Articles | Volume 27, issue 3
https://doi.org/10.5194/hess-27-703-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-703-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning
Antoine Di Ciacca
CORRESPONDING AUTHOR
Environmental Research, Lincoln Agritech Ltd, Lincoln, New
Zealand
Scott Wilson
Environmental Research, Lincoln Agritech Ltd, Lincoln, New
Zealand
Jasmine Kang
National Institute of Water and Atmospheric Research (NIWA),
Christchurch, New Zealand
Thomas Wöhling
Environmental Research, Lincoln Agritech Ltd, Lincoln, New
Zealand
Chair of Hydrology, Technische Universität Dresden, Dresden,
Germany
Related authors
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Scott R. Wilson, Jo Hoyle, Richard Measures, Antoine Di Ciacca, Leanne K. Morgan, Eddie W. Banks, Linda Robb, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 28, 2721–2743, https://doi.org/10.5194/hess-28-2721-2024, https://doi.org/10.5194/hess-28-2721-2024, 2024
Short summary
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Scott R. Wilson, Jo Hoyle, Richard Measures, Antoine Di Ciacca, Leanne K. Morgan, Eddie W. Banks, Linda Robb, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 28, 2721–2743, https://doi.org/10.5194/hess-28-2721-2024, https://doi.org/10.5194/hess-28-2721-2024, 2024
Short summary
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
Cited articles
Anderson, E. I.: Modeling groundwater–surface water interactions using the
Dupuit approximation, Adv. Water Resour., 28, 315–327,
https://doi.org/10.1016/j.advwatres.2004.11.007, 2005. a
Arscott, D. B., Larned, S., Scarsbrook, M. R., and Lambert, P.: Aquatic
invertebrate community structure along an intermittence gradient: Selwyn
River, New Zealand, J. N. Am. Benthol. Sc., 29,
530–545, https://doi.org/10.1899/08-124.1, 2010. a
Banks, E. W., Morgan, L. K., Sai Louie, A. J., Dempsey, D., and Wilson,
S. R.: Active distributed temperature sensing to assess surface
water–groundwater interaction and river loss in braided river systems,
J. Hydrol., 615, 128667,
https://doi.org/10.1016/j.jhydrol.2022.128667, 2022. a, b, c, d, e, f
Baudron, P., Alonso-Sarría, F., García-Aróstegui, J. L.,
Cánovas-García, F., Martínez-Vicente, D., and
Moreno-Brotóns, J.: Identifying the origin of groundwater samples in a
multi-layer aquifer system with Random Forest classification, J. Hydrol., 499, 303–315, 2013. a
Booker, D. J. and Woods, R. A.: Comparing and combining physically-based and
empirically-based approaches for estimating the hydrology of ungauged
catchments, J. Hydrol., 508, 227–239,
https://doi.org/10.1016/j.jhydrol.2013.11.007, 2014. a
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a
Brown, L. J., Dravid, P. N., Hudson, N. A., and Taylor, C. B.: Sustainable
groundwater resources, Heretaunga Plains, Hawke's Bay, New Zealand,
Hydrogeol. J., 7, 440–453, https://doi.org/10.1007/s100400050217, 1999. a
Burden, R. J.: Chemical zonation in groundwater of the Central Plains,
Canterbury, J. Hydrol., 23, 100–119, 1984. a
Callo, J. A. R.: Estimating specific leakage rates to alluvial gravel aquifers
using remote sensing data with a water balance – based approach in the
Omaka and Taylor ephemeral rivers, New Zealand, Master thesis, Technische
Universität Dresden, 2022. a
Coluccio, K. and Morgan, L. K.: A review of methods for measuring groundwater–surface water exchange in braided rivers, Hydrol. Earth Syst. Sci., 23, 4397–4417, https://doi.org/10.5194/hess-23-4397-2019, 2019. a
