Articles | Volume 27, issue 24
https://doi.org/10.5194/hess-27-4563-2023
https://doi.org/10.5194/hess-27-4563-2023
Research article
 | 
20 Dec 2023
Research article |  | 20 Dec 2023

The most extreme rainfall erosivity event ever recorded in China up to 2022: the 7.20 storm in Henan Province

Yuanyuan Xiao, Shuiqing Yin, Bofu Yu, Conghui Fan, Wenting Wang, and Yun Xie

Related authors

Gridded rainfall erosivity (2014–2022) in mainland China using 1 min precipitation data from densely distributed weather stations
Yueli Chen, Yun Xie, Xingwu Duan, and Minghu Ding
Earth Syst. Sci. Data, 17, 1265–1274, https://doi.org/10.5194/essd-17-1265-2025,https://doi.org/10.5194/essd-17-1265-2025, 2025
Short summary
New derivation and interpretation of the complementary relationship for evapotranspiration
Sha Zhou and Bofu Yu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1124,https://doi.org/10.5194/egusphere-2025-1124, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Normalized Difference Vegetation Index Maps of Pure Pixels over China's mainland for Estimation of Fractional Vegetation Cover
Tian Zhao, Wanjuan Song, Xihan Mu, Yun Xie, Donghui Xie, and Guangjian Yan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-535,https://doi.org/10.5194/essd-2024-535, 2024
Preprint under review for ESSD
Short summary
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024,https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
New gridded dataset of rainfall erosivity (1950–2020) on the Tibetan Plateau
Yueli Chen, Xingwu Duan, Minghu Ding, Wei Qi, Ting Wei, Jianduo Li, and Yun Xie
Earth Syst. Sci. Data, 14, 2681–2695, https://doi.org/10.5194/essd-14-2681-2022,https://doi.org/10.5194/essd-14-2681-2022, 2022
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Mathematical applications
Expected annual minima from an idealized moving-average drought index
James H. Stagge, Kyungmin Sung, Irenee Felix Munyejuru, and Md Atif Ibne Haidar
Hydrol. Earth Syst. Sci., 29, 719–732, https://doi.org/10.5194/hess-29-719-2025,https://doi.org/10.5194/hess-29-719-2025, 2025
Short summary
Estimating global precipitation fields by interpolating rain gauge observations using the local ensemble transform Kalman filter and reanalysis precipitation
Yuka Muto and Shunji Kotsuki
Hydrol. Earth Syst. Sci., 28, 5401–5417, https://doi.org/10.5194/hess-28-5401-2024,https://doi.org/10.5194/hess-28-5401-2024, 2024
Short summary
Using statistical models to depict the response of multi-timescale drought to forest cover change across climate zones
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339, https://doi.org/10.5194/hess-28-321-2024,https://doi.org/10.5194/hess-28-321-2024, 2024
Short summary
Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations
Magdalena Uber, Michael Haller, Christoph Brendel, Gudrun Hillebrand, and Thomas Hoffmann
Hydrol. Earth Syst. Sci., 28, 87–102, https://doi.org/10.5194/hess-28-87-2024,https://doi.org/10.5194/hess-28-87-2024, 2024
Short summary
60-years analysis of drought in the western Po River basin
Emanuele Mombrini, Stefania Tamea, Alberto Viglione, and Roberto Revelli
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-218,https://doi.org/10.5194/hess-2023-218, 2023
Revised manuscript accepted for HESS
Short summary

Cited articles

Alexander, L. V., Hope, P., Collins, D., Trewin, B., Lynch, A., and Nicholls, N.: Trends in Australia's climate means and extremes: a global context, Aust. Meteorol. Mag., 56, 1–18, 2007. 
Almagro, A., Oliveira, P. T. S., Nearing, M. A., and Hagemann, S.: Projected climate change impacts in rainfall erosivity over Brazil, Sci. Rep., 7, 8130, https://doi.org/10.1038/s41598-017-08298-y, 2017. 
Bezak, N., Mikoš, M., Borrelli, P., Liakos, L., and Panagos, P.: An in-depth statistical analysis of the rainstorms erosivity in Europe, Catena, 206, 105577, https://doi.org/10.1016/j.catena.2021.105577, 2021. 
Bezak, N., Borrelli, P., and Panagos, P.: Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall, Hydrol. Earth Syst. Sci., 26, 1907–1924, https://doi.org/10.5194/hess-26-1907-2022, 2022. 
Bloemendaal, N., de Moel, H., Muis, S., Haigh, I. D., and Aerts, J. C. J. H.: Estimation of global tropical cyclone wind speed probabilities using the STORM dataset, Sci. Data, 7, 377, https://doi.org/10.1038/s41597-020-00720-x, 2020. 
Download
Short summary
An exceptionally heavy rainfall event occurred on 20 July 2021 in central China (the 7.20 storm). The storm presents a rare opportunity to examine the extreme rainfall erosivity. The storm, with an average recurrence interval of at least 10 000 years, was the largest in terms of its rainfall erosivity on record over the past 70 years in China. The study suggests that extreme erosive events can occur anywhere in eastern China and are not necessarily concentrated in low latitudes.
Share