Articles | Volume 27, issue 17
https://doi.org/10.5194/hess-27-3169-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-3169-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantitative rainfall analysis of the 2021 mid-July flood event in Belgium
Michel Journée
CORRESPONDING AUTHOR
Royal Meteorological Institute of Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium
Edouard Goudenhoofdt
Royal Meteorological Institute of Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium
Stéphane Vannitsem
Royal Meteorological Institute of Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium
Laurent Delobbe
Royal Meteorological Institute of Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium
Related authors
Cédric Bertrand, Luis González Sotelino, and Michel Journée
Adv. Sci. Res., 13, 13–19, https://doi.org/10.5194/asr-13-13-2016, https://doi.org/10.5194/asr-13-13-2016, 2016
Short summary
Short summary
This paper describes the quality control procedures developed at the Royal Meteorological Institute of Belgium (RMI) to ensure the accuracy and reliability of the wind observations performed within the Automatic Weather Stations network operated by RMI.
M. Journée, C. Delvaux, and C. Bertrand
Adv. Sci. Res., 12, 73–78, https://doi.org/10.5194/asr-12-73-2015, https://doi.org/10.5194/asr-12-73-2015, 2015
Short summary
Short summary
The paper discusses the derivation of precipitation climate maps over Belgium from daily observations available for the period 1981-2010. Several mapping approaches are compared in a cross-validation exercise. A large panel of climate maps are derived. In particular, the main spatio-temporal features of the annual cycle of rainfall in Belgium are extracted by principal component analysis (PCA).
C. Bertrand, L. González Sotelino, and M. Journée
Adv. Sci. Res., 12, 23–30, https://doi.org/10.5194/asr-12-23-2015, https://doi.org/10.5194/asr-12-23-2015, 2015
Short summary
Short summary
The paper describes a semi-automatic quality control of 10-min soil temperatures data.
M. Journée, C. Demain, and C. Bertrand
Adv. Sci. Res., 10, 15–19, https://doi.org/10.5194/asr-10-15-2013, https://doi.org/10.5194/asr-10-15-2013, 2013
C. Bertrand, L. Gonzalez Sotelino, and M. Journée
Adv. Sci. Res., 10, 1–5, https://doi.org/10.5194/asr-10-1-2013, https://doi.org/10.5194/asr-10-1-2013, 2013
Stéphane Vannitsem, X. San Liang, and Carlos A. Pires
EGUsphere, https://doi.org/10.5194/egusphere-2024-3308, https://doi.org/10.5194/egusphere-2024-3308, 2024
Short summary
Short summary
Large-scale modes of variability are present in the climate system. These modes are known to have influences on each other, but usually viewed as linear influences. The nonlinear connections among a set of key climate indices are here explored using tools from information theory, which allow for characterizing the causality between indices. It is found that quadratic nonlinear dependencies between climate indices are present at low-frequencies, reflecting the complex nature of its dynamics.
Anupama K. Xavier, Jonathan Demaeyer, and Stéphane Vannitsem
Earth Syst. Dynam., 15, 893–912, https://doi.org/10.5194/esd-15-893-2024, https://doi.org/10.5194/esd-15-893-2024, 2024
Short summary
Short summary
This research focuses on understanding different atmospheric patterns like blocking, zonal, and transition regimes and analyzing their predictability. We used an idealized land–atmosphere coupled model to simulate Earth's atmosphere. Then we identified these blocking, zonal, and transition regimes using Gaussian mixture clustering and studied their predictability using Lyapunov exponents.
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023, https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary
Short summary
A benchmark dataset is proposed to compare different statistical postprocessing methods used in forecasting centers to properly calibrate ensemble weather forecasts. This dataset is based on ensemble forecasts covering a portion of central Europe and includes the corresponding observations. Examples on how to download and use the data are provided, a set of evaluation methods is proposed, and a first benchmark of several methods for the correction of 2 m temperature forecasts is performed.
David Docquier, Stéphane Vannitsem, and Alessio Bellucci
Earth Syst. Dynam., 14, 577–591, https://doi.org/10.5194/esd-14-577-2023, https://doi.org/10.5194/esd-14-577-2023, 2023
Short summary
Short summary
The climate system is strongly regulated by interactions between the ocean and atmosphere. However, many uncertainties remain in the understanding of these interactions. Our analysis uses a relatively novel approach to quantify causal links between the ocean surface and lower atmosphere based on satellite observations. We find that both the ocean and atmosphere influence each other but with varying intensity depending on the region, demonstrating the power of causal methods.
Stéphane Vannitsem
Nonlin. Processes Geophys., 30, 1–12, https://doi.org/10.5194/npg-30-1-2023, https://doi.org/10.5194/npg-30-1-2023, 2023
Short summary
Short summary
The impact of climate change on weather pattern dynamics over the North Atlantic is explored through the lens of information theory. These tools allow the predictability of the succession of weather patterns and the irreversible nature of the dynamics to be clarified. It is shown that the predictability is increasing in the observations, while the opposite trend is found in model projections. The irreversibility displays an overall increase in time in both the observations and the model runs.