Cook, P. G.: Quantifying river gain and loss at regional scales, J. Hydrol., 531, 749–758,
https://doi.org/10.1016/j.jhydrol.2015.10.052, 2015. a, b
Datry, T., Larned, S., and Scarsbrook, M. R.: Responses of hyporheic
invertebrate assemblages to large-scale variation in flow permanence and
surface–subsurface exchange, Freshwater Biol., 52, 1452–1462,
https://doi.org/10.1111/j.1365-2427.2007.01775.x, 2007. a
Datry, T., Larned, S. T., and Tockner, K.: Intermittent Rivers: A Challenge
for Freshwater Ecology, BioScience, 64, 229–235,
https://doi.org/10.1093/biosci/bit027, 2014. a
Desai, S. and Ouarda, T. B. M. J.: Regional hydrological frequency analysis at
ungauged sites with random forest regression, J. Hydrol., 594,
125861, https://doi.org/10.1016/j.jhydrol.2020.125861, 2021. a
Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009. a
Di Ciacca, A., Leterme, B., Laloy, E., Jacques, D., and Vanderborght, J.:
Scale-dependent parameterization of groundwater–surface water interactions
in a regional hydrogeological model, J. Hydrol., 576, 494–507, https://doi.org/10.1016/j.jhydrol.2019.06.072, 2019. a
Dravid, P. N. and Brown, L. J.: Heretaunga Plains groundwater study, Hawke's
Bay Regional Council, https://www.hbrc.govt.nz/assets/Document-Library/Projects/TANK/TANK-Key-Reports/Heretaunga-Plains-Groundwater-Study-1997.pdf (last access: August 2022), 1997. a
Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D.,
Downer, C. W., Camporese, M., Davison, J. H., and Ebel, B.: An overview of
current applications, challenges, and future trends in distributed
process-based models in hydrology, J. Hydrol., 537, 45–60, 2016. a
Feyisa, G. L., Meilby, H., Fensholt, R., and Proud, S. R.: Automated Water
Extraction Index: A new technique for surface water mapping using Landsat
imagery, Remote Sens. Environ., 140, 23–35,
https://doi.org/10.1016/j.rse.2013.08.029, 2014. a
Fleckenstein, J. H., Krause, S., Hannah, D. M., and Boano, F.:
Groundwater-surface water interactions: New methods and models to improve
understanding of processes and dynamics, Adv. Water Resour., 33,
1291–1295, 2010. a
Fovet, O., Belemtougri, A., Boithias, L., Braud, I., Charlier, J.-B., Cottet,
M., Daudin, K., Dramais, G., Ducharne, A., Folton, N., Grippa, M., Hector,
B., Kuppel, S., Le Coz, J., Legal, L., Martin, P., Moatar, F.,
Molénat, J., Probst, A., Riotte, J., Vidal, J.-P., Vinatier, F., and
Datry, T.: Intermittent rivers and ephemeral streams: Perspectives for
critical zone science and research on socio-ecosystems, WIREs Water, 8,
e1523, https://doi.org/10.1002/wat2.1523, 2021. a
González-Pinzón, R., Ward, A. S., Hatch, C. E., Wlostowski, A. N.,
Singha, K., Gooseff, M. N., Haggerty, R., Harvey, J. W., Cirpka, O. A., and
Brock, J. T.: A field comparison of multiple techniques to quantify
groundwater–surface-water interactions, Freshw. Sci., 34, 139–160,
https://doi.org/10.1086/679738, 2015. a
Harbaugh, A. W.: MODFLOW-2005, the U.S. Geological Survey modular ground-water
model – the Ground-Water Flow Process. U.S. Geological Survey Techniques and
Methods 6-A16, Tech. rep., https://doi.org/10.3133/tm6A16, 2005. a
Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G.: MODFLOW-2000,
the U.S. Geological Survey modular ground-water model user guide to
modularization concepts and the ground-water flow process, Tech. rep.,
Denver, CO, https://doi.org/10.3133/ofr200092, 2000. a
Hatch, C. E., Fisher, A. T., Revenaugh, J. S., Constantz, J., and Ruehl, C.:
Quantifying surface water–groundwater interactions using time series
