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Abstract. When working with hydrological data, the abil-
ity to quantify the similarity of different datasets is useful.
The choice of how to make this quantification has a direct
influence on the results, with different measures of similar-
ity emphasising particular sources of error (for example, er-
rors in amplitude as opposed to displacements in time and/or
space). The Wasserstein distance considers the similarity of
mass distributions through a transport lens. In a hydrolog-
ical context, it measures the “effort” required to rearrange
one distribution of water into the other. While being more
broadly applicable, particular interest is paid to hydrographs
in this work. The Wasserstein distance is adapted for working
with hydrographs in two different ways and tested in a cali-
bration and “averaging” of a hydrograph context. This alter-
native definition of fit is shown to be successful in accounting
for timing errors due to imprecise rainfall measurements. The
averaging of an ensemble of hydrographs is shown to be suit-
able when differences among the members are in peak shape
and timing but not in total peak volume, where the traditional
mean works well.

1 Introduction

1.1 Motivation

A fundamental aspect of hydrology is understanding the dis-
tribution and movement of water through the Earth system.
It is therefore necessary to quantify the similarity of a pair
of spatial (e.g. precipitation fields) or temporal (e.g. hydro-
graphs) distributions of water. The goal of this quantification
may simply be to gauge the semblance of the distributions. In

other more complex cases, it may act as an objective function
for parameter estimation, model calibration, or data assimila-
tion, where the goal is to minimise the discrepancy between a
model output and observed data. Again still, we may be inter-
ested in the “average” distribution of water among an ensem-
ble. Each of these varied tasks is unified in the requirement
of some measure of similarity between pairs of distributions,
with the characteristics of this choice important for the qual-
ity of the result.

Such a quantification varies in nomenclature according to
discipline and purpose, but some common terms are “objec-
tive”, “response”, or “misfit function”. While it is abundantly
clear that there is a great need for comparative measures in
hydrology, there remains ambiguity in selecting that which
best quantifies discrepancy for any given application. In this
selection process, we are led back to the more fundamental
query: what is a good “fit”? The misfit function that we use
must be intrinsically linked with what we perceive to be a
“good fit” for the application and purpose at hand.

A commonly used metric for comparing both hydrographs
and spatial fields is the root mean square error (RMSE), given
by Eq. (1), where f and g are the functions under comparison
and have known values at the N points xi .

RMSE=

√√√√√ N∑
i=1

[
f (xi)− g (xi)

]2
N

(1)

For the RMSE, f and g are compared by studying the dif-
ference in amplitude at specified points. While varying in
the details, there are a variety of metrics, such as the Nash–
Sutcliffe efficiency (NSE) and L2 distance, that are similar in
their derivation and compare the amplitude of the functions
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Figure 1. Two hydrographs (a, red and black) and the point-wise residuals between them (b). Both timing and amplitude differences are
observed, but these are combined into a single amplitude error to give large residuals, even though the human eye might perceive these two
distributions as being quite close.

Figure 2. Synthetic example of the comparison of modelled (purple) and observed (green) spatial fields in panel (a). Panel (b) shows the
residuals (green field minus purple field), which display the double-penalty effect as the error is in displacement rather than amplitude.

at specified locations. We will refer to the metrics of this type
collectively as “point-wise” misfit functions, as each datum is
compared only with that equal in time and space. These are
undoubtedly simple and computationally efficient, but they
do not satisfactorily account for spatial or temporal displace-
ment of features (Roberts and Lean, 2008; Wernli et al., 2008;
Farchi et al., 2016). Figure 1 displays such an occurrence,
where displacement is also a major source of difference be-
tween the two synthetic hydrographs rather than purely am-
plitude, yet for point-wise misfit functions such differences
are forced to be represented by amplitude alone.

The cause of the large residuals in Fig. 1 stems from
the underlying assumption that “like” features are already
aligned when the misfit is computed. In essence, it is built
upon the assumption that errors are strictly in amplitude
rather than displacement (Lerat and Anderssen, 2015). In the
case of hydrographs, even small time shifts can yield high
misfits in steep rising limbs and recessions, a consequence
of this amplitude-based misfit interpretation (Ewen, 2011;
Ehret and Zehe, 2011). As we can expect errors in both tim-
ing and amplitude when modelling streamflow, point-wise

metrics alone are frequently inadequate and therefore require
some type of multi-objective function (Yapo et al., 1998).

In a more general, multi-variate setting, an analogous issue
can occur. The misalignment of features displayed in Fig. 2
leads to the “double-penalty” effect, where large errors are
assigned for small displacement errors, this occurring both
where the model (purple in Fig. 2) has predicted the high am-
plitudes and where the high amplitudes are observed (green)
(Wernli et al., 2008; Farchi et al., 2016).

This poor quantification of fit under the influence of
the displacement of features has led to a range of other
“scores” being used when validating forecasts from numeri-
cal weather predictions (see for example Roberts and Lean,
2008; Wernli et al., 2008). These attempt to account for both
the differences in particular features of each field and the dis-
tance between these identified features.

An inadequate measure of fit can also lead to spurious lo-
cal minima in the parameter estimation objective function,
making local optimisation algorithms ineffectual (Engquist
and Froese, 2014). These are especially common when the
recorded signal is multi-modal. In these cases, displacement
of such multi-modal features can lead to the “peaks” becom-
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Figure 3. Root mean square error (a) between double Gaussians at a variety of time shifts (b, solid black and dash-dot red). Panel (b) cor-
responds to shift parameters indicated in panel a) with dash-dot red lines. In this example the situations shown in the far-left and far-right
lower panels, with shift values of −4 and 4 respectively, both represent local minima in the RMSE function above, because the black curve
has just a single peak aligned with the red dash-dot curve in each case, whereas the global minimum at shift value 0 has both peaks aligned.

ing incorrectly aligned and producing a locally low misfit
(see Fig. 3).