David Docquier, Stéphane Vannitsem, Alessio Bellucci, and Claude Frankignoul
EGUsphere, https://doi.org/10.5194/egusphere-2022-1340, https://doi.org/10.5194/egusphere-2022-1340, 2022
Preprint withdrawn
Short summary
Short summary
Understanding whether variations in ocean heat content are driven by air-sea heat fluxes or by ocean dynamics is of crucial importance to enhance climate projections. We use a relatively novel causal method to quantify interactions between ocean heat budget terms based on climate models. We find that low-resolution models overestimate the influence of ocean dynamics in the upper ocean, and that changes in ocean heat content are dominated by air-sea fluxes at high resolution.
Nicolas Ghilain, Stéphane Vannitsem, Quentin Dalaiden, Hugues Goosse, Lesley De Cruz, and Wenguang Wei
Earth Syst. Sci. Data, 14, 1901–1916, https://doi.org/10.5194/essd-14-1901-2022, https://doi.org/10.5194/essd-14-1901-2022, 2022
Short summary
Short summary
Modeling the climate at high resolution is crucial to represent the snowfall accumulation over the complex orography of the Antarctic coast. While ice cores provide a view constrained spatially but over centuries, climate models can give insight into its spatial distribution, either at high resolution over a short period or vice versa. We downscaled snowfall accumulation from climate model historical simulations (1850–present day) over Dronning Maud Land at 5.5 km using a statistical method.
Tommaso Alberti, Reik V. Donner, and Stéphane Vannitsem
Earth Syst. Dynam., 12, 837–855, https://doi.org/10.5194/esd-12-837-2021, https://doi.org/10.5194/esd-12-837-2021, 2021
Short summary
Short summary
We provide a novel approach to diagnose the strength of the ocean–atmosphere coupling by using both a reduced order model and reanalysis data. Our findings suggest the ocean–atmosphere dynamics presents a rich variety of features, moving from a chaotic to a coherent coupled dynamics, mainly attributed to the atmosphere and only marginally to the ocean. Our observations suggest further investigations in characterizing the occurrence and spatial dependency of the ocean–atmosphere coupling.
Stephan Hemri, Sebastian Lerch, Maxime Taillardat, Stéphane Vannitsem, and Daniel S. Wilks
Nonlin. Processes Geophys., 27, 519–521, https://doi.org/10.5194/npg-27-519-2020, https://doi.org/10.5194/npg-27-519-2020, 2020
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 27, 307–327, https://doi.org/10.5194/npg-27-307-2020, https://doi.org/10.5194/npg-27-307-2020, 2020
Short summary
Short summary
Postprocessing schemes used to correct weather forecasts are no longer efficient when the model generating the forecasts changes. An approach based on response theory to take the change into account without having to recompute the parameters based on past forecasts is presented. It is tested on an analytical model and a simple model of atmospheric variability. We show that this approach is effective and discuss its potential application for an operational environment.
Michiel Van Ginderachter, Daan Degrauwe, Stéphane Vannitsem, and Piet Termonia
Nonlin. Processes Geophys., 27, 187–207, https://doi.org/10.5194/npg-27-187-2020, https://doi.org/10.5194/npg-27-187-2020, 2020
Short summary
Short summary
A generic methodology is developed to estimate the model error and simulate the model uncertainty related to a specific physical process. The method estimates the model error by comparing two different representations of the physical process in otherwise identical models. The found model error can then be used to perturb the model and simulate the model uncertainty. When applying this methodology to deep convection an improvement in the probabilistic skill of the ensemble forecast is found.
Emmanuel Roulin and Stéphane Vannitsem
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2019-45, https://doi.org/10.5194/npg-2019-45, 2019
Preprint withdrawn
Short summary
Short summary
We need seasonal predictions of temperature and precipitation to prepare hydrological outlooks. Since the skill is limited, statistical correction and combination of outputs from multiple models are necessary. We use the forecasts of past situations from the EUROSIP multi-model system for 6 case studies in Western Europe and the Mediterranean Region. We identify skill for spring temperature in most areas and winter precipitation in Sweden and Greece. Sample size for training appears crucial.
Laurent Delobbe, Arnaud Watlet, Svenja Wilfert, and Michel Van Camp
Hydrol. Earth Syst. Sci., 23, 93–105, https://doi.org/10.5194/hess-23-93-2019, https://doi.org/10.5194/hess-23-93-2019, 2019
Short summary
Short summary
In this study, we explore the use of an underground superconducting gravimeter as a new source of in situ observations for the evaluation of radar-based precipitation estimates. The comparison of radar and gravity time series over 15 years shows that short-duration intense rainfall events cause a rapid decrease in the measured gravity. Rainfall amounts can be derived from this decrease. The gravimeter allows capture of rainfall at a much larger spatial scale than a traditional rain gauge.
