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Abstract. Transmission losses are the loss in the flow volume
of a river as water moves downstream. These losses provide
crucial ecosystem services, particularly in ephemeral and in-
termittent river systems. Transmission losses can be quanti-
fied at many scales using different measurement techniques.
One of the most common methods is differential gauging of
river flow at two locations. An alternative method for non-
perennial rivers is to replace the downstream gauging loca-
tion by visual assessments of the wetted river length on satel-
lite images. The transmission losses are then calculated as the
flow gauged at the upstream location divided by the wetted
river length. We used this approach to estimate the transmis-
sion losses in the Selwyn River (Canterbury, New Zealand)
using 147 satellite images collected between March 2020 and
May 2021. The location of the river drying front was verified
in the field on six occasions and seven differential gauging
campaigns were conducted to ground-truth the losses esti-
mated from the satellite images. The transmission loss point
data obtained using the wetted river lengths and differential
gauging campaigns were used to train an ensemble of ran-
dom forest models to predict the continuous hourly time se-
ries of transmission losses and their uncertainties. Our re-
sults show that the Selwyn River transmission losses ranged
between 0.25 and 0.65 m3 s−1 km−1 during most of the 1-
year study period. However, shortly after a flood peak the
losses could reach up to 1.5 m3 s−1 km−1. These results en-
abled us to improve our understanding of the Selwyn River
groundwater–surface water interactions and provide valuable
data to support water management. We argue that our frame-
work can easily be adapted to other ephemeral rivers and to
longer time series.

1 Introduction

Transmission losses are the loss in the flow volume of a river
as water moves downstream (Walters, 1990). An important
consideration of this definition is that transmission loss refers
to all of the water lost by a river – evaporation, transpiration
by macrophytes and riparian vegetation, as well as ground-
water recharge (McMahon and Nathan, 2021). In dryland re-
gions, where water scarcity is a major issue, rivers are often
ephemeral or intermittent (i.e. non-perennial) and are thought
to be the primary source of groundwater recharge (Shanafield
and Cook, 2014; Wang et al., 2017). In addition, intermittent
and ephemeral rivers shelter specific freshwater biodiversity
and play an important role in biogeochemical cycles (Datry
et al., 2014; Fovet et al., 2021). Interactions between non-
perennial rivers and groundwater can be particularly com-
plex with, for example, the development of perched aquifers
during high flows (Shanafield et al., 2021; Villeneuve et al.,
2015; Wheater et al., 2010).

The quantification of transmission losses and
groundwater–surface water interactions has been ap-
proached in many different ways (Cook, 2015; Kalbus et al.,
2006). The methods used to estimate transmission losses
can be classified into three groups following Shanafield
and Cook (2014), depending on whether they rely on
measurements of streambed infiltration, groundwater state
variable(s) or river discharge. Estimating the streambed
infiltration typically gives point estimates and can be done
directly with seepage meters (e.g. Lee, 1977; Lee and
Cherry, 1979; Rosenberry et al., 2020) or indirectly using
tracers (e.g. González-Pinzón et al., 2015; Hatch et al.,
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2006; Le Lay et al., 2019). However, as stated by Cook
(2015), small-scale estimates cannot be easily extrapolated
to larger scales relevant for water management. Another
way to approach this problem is to conduct measurements
in the groundwater in order to determine the river recharge
response signal. This can provide larger-scale estimates of
the groundwater recharge by means of hydraulic (e.g. Mc-
Donald et al., 2013) or chemical measurements (e.g. Hoehn
and Von Gunten, 1989; Massmann et al., 2009; Popp et al.,
2021; Schaper et al., 2022). Unfortunately, these estimations
are often complicated by the amount of information needed
on the aquifer properties, which cannot be easily estimated
at the appropriate scale. Finally, transmission losses can
be quantified by differential gauging of river flow at two
locations. Although river flow is routinely measured in
many hydrological studies, these measurements are rather
labour-intensive and it is difficult to record high-flow events,
which occur over very short periods. An easier way to gen-
erate river discharge time series is to monitor the river level
and generate a stage–discharge rating curve to determine
discharge. However, the use of a rating curve introduces
uncertainties in the river discharge values, which can be
considerable and are often underestimated (Di Baldassarre
and Montanari, 2009; McMahon and Peel, 2019; McMillan
et al., 2012). These uncertainties become even bigger
when two river gauging stations are used to calculate the
transmission losses, as the uncertainties are compounded.
For ephemeral rivers, an alternative approach using satellite
observations was introduced by Walter et al. (2012). In this
approach, the length of the wetted reach downstream of a
flow gauging station is visually identified on satellite images.
The transmission losses can then be calculated by dividing
the river flow at the gauging station by the wetted river
length. Walter et al. (2012) used this approach to calculate
the transmission losses in the Frio River (Texas, United
States) using five images collected between 1994 and 2008.

In combination with measurements, transmission losses
and groundwater–surface water interactions can also
be quantified using models (Fleckenstein et al., 2010;
Lewandowski et al., 2020; McMahon and Nathan, 2021). A
wide variety of models have been used for this purpose. Early
attempts include a linear relationship between the flow rate
and the river–aquifer head difference, based on a constant
streambed resistance only (Prickett and Lonnquist, 1971).
This relationship is still widely used nowadays as it is im-
plemented in the popular MODFLOW family of codes (Har-
baugh, 2005; Harbaugh et al., 2000; Langevin et al., 2017;
McDonald and Harbaugh, 1988). However, numerous stud-
ies have suggested that this is an oversimplification of the
system in many cases, and some proposed alternative ex-
pressions (Anderson, 2005; Di Ciacca et al., 2019; Morel-
Seytoux et al., 2018; Rupp et al., 2008; Rushton, 2007; Rush-
ton and Tomlinson, 1979). Nevertheless, these alternative
expressions rely themselves on numerous assumptions that
make them often unsuitable for representing the complex

interactions between groundwater and non-perennial rivers.
Recently, fully coupled models have been developed with
the aim of representing the interactions between groundwater
and surface water in all their complexity (e.g. Fatichi et al.,
2016; Kuffour et al., 2020; Maxwell et al., 2009; Therrien et
al., 2010). However, this complexity and the resultant data re-
quirements make them difficult tools to use. Moreover, they
need to be calibrated and evaluated on independent data in
order to demonstrate their benefits over simpler solutions.