Whether the misfit is unsuitable due to incorrect quan-
tification of timing errors (Fig. 1), the double-penalty effect
(Fig. 2), or local minima (Fig. 3), the key downfall of a point-
wise metric can be traced to the same source: function com-
parisons occur in complete isolation, independently of all the
other points. However, “cross-domain” comparisons are fun-
damentally necessary to recognise the temporal or spatial dis-
placements which generate the problems. These types of is-
sues are not exclusive to hydrology. For example, seismic
signals can be compared by differences in amplitude or by
considering differences in the travel times of seismic phases
and thus timing errors. Local minima in the misfit function
frequently arise when using amplitude-based misfit func-
tions, this being the root of the infamous “cycle-skipping”
problem commonly encountered in full waveform inversion,
resulting from similar misalignment issues to those displayed
in Fig. 3. Due to these similarities, we are motivated to ex-
plore the Wasserstein distance, derived from the field of op-
timal transport that has found recent use in seismology for
quantifying waveform similarity in cases where amplitude-
based misfit functions are inadequate (Engquist and Froese,
2014; Métivier et al., 2016).

While briefly addressed in Ehret and Zehe (2011), to the
best of our knowledge the Wasserstein distance has had lim-
ited exposure in hydrology. It has been found to be bene-
ficial for parameter estimation problems in geophysics, due
to it comparing data holistically, rather than in isolated pair-
ings, with this key property being what we seek to exploit

(Engquist and Froese, 2014; Métivier et al., 2016). It has
also been considered in the comparison of atmospheric con-
taminant fields (Farchi et al., 2016) and in some diagnostic
data assimilation tasks with a similar rationale (Feyeux et al.,
2018; Li et al., 2019).

Much like techniques considered in Roberts and Lean
(2008) and Wernli et al. (2008), the Wasserstein distance is
displacement-based, allowing more appropriate misfit quan-
tification under temporal or spatial shifts. Its definition is de-
rived from the concept of “transporting” one mass distribu-
tion onto the other and so naturally accounts for any such
shifts. Consequentially, small timing errors for hydrograph
comparison do not incur large penalties resulting from the
misalignment of peaks in flow and are a more suitable mea-
sure of fit in the presence of timing errors than the RMSE
or Nash–Sutcliffe efficiency. Use of the Wasserstein distance
bears some similarity to the dynamic time-warping technique
of Ouyang et al. (2010), the series distance (Ehret and Zehe,
2011), the hydrograph-matching algorithm of Ewen (2011),
and the cumulative distribution method of Lerat and Ander-
ssen (2015). While distinct from objective functions due to
the need to understand the noise statistics of the data, some
likelihood functions for Bayesian inference have attempted
to account for temporally correlated residuals (e.g. Schoups
and Vrugt, 2010; Vrugt et al., 2022). However, these gener-
ally operate directly in the point-wise residuals, while we use
a different definition of “residual” based upon timing differ-
ences.

In this work, rather than detailing highly specific applica-
tions with complex models, we instead introduce methods
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that are suited for a range of tasks in (but not limited to)
hydrology. The main goal is to highlight some of the key
concepts of optimal transport and how they may find use in
hydrology via simple, illustrative examples. The limitations
of its use are also discussed and where further research is
required. We also limit our experiments to one-dimensional
problems, in particular the comparison of hydrographs. How-
ever, Sect. 1.2 details optimal transport in a more general
sense, as it conserves its useful properties in multiple dimen-
sions and so can also be used for comparing spatial fields.

1.2 Optimal transport

Optimal transport (OT) provides the numerical machinery for
interrelating density functions. As distributions of water can
be well represented as a density function with appropriate
scaling, we suggest that OT gives the required tools for mak-
ing more satisfactory comparisons than can be achieved by
point-wise misfit functions.

Before the more modern interpretation with regards to
density functions, OT originated with the work of Monge
(1781), who was tasked with finding the most cost-effective
way of filling a hole with a pile of dirt. OT is hence funda-
mentally concerned with reshaping one distribution of mass
into another whilst minimising the requisite effort.

Little progress was made on generalised solution meth-
ods for this problem until it was rephrased by Kantorovich
(1942). This forms the foundation of many modern compu-
tational methods (Peyré and Cuturi, 2019). However, we will
introduce OT in a form closer to the original Monge defini-
tion, as this is based on continuous functions. While mea-
sured discretely, distributions of water have an underlying
continuity in time or space, so this description is appropriate.

The central aspect of the Monge (1781) study was an op-
timal transport map acting as a directory between each loca-
tion in the pile of dirt (known as the source) and an associated
location in the hole (known as the target). By following this
optimal map, the source distribution can be rearranged into
the target distribution with minimal work. The relation be-
tween the source, target, and transport map is presented in
Fig. 4.

Key restrictions for transport are mass conservation, mean-
ing the source and target must have equal mass, and non-
negativity, meaning that there cannot be negative mass at any
point in either. These properties have led OT to be framed as
between probability densities, as these naturally obey both
requirements. If we denote the source as f and the target
as g, these functions must satisfy Eqs. (2) and (3).∫
X

f (x)dx

∫
Y

g(y)dy = 1 (2)

f (x)≥ 0 for all x ∈ X , g(y)≥ 0 for all y ∈ Y (3)

Here, X is the space over which f is defined, and Y is the
space over which g is defined. In the case of hydrographs,

Figure 4. Panel (a) shows Monge’s initial formulation of OT, with a
source mass distribution (blue) and a target to be filled (red). Panel
(b) shows the solution to the OT problem, with a transport map
(black) transporting the source to the target. Dashed line shows the
transport for a particular point.

these will be the time window over which the streamflow
was measured, while for spatial fields, they will be the spatial
extent of the recordings.

With the overarching goal of transporting f to g with
minimal work, we must first define some notion of “effort”
through the cost function, c(x,y), giving the amount of work
it takes to transport one unit of mass from x to y. With this
cost function in hand, the total cost of following some trans-
port map T will be given by Eq. (4).