Jonathan Demaeyer and Stéphane Vannitsem
Nonlin. Processes Geophys., 25, 605–631, https://doi.org/10.5194/npg-25-605-2018, https://doi.org/10.5194/npg-25-605-2018, 2018
Short summary
Short summary
We investigate the modeling of the effects of the unresolved scales on the large scales of the coupled ocean–atmosphere model MAOOAM. Two different physically based stochastic methods are considered and compared, in various configurations of the model. Both methods show remarkable performances and are able to model fundamental changes in the model dynamics. Ways to improve the parameterizations' implementation are also proposed.
Stéphane Vannitsem and Pierre Ekelmans
Earth Syst. Dynam., 9, 1063–1083, https://doi.org/10.5194/esd-9-1063-2018, https://doi.org/10.5194/esd-9-1063-2018, 2018
Short summary
Short summary
The El Niño–Southern Oscillation phenomenon is a slow dynamics present in the coupled ocean–atmosphere tropical Pacific system which has important teleconnections with the northern extratropics. These teleconnections are usually believed to be the source of an enhanced predictability in the northern extratropics at seasonal to decadal timescales. This question is challenged by investigating the causality between these regions using an advanced technique known as convergent cross mapping.
Lesley De Cruz, Sebastian Schubert, Jonathan Demaeyer, Valerio Lucarini, and Stéphane Vannitsem
Nonlin. Processes Geophys., 25, 387–412, https://doi.org/10.5194/npg-25-387-2018, https://doi.org/10.5194/npg-25-387-2018, 2018
Short summary
Short summary
The predictability of weather models is limited largely by the initial state error growth or decay rates. We have computed these rates for PUMA, a global model for the atmosphere, and MAOOAM, a more simplified, coupled model which includes the ocean. MAOOAM has processes at distinct timescales, whereas PUMA surprisingly does not. We propose a new programme to compute the natural directions along the flow that correspond to the growth or decay rates, to learn which components play a role.
Dieter R. Poelman, Wolfgang Schulz, Rudolf Kaltenboeck, and Laurent Delobbe
Atmos. Meas. Tech., 10, 4561–4572, https://doi.org/10.5194/amt-10-4561-2017, https://doi.org/10.5194/amt-10-4561-2017, 2017
Short summary
Short summary
Lightning data as observed by the European Cooperation for Lightning Detection network EUCLID are used in combination with radar data to retrieve the temporal and spatial behavior of lightning outliers, i.e. discharges located in a wrong place, over a 5-year period from 2011 to 2016 in Belgium and Austria.
Edouard Goudenhoofdt, Laurent Delobbe, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 5385–5399, https://doi.org/10.5194/hess-21-5385-2017, https://doi.org/10.5194/hess-21-5385-2017, 2017
Short summary
Short summary
Knowing the characteristics of extreme precipitation is useful for flood management applications like sewer system design. The potential of a 12-year high-quality weather radar precipitation dataset is investigated by comparison with rain gauges. Despite known limitations, a good agreement is found between the radar and the rain gauges. Using the radar data allow us to reduce the uncertainty of the extreme value analysis, especially for short duration extremes related to thunderstorms.
Lesley De Cruz, Jonathan Demaeyer, and Stéphane Vannitsem
Geosci. Model Dev., 9, 2793–2808, https://doi.org/10.5194/gmd-9-2793-2016, https://doi.org/10.5194/gmd-9-2793-2016, 2016
Short summary
Short summary
Large-scale weather patterns such as the North Atlantic Oscillation, which dictates the harshness of European winters, vary over the course of years. By recreating it in a simple ocean-atmosphere model, we hope to understand what drives this slow, hard-to-predict variability. MAOOAM is such a model, in which the resolution and included physical processes can easily be modified. The modular system allowed us to show the robustness of the slow variability against changes in model resolution.
Cédric Bertrand, Luis González Sotelino, and Michel Journée
Adv. Sci. Res., 13, 13–19, https://doi.org/10.5194/asr-13-13-2016, https://doi.org/10.5194/asr-13-13-2016, 2016
Short summary
Short summary
This paper describes the quality control procedures developed at the Royal Meteorological Institute of Belgium (RMI) to ensure the accuracy and reliability of the wind observations performed within the Automatic Weather Stations network operated by RMI.
L. Foresti, M. Reyniers, A. Seed, and L. Delobbe
Hydrol. Earth Syst. Sci., 20, 505–527, https://doi.org/10.5194/hess-20-505-2016, https://doi.org/10.5194/hess-20-505-2016, 2016
Short summary
Short summary
The Short-Term Ensemble Prediction System (STEPS) is implemented in real time at the Royal Meteorological Institute of Belgium (STEPS-BE). The idea behind STEPS is to quantify the forecast uncertainty by adding stochastic perturbations to the deterministic extrapolation of radar images. In this paper we present the deterministic, probabilistic and ensemble verification of STEPS-BE forecasts using four precipitation cases that caused sewer system overflow in the cities of Leuven and Ghent.