An alternative approach that has gained popularity in the
hydrological modelling community over the last decades is
machine learning (Shen et al., 2021; Solomatine and Ostfeld,
2008; Tran et al., 2021). These algorithms can be very ef-
ficient at reproducing the response variable (e.g. transmis-
sion losses) with minimum user assumptions, provided that
enough training data are available. A machine learning al-
gorithm particularly capable of representing non-linear and
complex relationships between variables is random forest.
This approach builds an ensemble (a forest) of small decision
trees for the response variable by subsampling the predictor
data using random combinations of predictor variables. The
results of the “forest” are aggregated to determine the ensem-
ble majority (classification) or average (regression) result for
the response variable (Breiman, 2001; James et al., 2013).
Random forests have been successfully used in hydrogeol-
ogy to predict the origin of samples, nitrate contamination
and redox conditions in groundwater (Baudron et al., 2013;
Knoll et al., 2019; Koch et al., 2019; Rodriguez-Galiano
et al., 2014; Wilson et al., 2020). Despite being less common
than other machine learning approaches (e.g. artificial neu-
ral networks, support vector machines), random forests have
also been used in hydrology, including for estimating various
hydrological indices at ungauged sites and streamflow fore-
casting (Booker and Woods, 2014; Desai and Ouarda, 2021;
Papacharalampous and Tyralis, 2018; Tyralis et al., 2019).

In the coastal plains of New Zealand, most of the ground-
water recharge is thought to be sourced from gravel-bed river
water infiltration. For example, the annual land recharge is
only around 3 % of the river recharge in the Heretaunga
Plains (Dravid and Brown, 1997) and contributes to less than
4 % of the water balance in the Wairau Aquifer (Wöhling
et al., 2018). In the Central Plains of the Canterbury region,
the Waimakariri River is providing more than 80 % of the
spring-fed Avon River baseflow and is the major source of
groundwater for the Christchurch city area (White, 2009;
White et al., 2012). In these regions, groundwater resources
are under increasing pressure to meet the demand for mu-
nicipal, agricultural, and industrial uses (Brown et al., 1999;
Rosen and White, 2001; Smith and Montgomery, 2004;
Wöhling et al., 2020). The most important rivers for ground-
water recharge in New Zealand often have a high braiding
intensity, with several channels resulting in wide braidplains
(>1 km). Interactions between braided rivers and groundwa-
ter have received little attention so far, and the quantity of
water lost by these rivers and the main recharge mechanisms
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involved are still largely unknown. This makes any simu-
lation of plausible future scenarios very delicate. Recently,
Coluccio and Morgan (2019) published a review of meth-
ods for measuring groundwater–surface water exchange in
braided rivers, highlighting the difficulties inherent to this
kind of river. In the Central Plains of Canterbury, the Sel-
wyn River has been previously used as a benchmark system
for undammed alluvial rivers that are under intense pressure
for water abstraction (Arscott et al., 2010; Datry et al., 2007;
Larned et al., 2011, 2010, 2008, 2007; Rupp et al., 2008). Its
relatively small width and low braiding intensity (one to two
channels most of the time) allow for easier instrumentation
and investigation than larger braided rivers. Furthermore, the
Selwyn River includes an ephemeral losing reach, for which
we could derive an extensive dataset of transmission losses
using satellite imagery.

In this article, we present a framework to estimate trans-
mission losses from satellite imagery and predict their time
series using random forest regressors. To estimate the trans-
mission losses using satellite imagery, we used a similar ap-
proach to Walter et al. (2012) but on a more comprehensive
library, with different image sources and with field data to
verify our estimations. We then used the transmission loss
point data obtained to train an ensemble of random forest
models. This ensemble enables us to predict the continuous
hourly time series of transmission losses and their uncertain-
ties. This constitutes another novelty of our approach.

The paper is organized as follows. Section 2 presents our
study site on the Selwyn River (New Zealand). Next, Sect. 3
details the methods adopted to gauge the river flow, estimate
the river transmission losses and predict the hourly time se-
ries. In Sect. 4, first the results of one flood event are de-
scribed, second our complete dataset is analysed and third
the predicted hourly time series are presented. Finally, Sect. 5
discusses the physical interpretation, the advantages and lim-
itations of our approach and possible future developments
and applications before Sect. 6 concludes with a summary of
the most important findings.

2 Study site

The Selwyn/Waikirikiri River flows for 93 km from the
foothills of the New Zealand Southern Alps across the
alluvial Central Plains of the Canterbury region to Lake
Ellesmere and the Pacific Ocean (Figs. 1 and 2a). The river
course mainly follows a depression between the alluvial fans
of the much larger Waimakariri and Rakaia rivers. In the
foothills, the Selwyn River is constrained by hillslopes and
has a meandering single-thread channel. This constrained
reach is perennial and gaining water from the surrounding
hills. When the Selwyn River reaches the alluvial plains, it
first arrives in the inland plains, which are formed by the
apex of the alluvial fan and are dominated by glacial and
periglacial outwash. The Selwyn channel slope decreases

abruptly, and it becomes braided or semi-braided. The 3 km-
long perennial reach loses water to the underlying aquifers
due to the thickening of the gravel assemblage as the river
leaves the confines of the foothills. As the transmission loss
increases, the river becomes ephemeral for around 30 km of
its length. Further downstream, the Selwyn River reaches
the coastal plains, which are dominated by post-glacial al-
luvium and marine sediments, and gains water from ground-
water seepage. The Selwyn River first becomes intermittent
and then perennial again as the coast is approached (Larned
et al., 2008; Rupp et al., 2008; Taylor et al., 1989). The
lag time analysis performed by Larned et al. (2008) sug-
gests that it takes several weeks for the water to infiltrate
from the upstream gaining river section to a deeper aquifer
(∼ 20m deep). Part of this water might be captured by the
downstream gaining section of the river after travelling un-
derground in a complex network of aquifers. Two long-term
gauging stations are recording flow along the Selwyn River,
one in the upstream section at Whitecliffs and one in the
downstream section at Coes Ford (Fig. 2a).