C(T )=

cost across all points︷ ︸︸ ︷∫
X

c(x,T (x))f (x)dx︸ ︷︷ ︸
cost for a single point

(4)

Finding the optimal transport map (denoted as T ∗) therefore
amounts to minimising Eq. (4), subject to the additional re-
quirement that this map transports f exactly to g. Needless
to say, this is a complicated functional minimisation problem
and so will not be discussed in depth here as a simple analyt-
ical result is instead used. Direction to alternative methods is
also provided in Sect. 2.1. As a mapping between densities,
the optimal transport map is similar to transform-sampling
methods such as inverse transform sampling or the trajecto-
ries in flow anamorphosis (van den Boogaart et al., 2017).
However, we should reiterate that the optimal map differs
in that it not only transforms between the densities, but also
does so with minimal work.

Once found, the optimal transport map can be used to de-
fine the p-Wasserstein distance, the central concept of inter-
est for this work. The p-Wasserstein distance (or simply the
Wasserstein distance) is defined using the p norm raised to
the pth power as the cost function, giving the cost of Eq. (5),
whereD is the dimensionality of the densities and sub-scripts
are vector components.

c(x,y)=

D∑
d=1
|xd − yd |

p
= ‖x− y‖

p
p (5)

The choice of p reflects how severely mass transport is to
be penalised. That is, if p is large, mass transport across long
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Figure 5. Comparison of RMSE and squared 2-Wasserstein distance for the double-Gaussian problem displayed in Fig. 3. All misfits are
scaled to a maximum of 1 for visualisation purposes.

distances will require more “work” relative to small transport
distances and thus be avoided if possible. Upon finding the
optimal transport map under the cost function Eq. (5), the
Wasserstein distance is given by Eq. (6).

Wp(f,g)=

∫
X

‖x− T ∗(x)‖
p
pf (x)dx

 1
p

(6)

The Wasserstein distance is symmetric and a true metric
of the space of probability density functions, a deeper dis-
cussion of which can be found in Ambrosio et al. (2008)
and Villani (2009). However, for the purposes of the present
discussion, it is sufficient to state that similar mass distri-
butions require little work to transport between them and
thus have a low Wasserstein distance in comparison to dis-
similar distributions, which require more work for trans-
port. We will pay particular attention to the square of the
2-Wasserstein distance, W2

2 , due to its convex properties that
make it well suited for parameter estimation purposes (En-
gquist and Froese, 2014). We therefore set p = 2 in Eqs. (5)
and (6).

Armed with the Wasserstein distance, we can, for exam-
ple, gauge the similarity of two hydrographs or a pair of pre-
cipitation fields. Again, note the key property that this is a
global comparison, considering the total cost of transporting
the entire source to the target rather than locally quantifying
the distance using point-wise comparisons. It therefore nat-
urally accounts for displacements through the transport map
and assigns a more appropriate penalty for this type of error.
We can see this through the simple numerical experiment in
Fig. 5, where the Wasserstein distance provides a consistent
interpretation of displacement, even when the features are not
overlapping. It also mitigates the occurrence of local minima,
due to cross-domain comparison. In a parameter estimation
context, this provides a smooth, convex function well suited
for gradient-based local optimisation methods.

These properties with respect to displacements have en-
couraged application in atmospheric chemistry and seismol-

ogy alike (Farchi et al., 2016; Engquist and Froese, 2014;
Métivier et al., 2016). However, while the Wasserstein dis-
tance naturally measures differences in shape and displace-
ment, it is blind to differences in total mass between the
source and target as they are scaled to unit mass prior to com-
putation. Potential methods to counter this are proposed in
Sect. 3 for applications where this may prove to be problem-
atic.

1.3 Wasserstein barycentres

Beyond a straightforward measure of fit, the Wasserstein dis-
tance can also be used to define an “average” of density func-
tions, known as the Wasserstein barycentre. The barycentre
is the distribution that is the closest, in a Wasserstein sense,
to the distributions we are finding the average of. This makes
it the density that minimises a weighted sum of Wasserstein
distances. If the ensemble of densities is denoted gi and the
barycentre is f , then f must obey both the requirements of
density Eqs. (2) and (3) whilst minimising Eq. (7), with the
relative weights of the component densities given by λi .

min

(
n∑
i=1

λiW2
2 (f,gi)

)
,

n∑
i=1

λi = 1 (7)

As OT makes cross-domain comparisons, the Wasserstein
barycentre gives a more intuitive intermediate distribution
when densities are separated in time or space. We can ex-
plore this through a simple example in Fig. 6.

Taking the arithmetic mean at each point of the two dis-
tributions gives a poor intermediate representation. Both of
the densities have a single peak, but the intermediate one in
Fig. 6 has two and so has not captured the characteristics of
either. However, the Wasserstein distance provides a more
satisfactory average conserving the shape of the peak. This
again can be traced to how we define similarity. The con-
ventional mean is defined with respect to amplitude, while
the Wasserstein barycentre is an average with respect to the
displacement pathway, also known as the geodesic (Ambro-
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Figure 6. Two Gaussian density functions (blue, red, a) with one spatial/temporal dimension x. The Wasserstein barycentre of these densities
(solid purple, b) and the mean (dashed purple, b).

sio et al., 2008). Section 3 uses the Wasserstein barycentre to
find the average hydrograph among an ensemble, each per-
haps derived from a different climate or hydrological model,
allowing conservation of peak shape and number in the case
where equivalent peaks are equal in volume.

2 Computational methods

2.1 A brief survey

Now that the favourable properties of the Wasserstein dis-
tance for mass transport problems have been explored, we
must discuss the computational methods. This aspect is per-
haps the greatest difficulty in large-scale implementation.
There are a variety of available techniques, some of which
have been explored previously in similar applications, whilst
others are a source of future discussion. A brief survey fol-
lows, with further details given in the associated references,
many of which have unexplored potential for hydrological
applications.

It was shown by Brenier (1991) that minimising Eq. (4)
can be transformed into a partial differential equation when
the squared Euclidean distance is used as the cost function.
This can then be solved numerically; an example of one such
solution is given in Benamou et al. (2014). This was the pre-
ferred method of Engquist and Froese (2014) and Yang et al.
(2018) for comparison of seismic waveforms, although it is a
technique not frequently seen in applied studies. The applica-
bility of the method in seismology implies that this solution
may be appropriate and warrant further consideration in the
future for hydrology.