M. Journée, C. Delvaux, and C. Bertrand
Adv. Sci. Res., 12, 73–78, https://doi.org/10.5194/asr-12-73-2015, https://doi.org/10.5194/asr-12-73-2015, 2015
Short summary
Short summary
The paper discusses the derivation of precipitation climate maps over Belgium from daily observations available for the period 1981-2010. Several mapping approaches are compared in a cross-validation exercise. A large panel of climate maps are derived. In particular, the main spatio-temporal features of the annual cycle of rainfall in Belgium are extracted by principal component analysis (PCA).
C. Bertrand, L. González Sotelino, and M. Journée
Adv. Sci. Res., 12, 23–30, https://doi.org/10.5194/asr-12-23-2015, https://doi.org/10.5194/asr-12-23-2015, 2015
Short summary
Short summary
The paper describes a semi-automatic quality control of 10-min soil temperatures data.
M. J. van den Berg, L. Delobbe, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 18, 5331–5344, https://doi.org/10.5194/hess-18-5331-2014, https://doi.org/10.5194/hess-18-5331-2014, 2014
S. Vannitsem and L. De Cruz
Geosci. Model Dev., 7, 649–662, https://doi.org/10.5194/gmd-7-649-2014, https://doi.org/10.5194/gmd-7-649-2014, 2014
M. Journée, C. Demain, and C. Bertrand
Adv. Sci. Res., 10, 15–19, https://doi.org/10.5194/asr-10-15-2013, https://doi.org/10.5194/asr-10-15-2013, 2013
C. Bertrand, L. Gonzalez Sotelino, and M. Journée
Adv. Sci. Res., 10, 1–5, https://doi.org/10.5194/asr-10-1-2013, https://doi.org/10.5194/asr-10-1-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Technical note: A guide to using three open-source quality control algorithms for rainfall data from personal weather stations
Technical note: Investigating the potential for smartphone-based monitoring of evapotranspiration and land surface energy-balance partitioning
Exploring patterns in precipitation intensity–duration–area–frequency relationships using weather radar data
Technical Note: A simple feedforward artificial neural network for high temporal resolution classification of wet and dry periods using signal attenuation from commercial microwave links
An intercomparison of four gridded precipitation products over Europe using the three-cornered-hat method
Merging with crowdsourced rain gauge data improves pan-European radar precipitation estimates
Statistical characteristics of raindrop size distribution during rainy seasons in complicated mountain terrain
Evaluation of precipitation measurement methods using data from a precision lysimeter network
Multi-scale temporal analysis of evaporation on a saline lake in the Atacama Desert
Coastal and orographic effects on extreme precipitation revealed by weather radar observations
Unshielded precipitation gauge collection efficiency with wind speed and hydrometeor fall velocity
Evaluation of Integrated Nowcasting through Comprehensive Analysis (INCA) precipitation analysis using a dense rain-gauge network in southeastern Austria
Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the northwestern Pacific
Partial energy balance closure of eddy covariance evaporation measurements using concurrent lysimeter observations over grassland
Rivers in the sky, flooding on the ground: the role of atmospheric rivers in inland flooding in central Europe
Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements
Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data
Radar-based characterisation of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model
Effect of disdrometer type on rain drop size distribution characterisation: a new dataset for south-eastern Australia
Quantitative precipitation estimation with weather radar using a data- and information-based approach
Continuous, near-real-time observations of water stable isotope ratios during rainfall and throughfall events
Rain erosivity map for Germany derived from contiguous radar rain data
Citizen science flow – an assessment of simple streamflow measurement methods
Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS
Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall
The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset
Precipitation characteristics and associated weather conditions on the eastern slopes of the Canadian Rockies during March–April 2015
Dendrohydrology and water resources management in south-central Chile: lessons from the Río Imperial streamflow reconstruction
Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers
Obtaining sub-daily new snow density from automated measurements in high mountain regions
Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France
Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE
Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements
Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria
The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation
Measuring precipitation with a geolysimeter
Convective rainfall in a dry climate: relations with synoptic systems and flash-flood generation in the Dead Sea region
Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop
Water-use dynamics of an alien-invaded riparian forest within the Mediterranean climate zone of the Western Cape, South Africa
Impact of rainfall spatial aggregation on the identification of debris flow occurrence thresholds
Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis
Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE
Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa
Rainfall and streamflow sensor network design: a review of applications, classification, and a proposed framework
The quantification and correction of wind-induced precipitation measurement errors
Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment
Areal rainfall estimation using moving cars – computer experiments including hydrological modeling
Recent changes and drivers of the atmospheric evaporative demand in the Canary Islands
A radar-based regional extreme rainfall analysis to derive the thresholds for a novel automatic alert system in Switzerland
Making rainfall features fun: scientific activities for teaching children aged 5–12 years
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024, https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for data quality control.