In this study, we focus on the first part of the ephemeral
losing reach, extending for 15 km upstream of the conflu-
ence with the Waianiwaniwa and Hororata rivers (Figs. 1
and 2a). The studied reach flows through the inland plains,
which are dominated by glaciofluvial gravels covering Cre-
taceous and Tertiary sedimentary basement rock to depths
of 120–160 m (Taylor et al., 1989; Wilson, 1973). In this
region, aquifers are complexes of interbedded gravels, par-
tially separated by leaky aquicludes. Groundwater flows sub-
parallel to the direction of the Selwyn River, following the
topographic gradient and the anisotropic permeability in the
aquifer gravels (Burden, 1984). Aquifers in this region are
recharged by water leaking through river channels and in-
filtrating through the land surface. Three aquifers have been
identified between the Selwyn River and the basement rock
(Vincent, 2005). Recently, Banks et al. (2022) described an
additional thin (3–4 m) and highly permeable aquifer asso-
ciated with the Selwyn River, referred to as the “braidplain
aquifer”. Hyporheic exchanges and parafluvial flows occur
within this shallow aquifer, which leads to very dynamic in-
teractions between the river and the braidplain aquifer and an
alternation of losing and gaining sections. However, the stud-
ied reach and its braidplain aquifer are always losing water to
the deeper aquifer overall, even during high floods. Surface
runoffs are limited by the flat topography, high soil perme-
ability (gravels) and absence of a tributary along this section
of the river. The deeper aquifer water table is much lower
(∼ 15 m) than the river and its braidplain aquifer. Based on
water level and temperature data, it can be considered that
an unsaturated zone is separating the deeper aquifer from the
river and the shallow braidplain aquifer (Banks et al., 2022).
Our perceptual model is presented in Fig. 2 by means of two
cross sections, one along (a) and one across (b) the Selwyn
River, representing the river, the braidplain aquifer and the
first deeper aquifer. The Selwyn climate, geology, hydrol-
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ogy and geomorphology have been extensively described by
Larned et al. (2008).

3 Methods

3.1 River discharge time series

3.1.1 River discharge measurement

The river discharge time series was derived from the river
stage, monitored continuously at a stable cross section, and
a stage–discharge rating curve that relates the discharge to
the recorded stage. The river stage was monitored at the up-
stream boundary of the ephemeral losing reach (referred to
as “Scotts Road”, Fig. 1) for the period from March 2020 to
May 2021 with a Seametrics PT12 pressure transducer (5 m
range). The typical accuracy of this sensor is 2.5 mm and the
associated uncertainties were propagated to the rated flows.
The river stage is reported as a height of water above a local
datum around 209 ma.s.l. The stage–discharge rating curve
of the Selwyn River at Scotts Road (Fig. 3) was developed us-
ing 14 manual flow measurements collected from April 2020
to March 2021 using either a SonTech Flowtracker or an
Acoustic Doppler Current Meter (ADCP, RDI StreamPro).
These manual discharge measurements ranged from 0.22 to
10.12 m3 s−1 and were conducted when the river stage was
between 0.86 and 1.3 m. At the cross section where the stage
was recorded, there is one notable widening that caused a
change in the correlation between stage and discharge above
1.12 m, and therefore we introduced one break of slope into
our rating curve.

The uncertainties of the manual gauging data varied from
2.4 % to 6.5 %. The fitting errors between our manual flow
measurements and the rating curve ranged from 0 % to 15 %,
with an average of 5 and a standard deviation of 7 %. Consid-
ering these two sources of uncertainties, we assumed 20 % of
uncertainty in the rated river flows.

3.1.2 Hydrograph processing

The hydrograph obtained from the stage record and the rat-
ing curve was processed in order to extract the peaks higher
than 0.3 m3 s−1. First, we have identified each peak by auto-
matically finding the time at which the first-order derivative
became negative. They were then filtered using an iterative
procedure to only select the peaks higher than 0.3 m3 s−1 and
no more than one peak per 48 h. The peak height was taken as
the difference between the peak flow value and the minimum
before the peak. The hydrograph and the selected peaks are
presented in Fig. 4. These peaks were used to calculate the
time since the last peak and the peak height associated with
each transmission loss estimate. The time since the last peak
and the peak height were used to understand and predict the
transmission loss dynamics.

3.2 Estimation of the river transmission losses

We have estimated the Selwyn River transmission losses fol-
lowing two different approaches. The first is a similar ap-
proach to that adopted by Walter et al. (2012), who identified
the length of the wetted reach downstream of a flow gauging
station on five satellite images and calculated the transmis-
sion losses by dividing the river flow at the gauging station by
the wetted river length. However, we used a much more com-
prehensive library of satellite images, and this constitutes the
originality of our study. The second is a more traditional dif-
ferential gauging approach and is used as a comparison on
several days.

3.2.1 Transmission losses derived from the river drying
front locations

The average river transmission losses along the reach down-
stream of our gauging station (qloss, L2 T−1) were calculated
by dividing the river discharge (Q, L3 T−1) by the wetted
river length (L, L).

qloss =
Q

L
(1)

L was estimated by measuring the wetted river length from
the gauging station to the river drying front location.

The Selwyn River drying front was located on 147 satel-
lite images taken between April 2020 and May 2021. We
used satellite images available in the Planet Monitoring col-
lection, which are mainly taken by the Dove satellite con-
stellation and provide 3.7 m-resolution images of the entire
Earth daily in four multi-spectral bands: RGB (red, green,
blue) and near infrared (Planet Team, 2017). Additionally,
the drying front location was verified in the field on 6 differ-
ent days in March 2021 using a GPS (Global Positioning Sys-
tem) device (Trimble R10 with a centimetre-level accuracy).
The locations of the 153 drying fronts along the riverbed are
presented in Fig. 1.