The more commonly used approach, especially for ma-
chine learning and graphics applications, is to use the Kan-

torovich formulation and thus consider the source and target
densities to be discrete probability distributions, for which
a linear program can be solved to obtain a transport plan
(a generalised version of the transport map). While this is
effective for a broader range of problems than the Monge–
Ampère partial differential equation (PDE) that is specific to
the squared Euclidean distance cost function, solving the lin-
ear program is computationally expensive and scales poorly
with the size of the problem. This burden can be somewhat
alleviated using the entropically regularised approach pio-
neered by Cuturi (2013), which has become the foundation
for modern machine learning applications. Further efficiency
can be achieved on regularly spaced data using the convo-
lutional entropic regularisation developed in Solomon et al.
(2015). Also derived from the entropically regularised ap-
proach are the stochastic optimisation methods of Genevay
et al. (2016) and Seguy et al. (2018). These are particularly
useful when samples can be drawn from the source and target
densities.

There appears to be a bias in the literature towards dis-
crete approaches, seemingly due to many machine learning
problems not having a continuous interpretation, leaving the
Monge–Ampère and related continuous approaches mean-
ingless. We therefore should not be discouraged from using
continuous methods for problems in the Earth sciences with
spatial or temporal data, despite the relative lack of previous
applications in the present literature. Indeed, we can see pre-
vious success of these methods in Engquist et al. (2016) and
Yang et al. (2018).
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2.2 One-dimensional transport

The method used in this work is structured around the special
case of transport in one dimension, which accommodates a
highly computationally efficient solution. When the source
density f and target density g are both one-dimensional, the
optimal transport map between them is given by Eq. (8).

T ∗(x)=G−1(F (x)) (8)

Here, we have used F andG to represent the cumulative dis-
tribution functions (CDFs) of the source and target, these de-
fined according to Eq. (9).

F(x)=

x∫
−∞

f (x′)dx′, G(y)=

y∫
−∞

g(y′)dy′ (9)

We should note here that in the one-dimensional case, us-
ing the optimal transport map is the same as the inverse
transform-sampling method. Upon substituting the optimal
map Eq. (8) into Eq. (6) to obtain the p-Wasserstein distance,
a change in variables gives the simple form Eq. (10).

Wp(f,g)=

 1∫
0

[
F−1(s)−G−1(s)

]p
ds


1
p

(10)

This reveals that, in the one-dimensional case, the Wasser-
stein distance is a measure of discrepancy between the in-
verse CDFs of the source and target. A visualisation of the
one-dimensional Wasserstein distance under this interpreta-
tion is given in Fig. 7.

In this study, we use the Nelder–Mead algorithm for op-
timisation, so the gradient of the Wasserstein distance is not
required. However, if a gradient-based method were to be
used, the derivative for the one-dimensional case can be de-
rived directly from Eq. (10). Indeed, it was shown by Sam-
bridge et al. (2022) that both the Wasserstein distance and
its derivative can be computed through a sorting algorithm
followed by a dot product. Engquist and Froese (2014) and
Métivier et al. (2016) have also made use of the derivatives
of the Wasserstein distance for parameter estimation, but they
did not make use of the one-dimensional form.

Much like the Wasserstein distance, finding the Wasser-
stein barycentre of a series of densities is vastly simplified in
one dimension. Rather than performing some type of optimi-
sation scheme to minimise Eq. (7), we can find the barycentre
directly from the inverse CDFs. Keeping the notation from
Eq. (7), we have Eq. (11) (Bonneel et al., 2015).

F−1(s)=

n∑
i=1

λiG
−1
i (s), s ∈ [0,1] (11)

That is, the inverse CDF of the barycentre is the weighted
sum of the inverse CDFs of the component densities. Find-
ing the barycentre then becomes a problem of converting

an inverse CDF evaluated at a set of discrete points into a
density function. Interchanging the (s, F−1) coordinate pairs
converts from the inverse CDF F−1 to the CDF F . A finite-
difference differentiation method can then be used to move
from the CDF to the density function f . Finally, this can be
interpolated into a smooth density function.

Overall, the Wasserstein barycentre definition of the av-
erage is equivalent to the histogram interpolation of Read
(1999), although the author appears to have proposed this
idea independently. The relation between the densities and
their barycentre is displayed in Fig. 8.

Again, it should be made clear that the computational re-
sults discussed here apply only to the one-dimensional case.
Different methods must be used for multi-variate problems,
a selection of which is given in Sect. 2.1. There is also the
potential to use the alternative sliced Wasserstein distance
(Rabin et al., 2011) or the more general continuous exten-
sion known as the radon Wasserstein distance (Bonneel et al.,
2015), which both extend the one-dimensional results using
one-dimensional projections of the multi-variate mass distri-
bution. The radon and sliced Wasserstein distances display
similar properties to the true Wasserstein distance and are a
potential alternative to the more computationally expensive
methods.

2.3 Adaptation to hydrology

OT is defined only for probability densities. For the applica-
tions we envisage, the non-negativity requirement will nat-
urally be obeyed, as we are measuring inherently positive
masses of water. The restriction of unit mass requires a lit-
tle further consideration. We could take one of two differing
philosophies: modify the data so they are compatible with OT
or redefine OT such that it works with the type of data used.
Here, we will consider both. Firstly, we can scale the water
distributions such that they have unit mass and then compute
the Wasserstein distance. The total mass of the densities is
given by Eq. (12).

Mf =

∫
X

f (x)dx, Mg =

∫
Y

g(y)dy (12)

The scaling to unit mass is then given by Eq. (13).

f̂ (x)=
f (x)

Mf
, ĝ(y)=

g(y)

Mg
(13)

Though this indeed makes the data compatible with OT,
it also means that the Wasserstein distance becomes com-
pletely insensitive to differences in total mass. A multi-
objective approach can be used to allow both shape (Wasser-
stein) and total mass (additional penalty term) to be ac-
counted for, giving a misfit of the form Eq. (14).

