023
https://doi.org/10.5194/hess-27-991-2023
Research article
 | 
06 Mar 2023
Research article |  | 06 Mar 2023

Hydrological objective functions and ensemble averaging with the Wasserstein distance

Jared C. Magyar and Malcolm Sambridge

Related authors

A statistical fracture model for Antarctic ice shelves and glaciers
Veronika Emetc, Paul Tregoning, Mathieu Morlighem, Chris Borstad, and Malcolm Sambridge
The Cryosphere, 12, 3187–3213, https://doi.org/10.5194/tc-12-3187-2018,https://doi.org/10.5194/tc-12-3187-2018, 2018
Short summary
A statistical fracture model for Antarctic glaciers
Veronika Emetc, Paul Tregoning, and Malcolm Sambridge
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-98,https://doi.org/10.5194/tc-2017-98, 2017
Preprint withdrawn
Short summary
An objective rationale for the choice of regularisation parameter with application to global multiple-frequency S-wave tomography
C. Zaroli, M. Sambridge, J.-J. Lévêque, E. Debayle, and G. Nolet
Solid Earth, 4, 357–371, https://doi.org/10.5194/se-4-357-2013,https://doi.org/10.5194/se-4-357-2013, 2013

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
A national-scale hybrid model for enhanced streamflow estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci., 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024,https://doi.org/10.5194/hess-28-2871-2024, 2024
Short summary
Inferring heavy tails of flood distributions through hydrograph recession analysis
Hsing-Jui Wang, Ralf Merz, Soohyun Yang, and Stefano Basso
Hydrol. Earth Syst. Sci., 27, 4369–4384, https://doi.org/10.5194/hess-27-4369-2023,https://doi.org/10.5194/hess-27-4369-2023, 2023
Short summary
Landscape structures regulate the contrasting response of recession along rainfall amounts
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023,https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023,https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary
Regional significance of historical trends and step changes in Australian streamflow
Gnanathikkam Emmanuel Amirthanathan, Mohammed Abdul Bari, Fitsum Markos Woldemeskel, Narendra Kumar Tuteja, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 27, 229–254, https://doi.org/10.5194/hess-27-229-2023,https://doi.org/10.5194/hess-27-229-2023, 2023
Short summary

Cited articles

Ambrosio, L., Gigli, N., and Savaré, G.: Gradient flows: in metric spaces and in the space of probability measures, Birkhäuser, ISBN 3764387211, 2008. a, b
Benamou, J.-D., Froese, B. D., and Oberman, A. M.: Numerical solution of the Optimal Transportation problem using the Monge–Ampère equation, J. Comput. Phys., 260, 107–126, https://doi.org/10.1016/j.jcp.2013.12.015, 2014. a
Bonneel, N., Rabin, J., Peyré, G., and Pfister, H.: Sliced and Radon Wasserstein Barycenters of Measures, J. Math. Imag. Vis., 51, 22–45, https://doi.org/10.1007/s10851-014-0506-3, 2015. a, b, c
Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., 44, 375–417, https://doi.org/10.1002/cpa.3160440402, 1991. a
Cuturi, M.: Sinkhorn Distances: Lightspeed Computation of Optimal Transport, in: vol. 26, Advances in Neural Information Processing Systems, 5–10 December 2013, Nevada, USA, https://doi.org/10.48550/arXiv.1306.0895, 2013. a
Download
Short summary
Measuring the similarity of distributions of water is a useful tool for model calibration and assessment. We provide a new way of measuring this similarity for streamflow time series. It is derived from the concept of the amount of work required to rearrange one mass distribution into the other. We also use similar mathematical techniques for defining a type of average between water distributions.