We considered two sources of uncertainty in the wetted
river length estimation. The first one is related to the diffi-
culty in identifying accurately the drying front location on
the satellite images. A comparison between the GPS and
satellite drying front positions showed us that this uncertainty
could be up to 100 m. The second source of uncertainty is
the determination of the distance between the drying front
and the gauging station (i.e. wetted river length). The wetted
river length can differ depending on whether the river active
channel (where the water is flowing at low flow), the gravel
riverbed or the braidplain is followed. The different lengths
determined on the 27 January 2021 image are shown in Ap-
pendix A as an example. In this study, we adopted the inter-
mediate option of following the riverbed but assumed 10 %
uncertainties in the wetted river length estimations to account
for this vague definition. The transmission loss estimates de-
rived from satellite images include these two sources of un-
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Figure 1. Map of the Selwyn River with the river gauging monitoring station, the eight manual gauging cross sections and the 153 river
drying front locations. The different reaches were delimited according to Larned et al. (2008).

Figure 2. Schematic cross sections along (a) and across (b) the Selwyn River, its braidplain aquifer and the first deeper aquifer.
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Figure 3. Stage–discharge rating curve (discharge was log10 transformed). The horizontal lines represent the range of river stages monitored
during the study period.

Figure 4. Hydrograph and flow peaks selected to calculate the time since the last peak and the peak height associated with each transmission
loss estimate.

certainty, while the estimates made using the GPS points in-
clude only the second one.

3.2.2 Transmission losses derived from differential flow
gauging

We conducted seven differential flow gauging surveys close
to the upstream boundary of the ephemeral losing reach. Dur-
ing each survey, the river flow was measured at eight cross
sections. Some cross sections included multiple braids; this
resulted in 12 gauging locations along a river reach of 700 m
covering three riffle-pool sequences (Fig. 1). The uncertain-

ties of these manual flow measurements depend on instru-
ment and site constraints. For our measurements, the rela-
tive uncertainties were estimated between 2.7 % and 6.3 %;
the higher relative uncertainties are typically associated with
shallow and low flow in the smaller braids.

The reach-scale average transmission losses were calcu-
lated by fitting linear models to the relationships between the
river discharge and the distance from the first upstream gaug-
ing location. The transmission loss values are the slope of the
linear models. To transfer the measurement uncertainties to
the transmission loss estimates, we have fitted a linear model
to each of 10 000 realizations sampled in the uniform dis-
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tributions representing the measurement uncertainty ranges.
The flow gauging measurements, their uncertainties and the
linear model ensembles used to calculate the transmission
losses are presented in Fig. 5.

The small-scale (between individual gauging) variability
is due to complex interactions between the river and the
braidplain aquifer. The linear models were used to estimate
the reach-average transmission losses over three riffle-pool
sequences and remove the localized loss/gain variability.
Thus, the loss values derived from the linear models can be
directly compared to the losses estimated using the satellite
imagery approach. The description and explanation of this
small-scale variability are beyond the scope of this study and
have already been partly addressed by Banks et al. (2022).
More comprehensive investigations will be the focus of fu-
ture works.

3.3 Time series prediction using random forest
regression models

Random forest regression models were trained on a dataset
including the estimates obtained from the satellite images,
the field GPS points and the differential gauging surveys.
These models enable us to predict the hourly reach-average
transmission losses for the wetted reach downstream of the
flow gauging station on the days and times without measure-
ments. This provides us with a continuous hourly transmis-
sion loss time series covering the entire study period. We
used the “tidymodels” framework implemented in the R lan-
guage (Kuhn and Wickham, 2020) and the “ranger” imple-
mentation of random forest (Wright and Ziegler, 2017) with
1000 trees per forest. The random forests were trained with
three predictor variables, the river stage, the time since the
last peak (log10 transformed) and the height of this peak.
In the course of the model development, more predictors
(e.g. river flow, water temperature, groundwater level, date)
have been tested, but they appeared to not significantly im-
prove the predictions in terms of root mean square error
(RMSE). We have selected the model with the lowest dimen-
sion among the better-performing ones. The randomly se-
lected predictor number was set to two and the minimal node
size to one. We used 75 % of the data to train the models and
kept the other 25 % for testing them. A stratified sampling
was applied to ensure that the distribution of the time since
the last peak was similar in the training and testing datasets.
For more clarity, we refer to the transmission losses predicted
by the random forest models as “predicted” as opposed to the
“estimated” values from the field data and satellite images.

To propagate the uncertainties of our estimated transmis-
sion losses through the modelling, we trained a random forest
on each of 10 000 realizations sampled in the uniform dis-
tributions representing the estimated uncertainty ranges. For
each realization, different training and testing datasets were
selected. Thus, we obtained an ensemble of random forests
that we used to represent the uncertainties in the predicted

values. The use of random forests is advantageous in this case
because they are computationally fast, particularly when im-
plemented in ranger, which is also memory efficient (Wright
and Ziegler, 2017). This efficiency enables an ensemble to
be generated for the purpose of describing uncertainties, an
approach that would be difficult with other machine learning
methods that are more computationally demanding.

Given the stochastic nature of our estimation and mod-
elling, the evaluation of the random forest fits against the
estimated losses gives us multiple residual values for each es-
timation. We report hereafter the average RMSE and the av-
erage normalized RMSE (NRMSE, normalized by the mean)
of the 10 000 realizations. These evaluation metrics assess
how well the random forest realizations could fit the training
and testing data points, sampled in the uniform distributions
representing the estimated uncertainty ranges. Furthermore,
to evaluate the ability of our ensemble to reproduce the esti-
mated transmission losses, we report the RMSE and NRMSE
of the average predicted versus average estimated values.

Lastly, we computed a transmission loss duration curve
by calculating the exceedance probability of the predicted
hourly values in the same approach for generating flow du-
ration curves. This duration curve is homologous to a cumu-
lative frequency curve. This analysis was done considering 1
year of data from 1 May 2020 to 1 May 2021.

4 Results

In this section, we first explain how the reach-average trans-
mission losses downstream of our gauging station vary in
time for one particular event in September 2020, then show
the complete dataset of estimated values and lastly present
our predicted time series.