analysis of streambed thermal records: Method development, Water Resour. Res., 42, W10410, https://doi.org/10.1029/2005WR004787, 2006. a
Hoehn, E. and Von Gunten, H. R.: Radon in groundwater: A tool to assess
infiltration from surface waters to aquifers, Water Resour. Res., 25,
1795–1803, https://doi.org/10.1029/WR025i008p01795, 1989. a
James, G., Witten, D., Hastie, T., and Tibshirani, R.: An introduction to
statistical learning, vol. 112, Springer, ISBN 978-1-4614-7138-7, 2013. a
Jarihani, A. A., Larsen, J. R., Callow, J. N., McVicar, T. R., and Johansen,
K.: Where does all the water go? Partitioning water transmission losses in a
data-sparse, multi-channel and low-gradient dryland river system using
modelling and remote sensing, J. Hydrol., 529, 1511–1529,
https://doi.org/10.1016/J.JHYDROL.2015.08.030, 2015. a
Kalbus, E., Reinstorf, F., and Schirmer, M.: Measuring methods for groundwater – surface water interactions: a review, Hydrol. Earth Syst. Sci., 10, 873–887, https://doi.org/10.5194/hess-10-873-2006, 2006. a
Knoll, L., Breuer, L., and Bach, M.: Large scale prediction of groundwater
nitrate concentrations from spatial data using machine learning, Sci. Total Environ., 668, 1317–1327, 2019. a
Koch, J., Stisen, S., Refsgaard, J. C., Ernstsen, V., Jakobsen, P. R., and
Højberg, A. L.: Modeling depth of the redox interface at high resolution
at national scale using random forest and residual gaussian simulation,
Water Resour. Res., 55, 1451–1469, 2019. a
Kuffour, B. N. O., Engdahl, N. B., Woodward, C. S., Condon, L. E., Kollet, S., and Maxwell, R. M.: Simulating coupled surface–subsurface flows with ParFlow v3.5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model, Geosci. Model Dev., 13, 1373–1397, https://doi.org/10.5194/gmd-13-1373-2020, 2020. a
Kuhn, M. and Wickham, H.: Tidymodels: a collection of packages for modeling
and machine learning using tidyverse principles.,
https://www.tidymodels.org (last access: August 2022), 2020. a
Lange, J.: Dynamics of transmission losses in a large arid stream channel,
J. Hydrol., 306, 112–126,
https://doi.org/10.1016/j.jhydrol.2004.09.016, 2005. a
Langevin, C. D., Hughes, J. D., Banta, E. R., Niswonger, R. G., Panday, S., and
Provost, A. M.: Documentation for the MODFLOW 6 groundwater flow model,
Tech. rep., https://doi.org/10.3133/tm6A55, 2017. a
Larned, S. T., Datry, T., and Robinson, C. T.: Invertebrate and microbial
responses to inundation in an ephemeral river reach in New Zealand: effects
of preceding dry periods, Aquatic Sci., 69, 554–567,
https://doi.org/10.1007/s00027-007-0930-1, 2007. a
Larned, S. T., Arscott, D. B., Schmidt, J., and Diettrich, J. C.: A Framework
for Analyzing Longitudinal and Temporal Variation in River Flow and
Developing Flow-Ecology Relationships1,
J. Am. Water Resour. As., 46, 541–553,
https://doi.org/10.1111/j.1752-1688.2010.00433.x, 2010. a, b
Larned, S. T., Schmidt, J., Datry, T., Konrad, C. P., Dumas, J. K., and
Diettrich, J. C.: Longitudinal river ecohydrology: flow variation down the
lengths of alluvial rivers, Ecohydrology, 4, 532–548,
https://doi.org/10.1002/eco.126, 2011. a, b, c
Le Lay, H., Thomas, Z., Rouault, F., Pichelin, P., and Moatar, F.:
Characterization of Diffuse Groundwater Inflows into Stream Water (Part II:
Quantifying Groundwater Inflows by Coupling FO-DTS and Vertical Flow
Velocities), Water, 11, 2430, https://doi.org/10.3390/w11122430, 2019. a
Lee, D. R.: A device for measuring seepage flux in lakes and estuaries,