W2
2,γ =W2

2 (f̂, ĝ)+ γ h(f,g) (14)
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Figure 7. Process of moving from densities to 2-Wasserstein distance in one spatial/temporal dimension x. (a) Density functions from Fig. 4.
(b) The cumulative distributions. (c) The inverse cumulative distributions with dashed lines showing transport pairs. (d) The difference
between the inverse cumulative densities. (e) The area under the squared difference, giving the squared 2-Wasserstein distance.

Figure 8. Method of finding the barycentre (solid black) from five Gaussian densities (dashed). Panel (a) shows density functions, panel
(b) the inverse cumulative distributions. The mean of the inverse cumulative distributions is the cumulative distribution of the barycentre.

Here, γ provides the relative importance of the total mass
error compared to the Wasserstein distance, while h is the
specific form of the penalty term. The quadratic function
Eq. (15) is a simple choice for this penalty.

h(f,g)=
(
Mf−Mg

)2 (15)

By selecting an appropriate weighting factor, we can develop
a balanced misfit measure that contains the favourable prop-

erties of the Wasserstein distance whilst also removing the
insensitivity to total mass differences. Note however that this
weighting is a choice and so may require some tuning proce-
dure to attain the desired balance between the two aspects of
the fit.

We will now take the alternative approach of making a
modification to OT to suit our hydrological purposes. The
proposed result is derived for one-dimensional data but could
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Figure 9. Visual representation of computing the hydrograph–Wasserstein distance. Panel (a) shows two synthetic hydrographs (dashed
red and solid black) between which we want to compute the distance. Panel (b) shows the inverse shifted cumulative functions defined in
Eqs. (18) and (19). Transport occurs between points vertically aligned in panel (b), forcing excess mass to be mapped to the boundaries.

potentially be extended to the multi-variate case in the same
manner as the radon Wasserstein distance (Bonneel et al.,
2015). We can build the new definition upon the foundation
that we can compute the cumulative mass of a non-negative
function, regardless of whether this mass sums to 1, and that
this function will be monotonically increasing. The key step
of a one-dimensional OT is that points of equal cumulative
mass are matched in the optimal map (see Eq. 8 and Fig. 7).
A similar concept with cumulative densities of arbitrary mass
can be designed. Inspired by the ordinary Wasserstein dis-
tance, we can map the points of half-cumulative mass to-
gether (medians in the case of probability densities). To en-
sure these points are always aligned regardless of total mass,
a shift can be applied such that the cumulative densities are
centred at this halfway point using Eqs. (16) and (17).

Fs(x)=

 x∫
−∞

f (x′)dx′

− Mf

2
(16)

Gs(y)=

 y∫
−∞

g(y′)dy′

− Mg

2
(17)

For the matching of points of equal cumulative mass, the in-
verses of these are required. As we are working in the time
window [0, T ], we can limit the inverse to this range, giving
the piece-wise functions Eqs. (18) and (19).

F
−1
(s)=


0, s <−Mf

2
F−1

s (s), −Mf
2 ≤ s ≤

Mf
2

T , s > Mf
2

(18)

G
−1
(s)=


0, s <−

Mg
2

G−1
s (s), −

Mg
2 ≤ s ≤

Mg
2

T , s >
Mg
2

(19)

In a transport sense, we can see from Fig. 9 that this
amounts to transporting the excess (or deficit) mass to (or
from) the boundaries, which act as a source or sink to main-
tain the mass balance. In this case with a temporal domain,
the boundaries are the start and end of the time window.
The excess or deficit mass is therefore associated with times
before t = 0 or after t = 500, whichever is closer in time.
This makes it an alternative implementation of the method
discussed in Farchi et al. (2016), who also proposed using
sources or sinks at the boundaries of a spatial domain to com-
plete the mass balance. Note that, like the traditional one-
dimensional Wasserstein distance, this is a result that can be
computed efficiently without the need to solve a partial dif-
ferential equation, linear program, or iterative scheme.

Now that the mapping and form of the inverse cumulative
distributions have been proposed, the modified Wasserstein
distance under the interpretation that it is the total transport
cost can be defined according to Eq. (20).
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HW2
2 =

∞∫
−∞

[
F
−1
(s)−G

−1
(s)
]2

ds (20)

We choose to label the misfit Eq. (20) the hydrograph–
Wasserstein distance.

While Eq. (20) is expressed with infinite bounds, the
integrand is only non-zero over the interval [−Mmax/2,
Mmax/2], where Mmax =max{Mf,Mg}, and so can easily be
computed numerically over this range.

The adjustment of barycentres for distributions of arbitrary
total mass is much simpler. We can use the scaling defined in
Eq. (13), find the barycentre of these distributions, and then
scale the result such that its total mass is the average of the
composite distributions. This is equivalent to replacing the
Wasserstein distance in Eq. (7) with the penalised distance
Eq. (14) under a quadratic penalty Eq. (15).

3 Rainfall–runoff modelling

3.1 Calibration

As a first application, the calibration of conceptual rainfall–
runoff models using the Wasserstein distance as a minimisa-
tion objective was considered. This experiment is similar to
that found in Lerat and Anderssen (2015) but uses all model
parameters in the hydrological model.

A conceptual rainfall–runoff model gauges the relation-
ship between a rainfall time series (hyetograph) and stream-
flow time series (hydrograph) for a particular watershed. By
calibrating the model parameters to best capture this relation-
ship, the model can be used for forecasting future streamflow
under chosen rainfall conditions or to infer properties of the
watershed itself. Automatic calibration methods seek to do
this by minimising the discrepancy between the simulated
streamflow from the rainfall–runoff model and the stream-
flow that was observed at gauging stations (Nash and Sut-
cliffe, 1970).