4.1 September 2020 flood event

The flood event occurring on 18 September 2020 was se-
lected for explaining the transmission loss behaviour be-
cause the satellite imagery coverage was particularly good.
This allowed us to monitor the transmission loss time dy-
namic during the first days after peak flow (Fig. 6). Further-
more, a differential gauging field campaign was conducted
on 24 September 2020, a day for which we also have a satel-
lite image. This enables a comparison between the two ap-
proaches 6 d after peak flow and thus a verification of our
method.

During this event, the peak flow at the permanent gauging
station was reached around 09:00 on 18 September. How-
ever, the wetted river length continued to increase for around
2 d before it stabilized and started decreasing around 3 d af-
ter peak flow. Hereafter, we refer to the periods during which
the wetted river length is either increasing or stable as “wet-
ting phases” and the periods during which the wetted river
length is decreasing as “drying phases”. For this event, trans-
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Figure 5. Differential flow gauging measurements and linear model ensembles used to calculate the transmission losses.

mission losses estimated using the satellite images and the
rated flow at the gauging station were maximum at peak
flow around 1.2 m3 s−1 km−1. Then, they decreased linearly
with the logarithm of the time since the last peak during
the wetting phase (Fig. 7). Finally, they stabilized around
0.35 m3 s−1 km−1, 3–4 d after the peak, during the drying
phase. The transmission losses were non-linearly positively
correlated with the river stage, with a relationship resembling
a polynomial function (Fig. 8). Furthermore, the transmis-
sion losses estimated for 24 September 2020 from differen-
tial gauging and from the drying front location identified on
a satellite image correspond well given their respective un-
certainties.

4.2 Complete dataset of transmission losses

The transmission loss time series, estimated using differen-
tial gauging, field GPS points and satellite images, follow the
pattern described in Sect. 4.1 but for many more events of dif-
ferent magnitude (Fig. 9). The estimated transmission losses
range from 0.14 to 1.55 m3 s−1 km−1. The average value of
the estimated transmission losses is 0.44 m3 s−1 km−1 and
the median is 0.41 m3 s−1 km−1. The upper and lower quar-
tiles are 0.47 and 0.37 m3 s−1 km−1, respectively. A duration
(cumulative frequency) curve calculated from this dataset
is shown in Sect. 4.3. Most of the estimated losses (58 %)
are below 0.60 m3 s−1 km−1 and correspond mainly to base-
flow periods and river drying phases. The lowest values are
found during dry periods, from March to May 2021, when
the river stage and discharge were low. The highest losses oc-

Figure 6. Time series of the river discharge (black dotted line), wet-
ted river length (black dashed error bars and triangles) and transmis-
sion losses (solid error bars and circles) estimated using differential
gauging (“Gauging”, yellow) and river drying front locations iden-
tified on satellite imagery (“Satellite”, purple) during the Septem-
ber 2020 selected event.

cur shortly after high-flow events during wetting phases. Al-
though it can be noted that the differential gauging estimates
are lower in most instances, the transmission losses calcu-
lated with the different approaches correspond well given
their respective uncertainties.

Hydrol. Earth Syst. Sci., 27, 703–722, 2023 https://doi.org/10.5194/hess-27-703-2023



A. Di Ciacca et al.: Selwyn River losses 711

Figure 7. Selwyn River transmission losses estimated using differ-
ential gauging (“Gauging”, yellow) and river drying front locations
identified on satellite imagery (“Satellite”, purple) as a function of
the time since the last peak (log10 scale) during the September 2020
selected event.

Figure 8. Selwyn River transmission losses estimated using differ-
ential gauging (“Gauging”, yellow) and river drying front locations
identified on satellite imagery (“Satellite”, purple) as a function of
the river stage during the September 2020 selected event.

When the river stage and discharge became particularly
low after April 2021, the river length downstream of our
gauging station decreased to a few hundred meters. As a con-
sequence, the uncertainties in our transmission loss estimates
increased drastically. In the rest of this article, we exclude
the estimates for which the uncertainty is superior to 45 % of
their estimated value.

The relationship between the estimated transmission
losses and the river stage is presented in Fig. 10 using the
time since the last peak (log10 transformed) as the colour
scale and the height of these peaks as the point size scale.

Note that, on 3 April 2021, the satellite image was taken just
before (3 h) the peak flow was reached, and we therefore used
the time to the peak instead of the time since the peak. At low
flow (up to 1 m stage and 1 m3 s−1 discharge), the relation-
ship between the river stage and the transmission losses is
relatively linear, and the estimated transmission losses vary
from 0.14 to 0.80 m3 s−1 km−1. At higher flow (>1 m stage
and 1 m3 s−1 discharge), transmission losses stop increasing
linearly and reach a plateau around 0.45 m3 s−1 km−1. As
explained in Sect. 4.1, transmission losses decrease linearly
with the logarithm of the time since the last peak during wet-
ting phases. The peak height appears to control the maxi-
mum values estimated during peak flows. Small peaks have
only a minor impact, even on losses estimated shortly after
peak flows. However, transmission losses estimated shortly
after higher peak flows are very dependent on the time since
the last peak and could reach more than 1 m3 s−1 km−1 in
several instances (Fig. 11). The relation between the trans-
mission loss behaviour and hydrological processes is further
discussed in Sect. 5.1.

4.3 Predicted transmission loss time series

The time series predicted using the random forest models
is presented in Fig. 12 and the estimated and predicted du-
ration curves, derived for the period between 1 May 2020
and 1 May 2021, in Fig. 13. The random forest models man-
aged to reproduce most of the features observed in the es-
timated transmission loss dataset and the associated uncer-
tainties. The predicted transmission losses range between
0.16 and 1.41 m3 s−1 km−1 with a time average value of
0.42 m3 s−1 km−1. This is slightly narrower than the esti-
mated range (0.14 to 1.55 m3 s−1 km−1) but with a simi-
lar time average value. Evaluating the performance of our
model ensemble on the different estimated points in time,
it appears that our ensemble average values correspond
well to our estimated average values with an RMSE of
0.04 m3 s−1 km−1 and an NRMSE of 12 %. Analysing the
performance of our random forest realizations separately,
the average RMSE calculated on our ensemble of random
forest model fits is 0.07 m3 s−1 km−1 on the whole datasets
and 0.12 m3 s−1 km−1 on the evaluation datasets. This cor-
responds to an average NRMSE of 17 % and 28 %, respec-
tively. The predicted duration curve indicates that for 56 % of
the studied year, the Selwyn River transmission losses down-
stream of our flow gauging station were between 0.25 and
0.65 m3 s−1 km−1.