Adriaan J. Teuling, Belle Holthuis, and Jasper F. D. Lammers
Hydrol. Earth Syst. Sci., 28, 3799–3806, https://doi.org/10.5194/hess-28-3799-2024, https://doi.org/10.5194/hess-28-3799-2024, 2024
Short summary
Short summary
The understanding of spatio-temporal variability of evapotranspiration (ET) is currently limited by a lack of measurement techniques that are low cost and that can be applied anywhere at any time. Here we show that evapotranspiration can be estimated accurately using observations made by smartphone sensors, suggesting that smartphone-based ET monitoring could provide a realistic and low-cost alternative for real-time ET estimation in the field.
Talia Rosin, Francesco Marra, and Efrat Morin
Hydrol. Earth Syst. Sci., 28, 3549–3566, https://doi.org/10.5194/hess-28-3549-2024, https://doi.org/10.5194/hess-28-3549-2024, 2024
Short summary
Short summary
Knowledge of extreme precipitation probability at various spatial–temporal scales is crucial. We estimate extreme precipitation return levels at multiple scales (10 min–24 h, 0.25–500 km2) in the eastern Mediterranean using radar data. We show our estimates are comparable to those derived from averaged daily rain gauges. We then explore multi-scale extreme precipitation across coastal, mountainous, and desert regions.
Erlend Øydvin, Maximilian Graf, Christian Chwala, Mareile Astrid Wolff, Nils-Otto Kitterød, and Vegard Nilsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-647, https://doi.org/10.5194/egusphere-2024-647, 2024
Short summary
Short summary
Two simple neural networks are trained to detect rainfall events using signal loss from commercial microwave links. Whereas existing rainfall event detection methods have focused on hourly resolution reference data, this study uses weather radar and rain gauges with 5 minutes and 1 minute temporal resolution respectively. Our results show that the developed neural networks can detect rainfall events with a higher temporal precision than existing methods.
Llorenç Lledó, Thomas Haiden, and Matthieu Chevallier
EGUsphere, https://doi.org/10.5194/egusphere-2024-807, https://doi.org/10.5194/egusphere-2024-807, 2024
Short summary
Short summary
High-quality observational datasets are essential to perform forecast verification and improve weather forecast services. When it comes to verifying precipitation, a high-resolution, global-coverage and good-quality dataset is not yet available. This research analyses the strengths and shortcomings of four observational products that employ complementary measurement techniques to estimate surface precipitation. Satellites provide good spatial coverage, but other products are still more accurate.
Aart Overeem, Hidde Leijnse, Gerard van der Schrier, Else van den Besselaar, Irene Garcia-Marti, and Lotte Wilhelmina de Vos
Hydrol. Earth Syst. Sci., 28, 649–668, https://doi.org/10.5194/hess-28-649-2024, https://doi.org/10.5194/hess-28-649-2024, 2024
Short summary
Short summary
Ground-based radar precipitation products typically need adjustment with rain gauge accumulations to achieve a reasonable accuracy. Crowdsourced rain gauge networks have a much higher density than conventional ones. Here, a 1-year personal weather station (PWS) gauge dataset is obtained. After quality control, the 1 h PWS gauge accumulations are merged with pan-European radar accumulations. The potential of crowdsourcing to improve radar precipitation products in (near) real time is confirmed.
Wenqian Mao, Wenyu Zhang, and Menggang Kou
Hydrol. Earth Syst. Sci., 27, 3895–3910, https://doi.org/10.5194/hess-27-3895-2023, https://doi.org/10.5194/hess-27-3895-2023, 2023
Short summary
Short summary
Drop size distribution characteristics vary with microphysical characteristics. We choose the Qilian mountains and represent the southern and northern slopes and the interior. To investigate discrepancies, DSD characteristics and Z–R relationships are analyzed based on continuous observations in the rainy season. We obtain the finer precipitation of mountains and refine the accuracy of quantitative precipitation estimation, which would help develop cloud water resources in mountainous areas.
Tobias Schnepper, Jannis Groh, Horst H. Gerke, Barbara Reichert, and Thomas Pütz
Hydrol. Earth Syst. Sci., 27, 3265–3292, https://doi.org/10.5194/hess-27-3265-2023, https://doi.org/10.5194/hess-27-3265-2023, 2023
Short summary
Short summary
We compared hourly data from precipitation gauges with lysimeter reference data at three sites under different climatic conditions. Our results show that precipitation gauges recorded 33–96 % of the reference precipitation data for the period under consideration (2015–2018). Correction algorithms increased the registered precipitation by 9–14 %. It follows that when using point precipitation data, regardless of the precipitation measurement method used, relevant uncertainties must be considered.