As hydrographs are a time series, the efficient one-
dimensional techniques described in Sect. 2.2 were used.
The application of the Wasserstein distance to this problem
bears some similarity to the technique of dynamic time warp-
ing (DTW), an application of which to hydrology can be
found in Ouyang et al. (2010), the series distance developed
in Ehret and Zehe (2011), the cumulative distribution method
in Lerat and Anderssen (2015), and the hydrograph-matching
technique in Ewen (2011). These also strive to allow tim-
ing errors to be better accounted for when comparing hydro-
graphs.

As was used by Lerat and Anderssen (2015), a non-linear
storage model was employed to test the misfit functions. The
storage in the model evolves according to the differential
equation (Eq. 21).

dS
dt
=m3r(t)− q(t) (21)

The outward streamflow flux is given by the non-linear
model Eq. (22).

q(t)=

(
S(t)

m1

)m2

(22)

Using some initial volume of water in storage, we can update
the storage and compute the streamflow at each time step
for any given set of model parameters and hyetograph. This
gives three model parameters (m1, m2, and m3) that must
be calibrated using given rainfall and runoff measurements.
To work in a controlled environment while testing the main
characteristics of the Wasserstein distance, synthetic rainfall
events were used, and the model was used to generate the
expected streamflow. We then attempted to recover the model
parameters used to generate the synthetic observations.

As precipitation is a more uncertain measurement than
streamflow, we subjected the synthetic rainfall event to tim-
ing errors, recalling that these types of errors are poorly rep-
resented when using point-wise misfit metrics (Ehret and
Zehe, 2011). Figure 10 shows the true synthetic hyetograph,
the observed hyetograph corrupted by timing errors, and the
streamflow generated by the true rainfall using the storage
model defined in Eqs. (21) and (22).

We then calibrated the three model parameters to this
streamflow using the erroneous rainfall measurements with a
variety of misfit functions. Note that in the case of error-less
data and a unique solution, all misfit functions discussed here
would have a global minimum of 0 at the true model param-
eters. Optimisation was performed with the RMSE, Wasser-
stein distance (γ = 10, 100), and hydrograph–Wasserstein
distance using the Nelder–Mead algorithm, implemented
through the scipy Python package (Nelder and Mead, 1965;
Virtanen et al., 2020). Figures 11–13 show the misfit as a
function of the model parameters, along with the true model
parameters and the optimised parameters under each misfit.

The Wasserstein-based distances provided a misfit mini-
mum closer to the true model parameters than the RMSE. A
greater understanding of this can be garnered by examining
the hydrographs produced by the calibrated model (Fig. 14).

The Wasserstein-based distances better recovered the
model parameters and visually give a better hydrograph fit.
The RMSE calibration underestimated the maximum flow
peaks in favour of more sustained lowered flows. The reason
for this can be traced back to Fig. 1, where misaligned steep
peaks gave large residuals. This can be lessened by having
wider peaks, even though this gives a visually less satisfac-
tory hydrograph and poorer estimates of model parameters.
We can conclude that, for this simple synthetic case study, the
Wasserstein distance has promising attributes with respect to
timing errors in hydrograph fitting.

Of course, this only shows the efficacy of the Wasserstein
distance for one particular rainfall event. Random synthetic
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Figure 10. True rainfall (solid blue) with timing errors in observations (dashed blue) and the observed hydrograph (black) produced from the
true rainfall and storage model described by Eqs. (21) and (22) with model parameters (10, 2, 0.7).

Figure 11. Misfit surface as a function of m1 and m2 for each objective. Red circle marker represents true model parameters and red cross
marker represents the minimised solution from the Nelder–Mead algorithm.

rainfall events were therefore generated using the method de-
scribed in Appendix A, with the model calibrated to each
event. The calibrated model parameters are compiled into
boxplots in Fig. 15.

Whilst still having some variability and bias, the
Wasserstein-based distances performed significantly better

across the 500 trials, with a median result closer to the true
value for all parameters and lowered variability. The or-
dinary Wasserstein distance outperformed the hydrograph–
Wasserstein distance for this model. The size of the penalty-
weighting factor γ had little effect on the location of the op-
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Figure 12. The same display as Fig. 11 but considering model parameters m1 and m3. Red circle still denotes true parameters and red cross
the minimum of this surface.

timum for the Wasserstein distance but altered the shape of
the misfit surface (see Figs. 11–13).

The better performance of the penalised Wasserstein dis-
tance compared to the hydrograph–Wasserstein distance may
be due to the form of this model. As m1 and m2 purely con-
trol hydrograph shape and m3 purely controls total output
mass, there is a complete separation in which model parame-
ters affect each aspect of the misfit; that is, no model param-
eter simultaneously influences both the Wasserstein distance
and the mass balance penalty term unless the change in m1
or m2 moves mass outside of the measured time window.

Subsequently, there is no “trade-off” between lowering the
Wasserstein distance or penalty term; both are always possi-
ble as the model parameters only influence both if mass is
pushed outside the time window (hence there being any vari-
ability in the m3 panel of Fig. 15).

If there were model parameters that influenced both shape
and total mass, this separation of aspects would not be
present, and the magnitude of γ may have increased impor-
tance due to the trade-off between fitting the shape and bal-

ancing the mass of the hydrographs when tuning a model
parameter.

3.2 Instantaneous unit hydrograph model

Section 3.1 showed that the Wasserstein distance gives a bet-
ter account for timing errors than can be made from point-
wise metrics. The effect of delay times from within the hy-
drological model itself is now considered. A simple unit hy-
drograph model was used to generate such delays between
rainfall and the associated streamflow. The instantaneous unit
hydrograph (IUH) is defined as the streamflow response for
a unit impulse of effective rainfall over the catchment. Under
the assumption of a linear response, the stream hydrograph
can be modelled via a convolution of the rainfall and IUH,
giving the model Eq. (23).

q(t)=

∞∫
−∞

u(t − s)r(s)ds = u(t) · r(t) (23)

In reality, we can only measure the streamflow and rainfall,
leaving us to infer the IUH from such measurements. To en-
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Figure 13. The same display as Fig. 11 but considering model parameters m2 and m3. Red circle still denotes true parameters and red cross
the minimum of this surface.