5 Discussion

5.1 Distributed groundwater recharge versus local
storage replenishment

We have shown in Sect. 4.1 and 4.2 that the transmission
losses in the Selwyn River relate differently to the river stage
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Figure 9. Time series of the river discharge (black dotted line) and transmission losses (error bars) estimated using the differential gauging
(“Gauging”, yellow) and the river drying front methods with field GPS measurements (“GPS”, blue green) and satellite imagery (“Satellite”,
purple).

and flow depending on whether the river is in a drying or wet-
ting phase (first few days after peak flow). The different pro-
cesses being lumped in the transmission losses can explain
these contrasting behaviours. Transmission losses consist
generally of evapotranspiration and groundwater recharge.

Given the sparse vegetation and the relatively high transmis-
sion losses in our study site, most of the water is expected to
be lost to the groundwater, although we did not conduct a for-
mal estimation of the respective contributions. In the remain-
der of this section, we assume that the estimated transmis-
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Figure 10. Estimated transmission losses using differential gauging, field GPS points and satellite images as a function of the river stage.
The colour scale represents the time since the last peak (log10 transformed) and the point size scale represents the peak height. Triangles
indicate the September 2020 event presented in Fig. 8 and circles the other data points.

Figure 11. Estimated transmission losses using differential gauging, field GPS points and satellite images as a function of the time since the
last peak. The colour scale represents the river discharge (log10 transformed) and the point size scale represents the peak height. Triangles
indicate the September 2020 event presented in Fig. 7 and circles the other data points.
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Figure 12. Transmission loss time series predicted (cyan) using the random forest models trained on the transmission loss data points
estimated (orange) using field data and satellite images.

sion losses represent the groundwater recharge and neglect
other natural or artificial gains and losses. Furthermore, we
hypothesize that the river is losing water to the groundwater
in two different modes, depending on whether the river is in
a wetting or drying phase.

– During drying phases: the river and its braidplain
aquifer lose water to the underlying deeper aquifer all
along its wetted length, depending on local hydraulic,
geomorphological and geological properties.

– During wetting phases: the river and its braidplain
aquifer still lose water to the underlying deeper aquifer

as during drying phases, but additionally the advancing
wetting front is refilling the braidplain aquifer storage.
This explains the highest losses estimated shortly after
peak flow during wetting phases.

The transmission losses estimated using the method pre-
sented in this study are an average along the wetted river
length. During drying phases, the wetted river length is lin-
early correlated with the river discharge (Fig. 14). This sug-
gests that the recharge to the deeper aquifer is rather constant
along the studied reach. Furthermore, this justifies the com-
parison between the transmission losses derived from the dif-
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Figure 13. Estimated (empirical distribution, orange) and predicted
(simulated distribution, cyan) transmission loss duration curves de-
rived for the period between 1 May 2020 and 1 May 2021.

ferential gauging and from the river drying front locations,
although they represent losses at different scales. However,
during wetting phases, a considerable amount of water is lost
at the wetting front to the braidplain aquifer, and therefore the
losses are not equally distributed along the river reach. As a
consequence, the highest losses are not representative of the
spatially distributed recharge to the deeper aquifer, and their
values in terms of m3 s−1 km−1 should be interpreted with
caution.

Applying our framework to the Selwyn River improved
our understanding of the interactions between surface water
and groundwater in this particular system. However, many
unknowns remain, including the quantity of water lost at the
wetting front to the braidplain aquifer during wetting phases.
This quantity should depend on the volume of aquifer to wet
and its porosity. The deeper water table under the Selwyn
River at the study reach is rather deep (>15 m deep) and
the water recharging this deeper aquifer is thought to flow
through a variably saturated zone (Larned et al., 2011, 2008;
Banks et al., 2022; Vincent, 2005). Therefore, a significant
volume of water could be lost at the wetting front to refill
the braidplain aquifer when the river is advancing. An ongo-
ing research project aims at clarifying how the Selwyn River
is interacting with its braidplain aquifer, the underlying un-
saturated zone and the deeper aquifers. The two modes of
groundwater recharge identified in the Selwyn River could
also occur in other ephemeral river systems. Applying the
framework presented in this article to other systems could
help to understand them better.

5.2 Comparison with previous studies

Rupp et al. (2008) estimated transmission losses along the
Selwyn River by performing river gauging manually at 18

Figure 14. Wetted river length as a function of the river discharge,
only shown for data points collected during river drying phases
(more than 60 h after a peak flow).

cross sections on a limited number of days (4 to 60, depend-
ing on the cross section) between October 2003 and Jan-
uary 2007. The average transmission losses that they have es-
timated between the cross sections downstream of the gaug-
ing station used in our study (i.e. Scotts Road, Fig. 1) were
mostly between 0.2 and 0.5 m3 s−1 km−1. This is in the lower
range of our baseflow estimates. A more detailed comparison
is difficult as our estimates differ in their spatial and temporal
extents.

In a series of articles (Larned et al., 2011, 2010, 2008;
Rupp et al., 2008), the ELFMOD model has been used to re-
construct the flow along the Selwyn River. Another output of
the ELFMOD model is the flow permanence along the river,
which was estimated to be between 20 % and 75 % in one of
the driest reaches of the river, around 10 km downstream of
Scotts Road (our gauging station). In this regard, our results
differ significantly: our predicted wetted river length extends
to the Hororata River confluence (15 km downstream of our
gauging station, where the Selwyn River is gaining water
again) only during peak flows (Fig. 15). Our reconstructed
flow permanence curve (Fig. 16) indicates that the river was
dry more than 90 % of the time 10 km downstream of Scotts
Road during our study period. This discrepancy appears as
well in the dataset used to train the models. Among the 153
drying front locations that we have identified on the satellite
images and in the field between April 2020 and May 2021,
no image shows the river flowing continuously to the Horo-
rata River confluence. On the other hand, the data reported by
Rupp et al. (2008), collected on 118 d between October 2003
and January 2007, show that when the river flow at Coes Ford
(50 km downstream of our gauging station) was greater than
twice the median, the entire Selwyn River was flowing.