Felipe Lobos-Roco, Oscar Hartogensis, Francisco Suárez, Ariadna Huerta-Viso, Imme Benedict, Alberto de la Fuente, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 26, 3709–3729, https://doi.org/10.5194/hess-26-3709-2022, https://doi.org/10.5194/hess-26-3709-2022, 2022
Short summary
Short summary
This research brings a multi-scale temporal analysis of evaporation in a saline lake of the Atacama Desert. Our findings reveal that evaporation is controlled differently depending on the timescale. Evaporation is controlled sub-diurnally by wind speed, regulated seasonally by radiation and modulated interannually by ENSO. Our research extends our understanding of evaporation, contributing to improving the climate change assessment and efficiency of water management in arid regions.
Francesco Marra, Moshe Armon, and Efrat Morin
Hydrol. Earth Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022, https://doi.org/10.5194/hess-26-1439-2022, 2022
Short summary
Short summary
We present a new method for quantifying the probability of occurrence of extreme rainfall using radar data, and we use it to examine coastal and orographic effects on extremes. We identify three regimes, directly related to precipitation physical processes, which respond differently to these forcings. The methods and results are of interest for researchers and practitioners using radar for the analysis of extremes, risk managers, water resources managers, and climate change impact studies.
Jeffery Hoover, Michael E. Earle, Paul I. Joe, and Pierre E. Sullivan
Hydrol. Earth Syst. Sci., 25, 5473–5491, https://doi.org/10.5194/hess-25-5473-2021, https://doi.org/10.5194/hess-25-5473-2021, 2021
Short summary
Short summary
Transfer functions with dependence on wind speed and precipitation fall velocity are evaluated alongside transfer functions with wind speed and temperature dependence for unshielded precipitation gauges. The transfer functions with fall velocity dependence reduced the RMSE of unshielded gauge measurements relative to the functions based on wind speed and temperature, demonstrating the importance of fall velocity for precipitation gauge collection efficiency and transfer functions.
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021, https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary
Short summary
We assess an operational merged gauge–radar precipitation product over a period of 12 years, using gridded precipitation fields from a dense gauge network (WegenerNet) in southeastern Austria. We analyze annual data, seasonal data, and extremes using different metrics. We identify individual events using a simple threshold based on the interval between two consecutive events and evaluate the events' characteristics in both datasets.
Jayalakshmi Janapati, Balaji Kumar Seela, Pay-Liam Lin, Meng-Tze Lee, and Everette Joseph
Hydrol. Earth Syst. Sci., 25, 4025–4040, https://doi.org/10.5194/hess-25-4025-2021, https://doi.org/10.5194/hess-25-4025-2021, 2021
Short summary
Short summary
Typhoon (TY) and non-typhoon (NTY) rainy days in northern Taiwan summer seasons showed more large drops on NTY than TY rainy days. Relatively higher convective activity and drier conditions in NTY than TY lead to variations in microphysical characteristics between TY and NTY rainy days. The raindrop size distribution and kinetic energy relations assessed for TY and NTY rainfall can be useful for evaluating the radar rainfall estimation algorithms, cloud modeling, and rainfall erosivity studies.
Peter Widmoser and Dominik Michel
Hydrol. Earth Syst. Sci., 25, 1151–1163, https://doi.org/10.5194/hess-25-1151-2021, https://doi.org/10.5194/hess-25-1151-2021, 2021
Short summary
Short summary
With respect to ongoing discussions about the causes of energy imbalance, a method for closing the latent heat flux gap based on lysimeter measurements is assessed at four measurement stations over grassland in humid and semiarid climates. The applied partial closure yields excellent adjustments of eddy covariance data as compared to results found in the literature. The method also allows a distinction between systematic and random deviation of eddy covariance and lysimeter measurements.
Monica Ionita, Viorica Nagavciuc, and Bin Guan
Hydrol. Earth Syst. Sci., 24, 5125–5147, https://doi.org/10.5194/hess-24-5125-2020, https://doi.org/10.5194/hess-24-5125-2020, 2020
Short summary
Short summary
Analysis of the largest 10 floods in the lower Rhine, between 1817 and 2015, shows that all these extreme flood peaks have been preceded, up to 7 d in advance, by intense moisture transport from the tropical North Atlantic basin in the form of narrow bands also known as atmospheric rivers. The results presented in this study offer new insights regarding the importance of moisture transport as the driver of extreme flooding in the lower part of the Rhine catchment area.
Craig D. Smith, Amber Ross, John Kochendorfer, Michael E. Earle, Mareile Wolff, Samuel Buisán, Yves-Alain Roulet, and Timo Laine
Hydrol. Earth Syst. Sci., 24, 4025–4043, https://doi.org/10.5194/hess-24-4025-2020, https://doi.org/10.5194/hess-24-4025-2020, 2020
Short summary
Short summary
During the World Meteorological Organization Solid Precipitation Intercomparison Experiment (SPICE), transfer functions were developed to adjust automated gauge measurements of solid precipitation for systematic bias due to wind. The transfer functions were developed by combining data from eight sites, attempting to make them more universally applicable in a range of climates. This analysis is an assessment of the performance of those transfer functions, using data collected when SPICE ended.