Figure 14. Output of the rainfall–runoff model for calibrated parameters under each objective function. Observations displayed in black and
simulation in red.
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Figure 15. Calibrated model parameters for 500 rainfall events generated randomly using the method in Appendix A under the influence of
timing errors. Optimisation used the Nelder–Mead algorithm initialised at the true model parameters of (10, 2, 0.7). Red solid line shows the
median calibrated parameter, blue dash-dot line the true model parameter. Optimisation used RMSE, Wasserstein distance with γ = 10, 100
penalty terms, and hydrograph–Wasserstein distance.

force some set of desired characteristics on the IUH, such as
smoothness, positivity, and unit mass, it can be restricted to
belonging to a parametric set, each of which is of the cor-
rect form. A commonly used synthetic unit hydrograph is the
Nash hydrograph (Nash, 1957). This assumes that the wa-
tershed is composed of a series of linear reservoirs, giving a
unit hydrograph of the form Eq. (24), where 0 is the Gamma
function.

u(t)=
1

0(k)θk
tk−1e−t/θ (24)

This leaves us with two parameters, θ and k, to calibrate. Al-
though there are multiple existing ways of solving this prob-
lem so the OT approach is not necessarily warranted, this
application has some of the key features we would like to
explore more generally in rainfall–runoff model calibration
whilst keeping the model structure simple.

The effective rainfall time series was generated using the
method described in Appendix A with 10 rainfall events, giv-
ing the output displayed in Fig. 16, where the true model pa-
rameters of the IUH are θ = 3, k = 5.

The behaviours of both the Wasserstein distance and the
RMSE were explored here with respect to the time delays
induced by the IUH model. The misfit as a function of the
two model parameters is shown in the left-hand-side panels
of Fig. 17.

The key difference between the misfit surfaces in Fig. 17
is that local optimisation methods will converge for a greater
number of starting locations towards the true optimal point
(marked red in the left-hand-side panels) when using the
Wasserstein-based distance. While many initial estimates

with the RMSE will also converge to this same point, there
are also alternative minimal points to which the optimisa-
tion scheme may converge. A grid of starting estimates of
the model parameters was used to examine this more con-
cretely in the right-hand-side panels of Fig. 17. These pan-
els show the convergence properties according to the initial
model parameter estimate for the RMSE and the Wasserstein
distance for three choices of γ . Convergence is defined as
the optimised model m∗ satisfying ‖m∗−mtrue‖2 < 0.001,
where mtrue is the true solution, denoted as the red points in
the left-hand-side panels of Fig. 17.

From Fig. 17, there is a clearly defined “basin of attrac-
tion” about the optimal solution for RMSE, beyond which lo-
cal optimisation algorithms will not converge. This matches
well with the corresponding misfit surface in the top left-
hand-side panel. The Wasserstein distance converged for a
greater number of initial estimates, with improvement seen
for a larger choice of γ . This is likely due to the low sensi-
tivity of the misfit surface within the “valley” about the opti-
mal solution (visualised as the white region in Fig. 17). The
larger value of γ increases the sensitivity (gradient of the
misfit surface) and potentially prevents early termination of
the optimisation algorithm.

We do acknowledge that it takes a relatively poor initial es-
timate of the model parameters to become trapped in a local
minimum for this IUH model. Indeed, with only two model
parameters, a brute force global optimisation method is cer-
tainly feasible. Furthermore, a good initial estimate may be
generated using the method of moments for the Nash IUH.
However, these results show the ability of the Wasserstein
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Figure 16. Effective rainfall (top, blue) and observed streamflow (bottom, black) for the test problem. Rainfall was generated using the
method described in Appendix A with 10 rainfall events of maximum length five time units. The streamflow was generated using the unit
hydrograph model Eq. (24) with model parameters (3, 5).

Figure 17. Root mean square error and 2-Wasserstein (with γ = 100, 1000, 10 000) misfit surfaces for the rainfall event in Fig. 16 and the
unit hydrograph model (Eq. 24) (left-hand-side panels). Red marker shows the true solution. The RMSE surface displays local minima in the
lower-left and upper-right corners, where poor convergence is observed. The right-hand-side panels show whether convergence criteria were
met (blue) or not (red) for each model initialisation.
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Figure 18. Two hydrographs for the same rainfall event but with different hydrological models (a, black and red solid lines). Panel (b) shows
the Wasserstein barycentre in solid black and the mean in dashed black.

distance to recognise the error in improperly aligned peak
flows.

The power of the Wasserstein distance may come to the
fore when a more complex watershed and thus model are
used, perhaps producing multiple pulses per rainfall event
and yielding multiple peaks in the IUH. These results also
capture the general behaviour of models possessing sig-
nificant delay times, allowing the simulated hydrograph to
“shift” in time across the observations, in a similar manner
to Fig. 3.

3.3 Hydrograph barycentres

Beyond the use of the Wasserstein distance purely as an ob-
jective function, attention will now be turned to the applica-
tion of Wasserstein barycentres to hydrology, using hydro-
graphs as the object of study. The power of the Wasserstein
barycentre is that it gives a notion of an “average” when fea-
tures have been displaced.

This means that an ensemble of hydrographs describing
the same event, perhaps with different climate or hydrologi-
cal models, can be “averaged” into a single hydrograph that
carries characteristics of each ensemble member. Note that
this will only be true if the main source of difference be-
tween ensemble members is timing and peak shape differ-
ences rather than peak volume differences.

To test this premise, two different IUH models were ap-
plied to the same synthetic rainfall event, giving the differing
hydrographs shown in Fig. 18a. As they were from the same
rainfall event and a unit hydrograph model was used, the vol-
umes of the peaks in each hydrograph were approximately
the same, with only the shape and timing differing, and so
this is suitable for the Wasserstein approach. Figure 18b com-
pares the Wasserstein barycentre with the mean of the hydro-
graphs.