The different results could be explained by the different
approaches employed but more likely by the hydrological
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variability between the study periods. The period between
March 2020 and May 2021 was particularly dry in the Can-
terbury region (NIWA, 2021, 2020). This led to low water
levels and storage in the braidplain aquifer (Banks et al.,
2022) and limited the ability of this shallow aquifer to sus-
tain the river flow as much as in a wetter year. Furthermore,
a longer-term trend of decreasing low flow and wetted river
length of the Selwyn River was highlighted by McKerchar
and Schmidt (2007) and Rupp et al. (2008) for the period
between 1984 and 2006. More research would be needed to
investigate how the recent period studied in our work (2020–
2021) falls within this longer-term trend. A long-term flow
record has been available since 1964 at the Whitecliffs site
(10 km upstream of Scotts Road) and could be used together
with satellite images to investigate the Selwyn River trans-
mission loss inter-annual variations. The Planet Monitoring
library (Planet Team, 2017) used in the present study is only
available from 2009 onwards, but other resources might be
used to cover a longer time frame, although the resolution
and frequency of available images in the more distant past
will be lower. Moreover, the transmission loss estimates be-
tween Whitecliffs and Scotts Road would be more difficult to
interpret because they would also include a constrained and
gaining reach and thus a large spatial variability of transmis-
sion losses along the extended reach.

Comparing our results to the dataset including 73 reaches
from 31 streams sourced from different studies by McMa-
hon and Nathan (2021) indicates that the mean reach trans-
mission losses per event predicted for the Selwyn River
(0.42 GL/km) are much higher than the median of the
dataset (0.046 GL/km) but lower than the 90th percentile
(1.10 GL/km). In this regard, the Selwyn River transmission
losses appear to be rather high. However, the transmission
losses in the Selwyn River are still considerably lower than
those estimated in large ephemeral rivers under an arid cli-
mate (e.g. Lange, 2005, reported a mean of 6.13 GL/km and
Jarihani et al., 2015, a mean of 6.79 GL/km). An important
difference is that we have estimated the transmission losses,
including the water lost at the drying front. This affected
our largest loss estimates and the relationship between trans-
mission losses and river stage and discharge. The only other
application of the approach followed in this study was con-
ducted by Walter et al. (2012) on a larger river but using only
five satellite images. Their estimates ranged between 0.15
and 0.25 m3 s−1 km−1. This is lower than those estimated in
this study for the Selwyn River and could be explained by
the higher sediment permeability at our study site. Unfortu-
nately, a comparison of the time dynamics of the estimated
transmission losses and their relationship with the river stage
and discharge is not possible because of the limited number
of data points reported by Walter et al. (2012). More stud-
ies using this approach would be needed to investigate how
this varies between ephemeral river systems. The increasing
availability of satellite images should make that possible in
the future.

5.3 Uncertainty sources and propagation

In this study, we have carried out a comprehensive assess-
ment of the different sources of uncertainty affecting our
transmission loss estimation and prediction. Concerning the
transmission loss estimates made using the satellite images,
the uncertainties range from 30 % to 55 %. On the one hand,
the uncertainties in the river discharge derived from the rat-
ing curve represent around 20 % (Appendix A). On the other
hand, the uncertainties in the river drying front locations and
wetted river lengths represent 10 % to 30 %, with increasing
contributions for a smaller wetted river length. The estima-
tion made using the field GPS points are less uncertain as the
river drying front location was virtually exact. As a result,
the uncertainties are around 30 % of the estimated values,
around 20 % coming from the river discharge and 10 % from
the wetted river lengths. For both methods, the uncertainties
due to the river stage measurements are relatively low, below
4 %.

Regarding the transmission loss estimates derived from
the differential gauging campaigns, the uncertainties vary be-
tween 5 % and 45 %, depending on the measurement uncer-
tainties (between 2.7 % and 6.3 %) and the ratio between the
transmission losses and the river discharge (Fig. 5). At low
flow, the differences between individual flow measurements
(i.e. transmission losses) are large compared to the measure-
ment uncertainties, which lead to relatively small uncertain-
ties in the transmission loss estimates. However, at high flow,
the differences between individual flow measurements are
small compared to the measurement uncertainties, and there-
fore the resulting uncertainties in the transmission loss es-
timates are high. Overall, we can state that quantifying the
transmission losses from satellite imagery at our study site is
not introducing much more uncertainty than using the tradi-
tional method of differential flow gauging.

Considering all our estimates used to train the random
forest regressors, the propagated measurement uncertainties
show an average value of 35 %. This is higher than the nor-
malized root mean square of the random forest fitting errors
(NRMSEs) calculated on the whole datasets (from 12 % to
26 %) and in the range of the NRMSEs calculated on the test
datasets (from 16 % to 48 %). Moreover, the uncertainties in
our estimated values are larger than the NRMSE calculated
by comparing the average predicted and average estimated
values (12 %). Therefore, we can state that our random forest
ensemble is reproducing satisfactorily our transmission loss
estimates, considering the measurement uncertainties.

5.4 Advantages and limitations of our approach and
ways forward

Quantification of the transmission losses using the frame-
work described in this article has many advantages over tra-
ditional methods but is also limited by our ability to identify
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Figure 15. Wetted river length time series predicted using the random forest model ensemble.

Figure 16. Longitudinal variation in flow permanence (proportion
of the year with flowing water) downstream of our gauging station
(Scotts Road= 0 km) predicted using the random forest model en-
semble.

the drying fronts on the satellite images and to predict the
continuous hourly time series from the obtained data points.