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020, https://doi.org/10.5194/hess-24-2931-2020, 2020
Short summary
Short summary
Commercial microwave links (CMLs), which form large parts of the backhaul from the ubiquitous cellular communication networks, can be used to estimate path-integrated rainfall rates. This study presents the processing and evaluation of the largest CML data set to date, covering the whole of Germany with almost 4000 CMLs. The CML-derived rainfall information compares well to a standard precipitation data set from the German Meteorological Service, which combines radar and rain gauge data.
Moshe Armon, Francesco Marra, Yehouda Enzel, Dorita Rostkier-Edelstein, and Efrat Morin
Hydrol. Earth Syst. Sci., 24, 1227–1249, https://doi.org/10.5194/hess-24-1227-2020, https://doi.org/10.5194/hess-24-1227-2020, 2020
Short summary
Short summary
Heavy precipitation events (HPEs), occurring around the globe, lead to natural hazards as well as to water resource recharge. Rainfall patterns during HPEs vary from one case to another and govern their effect. Thus, correct prediction of these patterns is crucial for coping with HPEs. However, the ability of weather models to generate such patterns is unclear. Here, we characterise rainfall patterns during HPEs based on weather radar data and evaluate weather model simulations of these events.
Adrien Guyot, Jayaram Pudashine, Alain Protat, Remko Uijlenhoet, Valentijn R. N. Pauwels, Alan Seed, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 4737–4761, https://doi.org/10.5194/hess-23-4737-2019, https://doi.org/10.5194/hess-23-4737-2019, 2019
Short summary
Short summary
We characterised for the first time the rainfall microphysics for Southern Hemisphere temperate latitudes. Co-located instruments were deployed to provide information on the sampling effect and spatio-temporal variabilities at micro scales. Substantial differences were found across the instruments, increasing with increasing values of the rain rate. Specific relations for reflectivity–rainfall are presented together with related uncertainties for drizzle and stratiform and convective rainfall.
Malte Neuper and Uwe Ehret
Hydrol. Earth Syst. Sci., 23, 3711–3733, https://doi.org/10.5194/hess-23-3711-2019, https://doi.org/10.5194/hess-23-3711-2019, 2019
Short summary
Short summary
In this study, we apply a data-driven approach to quantitatively estimate precipitation using weather radar data. The method is based on information theory concepts. It uses predictive relations expressed by empirical discrete probability distributions, which are directly derived from data rather than the standard deterministic functions.
Barbara Herbstritt, Benjamin Gralher, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 3007–3019, https://doi.org/10.5194/hess-23-3007-2019, https://doi.org/10.5194/hess-23-3007-2019, 2019
Short summary
Short summary
We describe a novel technique for the precise, quasi real-time observation of water-stable isotopes in gross precipitation and throughfall from tree canopies in parallel. Various processes (e.g. rainfall intensity, evapotranspiration, exchange with ambient vapour) thereby control throughfall intensity and isotopic composition. The achieved temporal resolution now competes with common meteorological measurements, thus enabling new ways to employ water-stable isotopes in forested catchments.
Karl Auerswald, Franziska K. Fischer, Tanja Winterrath, and Robert Brandhuber
Hydrol. Earth Syst. Sci., 23, 1819–1832, https://doi.org/10.5194/hess-23-1819-2019, https://doi.org/10.5194/hess-23-1819-2019, 2019
Short summary
Short summary
Radar rain data enable for the first time portraying the erosivity pattern with high spatial and temporal resolution. This allowed quantification of erosivity in Germany with unprecedented detail. Compared to previous estimates, erosivity has strongly increased and its seasonal distribution has changed, presumably due to climate change. As a consequence, erosion for some crops is 4 times higher than previously estimated.
Jeffrey C. Davids, Martine M. Rutten, Anusha Pandey, Nischal Devkota, Wessel David van Oyen, Rajaram Prajapati, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 23, 1045–1065, https://doi.org/10.5194/hess-23-1045-2019, https://doi.org/10.5194/hess-23-1045-2019, 2019
Short summary
Short summary
Wise management of water resources requires data. Nevertheless, the amount of water data being collected continues to decline. We evaluated potential citizen science approaches for measuring flows of headwater streams and springs. After selecting salt dilution as the preferred approach, we partnered with Nepali students to cost-effectively measure flows and water quality with smartphones at 264 springs and streams which provide crucial water supplies to the rapidly expanding Kathmandu Valley.
Hylke E. Beck, Ming Pan, Tirthankar Roy, Graham P. Weedon, Florian Pappenberger, Albert I. J. M. van Dijk, George J. Huffman, Robert F. Adler, and Eric F. Wood
Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, https://doi.org/10.5194/hess-23-207-2019, 2019
Short summary
Short summary
We conducted a comprehensive evaluation of 26 precipitation datasets for the US using the Stage-IV gauge-radar dataset as a reference. The best overall performance was obtained by MSWEP V2.2, underscoring the importance of applying daily gauge corrections and accounting for reporting times. Our findings can be used as a guide to choose the most suitable precipitation dataset for a particular application.
