Articles | Volume 27, issue 3
https://doi.org/10.5194/hess-27-703-2023
https://doi.org/10.5194/hess-27-703-2023
Research article
 | 
09 Feb 2023
Research article |  | 09 Feb 2023

Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning

Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling

Related authors

Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024,https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Conceptualising surface water–groundwater exchange in braided river systems
Scott R. Wilson, Jo Hoyle, Richard Measures, Antoine Di Ciacca, Leanne K. Morgan, Eddie W. Banks, Linda Robb, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 28, 2721–2743, https://doi.org/10.5194/hess-28-2721-2024,https://doi.org/10.5194/hess-28-2721-2024, 2024
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Remote Sensing and GIS
High-resolution automated detection of headwater streambeds for large watersheds
Francis Lessard, Naïm Perreault, and Sylvain Jutras
Hydrol. Earth Syst. Sci., 28, 1027–1040, https://doi.org/10.5194/hess-28-1027-2024,https://doi.org/10.5194/hess-28-1027-2024, 2024
Short summary
Remote quantification of the trophic status of Chinese lakes
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci., 27, 3581–3599, https://doi.org/10.5194/hess-27-3581-2023,https://doi.org/10.5194/hess-27-3581-2023, 2023
Short summary
Hydrological regime of Sahelian small waterbodies from combined Sentinel-2 MSI and Sentinel-3 Synthetic Aperture Radar Altimeter data
Mathilde de Fleury, Laurent Kergoat, and Manuela Grippa
Hydrol. Earth Syst. Sci., 27, 2189–2204, https://doi.org/10.5194/hess-27-2189-2023,https://doi.org/10.5194/hess-27-2189-2023, 2023
Short summary
Long-term water clarity patterns of lakes across China using Landsat series imagery from 1985 to 2020
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022,https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary
Changes in glacial lakes in the Poiqu River basin in the central Himalayas
Pengcheng Su, Jingjing Liu, Yong Li, Wei Liu, Yang Wang, Chun Ma, and Qimin Li
Hydrol. Earth Syst. Sci., 25, 5879–5903, https://doi.org/10.5194/hess-25-5879-2021,https://doi.org/10.5194/hess-25-5879-2021, 2021
Short summary

Cited articles

Anderson, E. I.: Modeling groundwater–surface water interactions using the Dupuit approximation, Adv. Water Resour., 28, 315–327, https://doi.org/10.1016/j.advwatres.2004.11.007, 2005. a
Arscott, D. B., Larned, S., Scarsbrook, M. R., and Lambert, P.: Aquatic invertebrate community structure along an intermittence gradient: Selwyn River, New Zealand, J. N. Am. Benthol. Sc., 29, 530–545, https://doi.org/10.1899/08-124.1, 2010. a
Banks, E. W., Morgan, L. K., Sai Louie, A. J., Dempsey, D., and Wilson, S. R.: Active distributed temperature sensing to assess surface water–groundwater interaction and river loss in braided river systems, J. Hydrol., 615, 128667, https://doi.org/10.1016/j.jhydrol.2022.128667, 2022. a, b, c, d, e, f
Baudron, P., Alonso-Sarría, F., García-Aróstegui, J. L., Cánovas-García, F., Martínez-Vicente, D., and Moreno-Brotóns, J.: Identifying the origin of groundwater samples in a multi-layer aquifer system with Random Forest classification, J. Hydrol., 499, 303–315, 2013. a
Booker, D. J. and Woods, R. A.: Comparing and combining physically-based and empirically-based approaches for estimating the hydrology of ungauged catchments, J. Hydrol., 508, 227–239, https://doi.org/10.1016/j.jhydrol.2013.11.007, 2014. a
Download
Short summary
We present a novel framework to estimate how much water is lost by ephemeral rivers using satellite imagery and machine learning. This framework proved to be an efficient approach, requiring less fieldwork and generating more data than traditional methods, at a similar accuracy. Furthermore, applying this framework improved our understanding of the water transfer at our study site. Our framework is easily transferable to other ephemeral rivers and could be applied to long time series.