The main advantage of our method is the reduced amount
of fieldwork needed to produce high time resolution trans-
mission loss estimates. Our framework only requires the in-
stallation and maintenance of a flow gauging station, which
is common on many rivers. Another requirement is the avail-
ability of clear satellite imagery with a resolution higher than
the river width. In our study, we used the Planet Monitor-
ing collection (Planet Team, 2017), which is freely available
to university-affiliated student and researchers through their
Education and Research (E&R) Program. The 3.7 m resolu-
tion of these images was just enough to identify the river
drying fronts, as the Selwyn River width is often less than
10 m. To apply the same approach to smaller rivers, other
satellite resources exist (Maxar Team, 2022; Planet Team,
2017) and pre-processing of the satellite imagery could help
(Callo, 2022). However, the time gap between two high-

resolution images from other libraries is longer than the
time gap between images from the Planet Monitoring col-
lection. Another issue with the use of satellite images would
be the presence of dense riparian vegetation or clouds, which
could hinder our ability to identify the drying front on the
images. In particular, clouds tend to obscure satellite im-
ages during higher flows, as they tend to occur during or
shortly after rainfall events. However, in the future, we ex-
pect that more high-resolution and high-frequency satellite
images will be available to researchers. This should make the
approach presented in this article more attractive and feasi-
ble, even for smaller rivers. Furthermore, several algorithms
have been developed to identify automatically water-covered
areas from satellite images (Feyisa et al., 2014; Munasinghe
et al., 2018; Sagin et al., 2015). The difficulties described
previously might complicate their utilization for our purpose,
but an investigation of the possibilities could be beneficial to
future applications, especially for longer time series.

Using random forest regressors enabled us to predict well
the hourly transmission loss time series and their uncertain-
ties without requiring much effort and computational re-
sources. Thanks to our processing of the hydrograph to cal-
culate the time since the last peak and the peak height for
each transmission loss estimate, we could predict the trans-
mission loss time series only using the river stage and flow
time series. This provides us with a continuous hourly record
of transmission losses, which is particularly useful for fur-
ther work. First, this record was used within this study to in-
vestigate the exceedance probabilities and draw the duration
curve. Second, the continuous transmission loss record can
be used to evaluate physically based models. Third, there is
some interest in predicting continuous records of both trans-
mission losses and wetted river length for water management
in this catchment. This is likely to be the case in other catch-
ments as well. However, an important shortcoming of our
modelling is that the predicted transmission losses during the
highest flow peaks (end of June and early November 2020)
are not higher than the predicted losses during lower peak
flow events. This is due to the lack of data immediately af-
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ter (<23 h) these highest peaks. The random forest models
are then unable to extrapolate prediction outside of the con-
ditions they have been trained on. Many other kinds of statis-
tical models and machine learning algorithms exist and have
been applied in hydrology (Shen et al., 2021; Solomatine and
Ostfeld, 2008). Although some other machine learning al-
gorithms could have some advantages over random forests,
the issue with extrapolation is inherent to this kind of model,
which lacks a representation of hydrological processes. They
are therefore unlikely to give robust prediction of the re-
sponse variable outside of the training conditions (e.g. for
future scenario simulation). A more robust alternative could
lie in physically based models. One of the main motivations
behind this work is to use our estimated and predicted time
series to evaluate different physically based models, which
can then be used for simulation of future scenarios.

6 Conclusions

We presented a framework to estimate the transmission
losses in ephemeral rivers from satellite imagery and to pre-
dict their continuous hourly time series using random forest
models. This framework was successfully applied to the Sel-
wyn River (Canterbury, New Zealand) for the period between
March 2020 and May 2021. It is an efficient approach to
quantify transmission losses in ephemeral rivers. The method
has the advantage of requiring less fieldwork and generat-
ing more data than traditional methods like differential flow
gauging at a similar accuracy. Our results show that the trans-
mission losses in the Selwyn River downstream of our gaug-
ing station were between 0.25 and 0.65 m3 s−1 km−1 during
most of the study period. However, shortly after peak flow,
when the river was advancing and wetting the surrounding
sediments (i.e. wetting phases), the losses could reach up to
1.55 m3 s−1 km−1. This compares quite well with previous
estimates of transmission losses in the study area. However,
we observed and predicted a much drier Selwyn River than
reported in other studies. This is probably due to our study
period being drier, but it is unclear how this relates to decadal
trends. Furthermore, studying the relationship between the
transmission losses and the river stage and discharge enabled
us to improve our understanding of the Selwyn River in-
teractions with groundwater. We believe that the generated
transmission loss time series provide a valuable dataset to
support further research efforts, especially the development
of physically based models. Moreover, the presented frame-
work has the potential to help water management in this
catchment and beyond by providing an approach to simu-
late the transmission losses, groundwater recharge and wet-
ted river length. Our framework is easily transferable to other
ephemeral rivers and can be applied to longer time series.
This could provide important information at a relatively low
cost.

Figure A1. Wetted river lengths following the active river channel,
the riverbed and the braidplain as considered in the study. The satel-
lite image was taken on 27 January 2021, and the river drying front
identified for this day is indicated in the image. Image credit to the
Planet Team (2017).

7 Future work

Some aspects of the groundwater–surface water interactions
at our study site still need to be investigated in more de-
tail. On the one hand, there is evidence of complex interac-
tions, variable in space and time, between the Selwyn River
and its braidplain aquifer. On the other hand, the infiltration
from the braidplain to the deeper aquifer might be a sim-
pler process, as suggested by the relatively stable losses es-
timated during drying phases in this study. Further research
is needed to understand better these processes, their spatio-
temporal variability and how they can be appropriately sim-
ulated. This is the focus of an ongoing research programme
within which piezometers have been installed to monitor the
water level and temperature in the shallow (braidplain) and
deeper aquifers. In addition, active distributed temperature
sensing surveys are being carried out to assess the small-
scale variability of groundwater–surface water interactions at
our study site (Banks et al., 2022). Furthermore, we are de-
veloping physically based models of various complexities to
represent the river–aquifer system and to enable us to get fur-
ther insights into the system response and to simulate future
scenarios.

Appendix A: Wetted river length determination

The wetted river length following the active river channel, the
riverbed and the braidplain are presented in Fig. A1, using
the satellite image taken on 27 January 2021 as an example.

Data availability. Data are available on request from the authors,
except for satellite images that are owned by Planet Labs.
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