Limnol. Oceanogr., 22, 140–147,
https://doi.org/10.4319/lo.1977.22.1.0140, 1977. a
Lee, D. R. and Cherry, J. A.: A Field Exercise on Groundwater Flow Using
Seepage Meters and Mini-piezometers, J. Geol. Educ., 27,
6–10, https://doi.org/10.5408/0022-1368-27.1.6, 1979. a
Lewandowski, J., Meinikmann, K., and Krause, S.: Groundwater-surface water
interactions: Recent advances and interdisciplinary challenges, Water, 12, 296, https://doi.org/10.3390/w12010296, 2020. a
Massmann, G., Sültenfuß, J., and Pekdeger, A.: Analysis of long-term
dispersion in a river-recharged aquifer using tritium/helium data, Water
Resour. Res., 45, https://doi.org/10.1029/2007WR006746, 2009. a
Maxar Team: Maxar – Archive search and discovery,
https://discover.content.maxar.com/, last access: August 2022. a
Maxwell, R. M., Kollet, S. J., Smith, S. G., Woodward, C. S., Falgout, R. D.,
Ferguson, I. M., Baldwin, C., Bosl, W. J., Hornung, R., and Ashby, S.:
ParFlow user's manual, International Ground Water Modeling Center Report
GWMI, 1, 129, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=39b05cb173b8cea706fa7179c9ce745ff5e319e3 (last access: August 2022), 2009. a
McDonald, A. K., Sheng, Z., Hart, C. R., and Wilcox, B. P.: Studies of a
regulated dryland river: surface–groundwater interactions, Hydrol.
Process., 27, 1819–1828, https://doi.org/10.1002/hyp.9340, 2013. a
McDonald, M. G. and Harbaugh, A. W.: A modular three-dimensional
finite-difference ground-water flow model, vol. 6, US Geological Survey
Reston, VA, https://doi.org/10.3133/ofr83875, 1988. a
McKerchar, A. I. and Schmidt, J.: Decreases in low flows in the lower Selwyn
River?, J. Hydrol., 46, 63–72, 2007. a
McMahon, T. A. and Nathan, R. J.: Baseflow and transmission loss: A review,
WIREs Water, 8, 8:e1527, https://doi.org/10.1002/wat2.1527, 2021. a, b, c
McMahon, T. A. and Peel, M. C.: Uncertainty in stage–discharge rating
curves: application to Australian Hydrologic Reference Stations data,
Hydrolog. Sci. J., 64, 255–275,
https://doi.org/10.1080/02626667.2019.1577555, 2019. a
McMillan, H., Krueger, T., and Freer, J.: Benchmarking observational
uncertainties for hydrology: rainfall, river discharge and water quality,
Hydrol. Process., 26, 4078–4111,
https://doi.org/10.1002/hyp.9384, 2012. a
Morel-Seytoux, H. J., Miller, C. D., Mehl, S., and Miracapillo, C.: Achilles'
heel of integrated hydrologic models: The stream-aquifer flow exchange, and
proposed alternative, J. Hydrol., 564, 900–908,
https://doi.org/10.1016/j.jhydrol.2018.07.010, 2018. a
Munasinghe, D., Cohen, S., Huang, Y.-F., Tsang, Y.-P., Zhang, J., and Fang, Z.:
Intercomparison of Satellite Remote Sensing-Based Flood Inundation Mapping
Techniques, J. Am. Water Resour. As., 54,
834–846, https://doi.org/10.1111/1752-1688.12626, 2018. a
NIWA: Annual climate summary 2020, Tech. rep.,
https://niwa.co.nz/sites/niwa.co.nz/files/2020_Annual_Climate_Summary_Final.pdf (last access: August 2022),
2020. a
NIWA: Annual climate summary 2021,
https://niwa.co.nz/sites/niwa.co.nz/files/2021_Annual_Climate_Summary_NIWA11Jan2022.pdf (last access: August 2022),
2021. a
Papacharalampous, G. A. and Tyralis, H.: Evaluation of random forests and Prophet for daily streamflow forecasting, Adv. Geosci., 45, 201–208, https://doi.org/10.5194/adgeo-45-201-2018, 2018. a
Popp, A. L., Pardo-Álvarez, Á., Schilling, O. S., Scheidegger, A.,
Musy, S., Peel, M., Brunner, P., Purtschert, R., Hunkeler, D., and Kipfer,
R.: A Framework for Untangling Transient Groundwater Mixing and Travel