Unlike the ordinary mean, the Wasserstein distance cap-
tured the correct number and general characteristics of the
peak flows. Again, this is built on the assumption that the
peaks of each hydrograph mainly differ in shape and timing
but not volume. If they differed in volume, the barycentre
could exhibit peaks in unusual locations, as the mass is being
“viewed” halfway through transport across the domain.

Consider the two hydrographs shown in Fig. 19a. They
are the same in timing but differ in the volume of water. In
this case, the regular mean gave a much better notion of the
average, as the difference between the hydrographs is better
explained in terms of amplitude rather than displacement, as
was the case in Fig. 18.

We therefore see that while the Wasserstein barycentre is
well suited for an ensemble of hydrographs with differing
peak flow timings, it is not well suited for amplitude differ-
ences. This is to be expected from its definition. We there-
fore suggest that the conventional mean is best suited for an
ensemble with differing amplitudes but consistent timings,
whilst the Wasserstein barycentre is appropriate when timing
is variable, but volumes in peak flows are consistent.

4 Conclusions

Quantifying the similarity of temporal or spatial distributions
of water occupies an important role within hydrology. The
way in which a “good” fit is defined directly influences the
character of the results. Many commonly used misfit func-
tions, such as root mean square error and Nash–Sutcliffe ef-
ficiency, quantify fit by considering differences in amplitude.
While this is perfectly acceptable when errors are restricted
to amplitude, these measures of misfit do not well quantify
displacement errors.

In this work, we have suggested the Wasserstein distance,
derived from optimal transport, as a candidate misfit func-
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Figure 19. The same hydrological model applied to rainfall events differing in amplitude (dashed black and red, inverted plots in panel
a), giving hydrograph differences purely in amplitude (solid black and red, a). Panel (b) shows the mean (dashed black) and Wasserstein
barycentre (black).

tion for applications where displacement or timing errors
are prominent. This quantifies difference in terms of the
effort required to transform one mass distribution into an-
other. A modification of traditional OT and the associated
“hydrograph–Wasserstein distance” was also developed.

While the Wasserstein-based measures certainly gave bet-
ter calibration results than RMSE, there was still a slight bias
towards peaks of reduced amplitudes, although to a much
lesser extent. Some type of multi-objective method may cir-
cumvent this by using a measure comparing the amplitude of
peak flows. Although the Wasserstein distance with a penalty
term outperformed the hydrograph–Wasserstein distance for
these synthetic tests, there may be broader implications for
this second misfit function. Very little interest has been given
thus far to the modification of OT for particular applications,
with most preferring to force data into the density function
mould. Other ways of modifying whilst still capturing the
essence of OT are therefore a key point of further research, as
they may allow the simultaneous capture of displacement and
total mass errors without the need for a user-defined weight-
ing term between the aspects. Focus in this work has been
placed upon the Wasserstein distance rather than the optimal
map from which it is derived. There is unexplored potential
in this optimal map for providing a two-way mapping be-
tween collected data and a reference distribution in a similar
vein to flow anamorphosis (van den Boogaart et al., 2017;
Talebi et al., 2019).

As proposed by Ehret and Zehe (2011), a major draw-
back of the Wasserstein distance for hydrographs is the map-
ping of water masses between functionally different parts of
the hydrographs. For example, if the modelled volume of a
particular storm event exceeds the observations, this excess
water is mapped to the next (and unrelated) storm event. If
the storm events are separated by long dry periods, a large
transport cost would be incurred by moving the mass be-

tween the events. Therefore, when fitting multiple events in-
terspersed with dry spells, it may be more appropriate to seg-
ment the hydrographs into each discrete event and compute
the Wasserstein distance individually within each time win-
dow to prevent this mapping between events. The objective
function would then become the summation of the Wasser-
stein distances for each time segment. This would not be pos-
sible for wet periods with overlapping rainfall events, but the
penalty for transporting mass between events would be much
smaller in this case as they occur closer together in time.

It is also important to remember that, for more complex
models and data, we cannot expect the Wasserstein distance
to capture all aspects of fit. Much like the amplitude-based
metrics, it prioritises particular aspects of fit and has the po-
tential to yield large-amplitude errors at specific points as
long as mass has not been shifted far from the target loca-
tion. We are therefore led back to our introductory question
of what is a good “fit”? If we know, or expect, timing or spa-
tial displacement errors in our measurements or model out-
put, a transport-based definition of fit would seem appropri-
ate. However, this may not be the case when other types of
errors are at play. A multi-objective approach may therefore
still be a necessary and even encouraged technique. The re-
sults here do however show that the Wasserstein distance is
suitable for quantifying displacement errors and so is a valu-
able addition to the toolbox of misfit functions in operation
in hydrology.

Appendix A: Random rainfall generation

For the synthetic experiments, a method for generating ran-
dom rainfall events was required. This is done by first setting
a time window length. Let this window be the interval [0, T ],
where any units can be used.
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A number of rainfall eventsN is then specified by the user.
The start time of each of these rainfall events is chosen from
a random uniform distribution within the time window. That
is, if the start time of the ith event is denoted as si , then

si ∼ U(0,T ). (A1)

The length of each of these rainfall events is then cho-
sen from a uniform distribution of specified maximum
length tmax, so the length of the ith event is given by

li ∼ U (0, tmax) . (A2)

Together, these give start and end times for each storm, where
the end time ei is given by

ei = si + li . (A3)

The intensity of the rainfall ri for each storm is chosen inde-
pendently from an exponential distribution with rate param-
eter λ.

ri ∼ Exponential(λ) (A4)

In this study, we set λ= 1, as the rainfall units are arbitrary.
To corrupt the measurements with timing errors, the tim-

ing of each storm is shifted independently by a number δi
drawn from a uniform distribution ranging between a posi-
tive and negative maximum time shift, δmax, so that

δi ∼ U (−δmax,δmax) . (A5)

This gives the altered start and end times for each storm as

s′i = si + δi, (A6)
e′i = ei + δi . (A7)

Between the start and end times of each rainfall event, con-
stant rainfall of the randomly chosen intensity is applied.
If rainfall events overlap, the intensities are added for this
cross-over period.
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