Times, Water Resour. Res., 57, e2020WR028362,
https://doi.org/10.1029/2020WR028362, 2021. a
Prickett, T. A. and Lonnquist, C. G.: Selected digital computer techniques for
groundwater resource evaluation, Tech. rep., https://www.isws.illinois.edu/pubdoc/B/ISWSB-55.pdf (last access: August 2022), 1971. a
Rodriguez-Galiano, V., Mendes, M. P., Garcia-Soldado, M. J., Chica-Olmo, M.,
and Ribeiro, L.: Predictive modeling of groundwater nitrate pollution using
Random Forest and multisource variables related to intrinsic and specific
vulnerability: A case study in an agricultural setting (Southern Spain),
Sci. Total Environ., 476, 189–206, 2014. a
Rosen, M. R. and White, P. A.: Groundwaters of New Zealand., New Zealand
Hydrological Society, ISBN 13 978-0-473-07816-4, 2001. a
Rosenberry, D. O., Duque, C., and Lee, D. R.: History and evolution of seepage
meters for quantifying flow between groundwater and surface water: Part
1–Freshwater settings, Earth-Sci. Rev., 204, 103167, https://doi.org/10.1016/j.earscirev.2020.103167, 2020. a
Rushton, K.: Representation in regional models of saturated river–aquifer
interaction for gaining/losing rivers, J. Hydrol., 334, 262–281,
https://doi.org/10.1016/j.jhydrol.2006.10.008, 2007. a
Rushton, K. R. and Tomlinson, L. M.: Possible mechanisms for leakage between
aquifers and rivers, J. Hydrol., 40, 49–65, 1979. a
Sagin, J., Sizo, A., Wheater, H., Jardine, T. D., and Lindenschmidt, K.-E.: A
water coverage extraction approach to track inundation in the Saskatchewan
River Delta, Canada, Int. J. Remote Sens., 36, 764–781,
https://doi.org/10.1080/01431161.2014.1001084, 2015. a
Schaper, J. L., Zarfl, C., Meinikmann, K., Banks, E. W., Baron, S., Cirpka,
O. A., and Lewandowski, J.: Spatial Variability of Radon Production Rates in
an Alluvial Aquifer Affects Travel Time Estimates of Groundwater Originating
From a Losing Stream, Water Resour. Res., 58, e2021WR030635,
https://doi.org/10.1029/2021WR030635, 2022. a
Shanafield, M. and Cook, P. G.: Transmission losses, infiltration and
groundwater recharge through ephemeral and intermittent streambeds: A review
of applied methods, J. Hydrol., 511, 518–529,
https://doi.org/10.1016/j.jhydrol.2014.01.068, 2014. a, b
Shanafield, M., Bourke, S. A., Zimmer, M. A., and Costigan, K. H.: An overview
of the hydrology of non-perennial rivers and streams, WIREs Water, 8, e1504,
https://doi.org/10.1002/wat2.1504, 2021. a
Shen, C., Chen, X., and Laloy, E.: Editorial: Broadening the Use of Machine
Learning in Hydrology, Front. Water, 3, https://doi.org/10.3389/frwa.2021.681023, 2021. a, b
Smith, W. and Montgomery, H.: Revolution or evolution? New Zealand agriculture
since 1984, GeoJ., 59, 107–118,
https://doi.org/10.1023/B:GEJO.0000019969.38496.82, 2004. a
Solomatine, D. P. and Ostfeld, A.: Data-driven modelling: some past
experiences and new approaches, J. Hydroinform., 10, 3–22,
https://doi.org/10.2166/hydro.2008.015, 2008. a, b
Taylor, C. B., Wilson, D. D., Brown, L. J., Stewart, M. K., Burden, R. J., and
Brailsford, G. W.: Sources and flow of north Canterbury plains groundwater,
New Zealand, J. Hydrol., 106, 311–340,
https://doi.org/10.1016/0022-1694(89)90078-4, 1989. a, b
Therrien, R., McLaren, R. G., Sudicky, E. A., and Panday, S. M.: HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group, University of Waterloo, Waterloo, ON, 830, 2010. a
Tran, H., Leonarduzzi, E., Fuente, L., Hull, R., Bansal, V., Chennault, C.,
Gentine, P., Melchior, P., Condon, L., and Maxwell, R.: Development of a
Deep Learning Emulator for a Distributed Groundwater–Surface Water Model:
ParFlow-ML, Water, 13, 3393, https://doi.org/10.3390/w13233393, 2021. a
Tyralis, H., Papacharalampous, G., and Langousis, A.: A Brief Review of Random
Forests for Water Scientists and Practitioners and Their Recent History in
Water Resources, Water, 11, 910, https://doi.org/10.3390/w11050910, 2019. a
Villeneuve, S., Cook, P. G., Shanafield, M., Wood, C., and White, N.:
Groundwater recharge via infiltration through an ephemeral riverbed, central
Australia, J. Arid. Environ., 117, 47–58,
https://doi.org/10.1016/j.jaridenv.2015.02.009, 2015. a
Vincent, C. N.: Hydrogeology of the Upper Selwyn Catchment, Master thesis, https://doi.org/10.26021/2353, 2005. a, b
Walters, M. O.: Transmission Losses in Arid Region,
J. Hydraul. Eng., 116, 129–138, https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(129),
1990. a
Wang, P., Pozdniakov, S. P., and Vasilevskiy, P. Y.: Estimating
groundwater-ephemeral stream exchange in hyper-arid environments: Field
experiments and numerical simulations, J. Hydrol., 555, 68–79,
https://doi.org/10.1016/j.jhydrol.2017.10.004, 2017. a
Wheater, H. S., Mathias, S. A., and Li, X.: Groundwater modelling in arid and
semi-arid areas, Cambridge University Press, https://doi.org/10.1017/CBO9780511760280, 2010. a
White, P. A.: Avon River springs catchment, Christchurch City, New Zealand,
Aust. J. Earth Sci., 56, 61–70,
https://doi.org/10.1080/08120090802542075, 2009.
a
White, P. A., Kovacova, E., Zemansky, G., Jebbour, N., and Moreau-Fournier, M.:
Groundwater-surface water interaction in the Waimakariri River, New Zealand,
and groundwater outflow from the river bed, J. Hydrol., 51, 1–23,
2012. a
Wilson, D. D.: The significance of geology in some current water resource
problems, Canterbury Plains, New Zealand, J. Hydrol., 12, 103–118,
1973. a
Wilson, S. R., Close, M. E., Abraham, P., Sarris, T. S., Banasiak, L., Stenger,
R., and Hadfield, J.: Achieving unbiased predictions of national-scale
groundwater redox conditions via data oversampling and statistical learning,
Sci. Total Environ., 705, 135877,
https://doi.org/10.1016/j.scitotenv.2019.135877, 2020. a
Wöhling, T., Gosses, M. J., Wilson, S. R., and Davidson, P.: Quantifying
River‐Groundwater Interactions of New Zealand's Gravel‐Bed Rivers: The
Wairau Plain, Groundwater, 56, 647–666, 2018. a
Wöhling, T., Wilson, S., Wadsworth, V., and Davidson, P.: Detecting the
cause of change using uncertain data: Natural and anthropogenic factors
contributing to declining groundwater levels and flows of the Wairau Plain
aquifer, New Zealand, J. Hydrol., 31, 100715,
https://doi.org/10.1016/j.ejrh.2020.100715, 2020. a
Wright, M. N. and Ziegler, A.: ranger: A Fast Implementation of Random Forests
for High Dimensional Data in C++ and R, J. Stat. Softw., 77,
1–17, https://doi.org/10.18637/jss.v077.i01, 2017. a, b
Short summary
We present a novel framework to estimate how much water is lost by ephemeral rivers using satellite imagery and machine learning. This framework proved to be an efficient approach, requiring less fieldwork and generating more data than traditional methods, at a similar accuracy. Furthermore, applying this framework improved our understanding of the water transfer at our study site. Our framework is easily transferable to other ephemeral rivers and could be applied to long time series.
We present a novel framework to estimate how much water is lost by ephemeral rivers using...