Laurent Delobbe, Arnaud Watlet, Svenja Wilfert, and Michel Van Camp
Hydrol. Earth Syst. Sci., 23, 93–105, https://doi.org/10.5194/hess-23-93-2019, https://doi.org/10.5194/hess-23-93-2019, 2019
Short summary
Short summary
In this study, we explore the use of an underground superconducting gravimeter as a new source of in situ observations for the evaluation of radar-based precipitation estimates. The comparison of radar and gravity time series over 15 years shows that short-duration intense rainfall events cause a rapid decrease in the measured gravity. Rainfall amounts can be derived from this decrease. The gravimeter allows capture of rainfall at a much larger spatial scale than a traditional rain gauge.
Camila Alvarez-Garreton, Pablo A. Mendoza, Juan Pablo Boisier, Nans Addor, Mauricio Galleguillos, Mauricio Zambrano-Bigiarini, Antonio Lara, Cristóbal Puelma, Gonzalo Cortes, Rene Garreaud, James McPhee, and Alvaro Ayala
Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, https://doi.org/10.5194/hess-22-5817-2018, 2018
Short summary
Short summary
CAMELS-CL provides a catchment dataset in Chile, including 516 catchment boundaries, hydro-meteorological time series, and 70 catchment attributes quantifying catchments' climatic, hydrological, topographic, geological, land cover and anthropic intervention features. By using CAMELS-CL, we characterise hydro-climatic regional variations, assess precipitation and potential evapotranspiration uncertainties, and analyse human intervention impacts on catchment response.
Julie M. Thériault, Ida Hung, Paul Vaquer, Ronald E. Stewart, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 22, 4491–4512, https://doi.org/10.5194/hess-22-4491-2018, https://doi.org/10.5194/hess-22-4491-2018, 2018
Short summary
Short summary
Precipitation events associated with rain and snow on the eastern slopes of the Rocky Mountains, Canada, are a critical aspect of the regional water cycle. The goal is to characterize the precipitation and weather conditions in the Kananaskis Valley, Alberta, during a field experiment. Mainly dense solid precipitation reached the surface and occurred during downslope and upslope conditions. The precipitation phase has critical implications on the severity of flooding events in the area.
Alfonso Fernández, Ariel Muñoz, Álvaro González-Reyes, Isabella Aguilera-Betti, Isadora Toledo, Paulina Puchi, David Sauchyn, Sebastián Crespo, Cristian Frene, Ignacio Mundo, Mauro González, and Raffaele Vignola
Hydrol. Earth Syst. Sci., 22, 2921–2935, https://doi.org/10.5194/hess-22-2921-2018, https://doi.org/10.5194/hess-22-2921-2018, 2018
Short summary
Short summary
Short-term river discharge records hamper assessment of the severity of modern droughts in south-central Chile, making effective water management difficult. To support decision-making, we present a ~300-year tree-ring reconstruction of summer discharge for this region. Results show that since 1980, droughts have become more frequent and are related to a shift in large-scale climate. We argue that water managers should use this long-term view to better allocate water rights.
Marta Angulo-Martínez, Santiago Beguería, Borja Latorre, and María Fernández-Raga
Hydrol. Earth Syst. Sci., 22, 2811–2837, https://doi.org/10.5194/hess-22-2811-2018, https://doi.org/10.5194/hess-22-2811-2018, 2018
Short summary
Short summary
Two optical disdrometers, OTT Parsivel2 disdrometer and Thies Clima laser precipitation monitor (LPM), are compared. Analysis of 2 years of one-minute replicated data showed significant differences. Thies LPM recorded a larger number of particles than Parsivel2 and a higher proportion of small particles, resulting in higher rain rates and amounts and differences in radar reflectivity and kinetic energy. Possible causes for these differences, and their practical consequences, are discussed.
Kay Helfricht, Lea Hartl, Roland Koch, Christoph Marty, and Marc Olefs
Hydrol. Earth Syst. Sci., 22, 2655–2668, https://doi.org/10.5194/hess-22-2655-2018, https://doi.org/10.5194/hess-22-2655-2018, 2018
Short summary
Short summary
We calculated hourly new snow densities from automated measurements. This time interval reduces the influence of settling of the freshly deposited snow. We found an average new snow density of 68 kg m−3. The observed variability could not be described using different parameterizations, but a relationship to temperature is partly visible at hourly intervals. Wind speed is a crucial parameter for the inter-station variability. Our findings are relevant for snow models working on hourly timescales.
Sibo Zhang, Jean-Christophe Calvet, José Darrozes, Nicolas Roussel, Frédéric Frappart, and Gilles Bouhours
Hydrol. Earth Syst. Sci., 22, 1931–1946, https://doi.org/10.5194/hess-22-1931-2018, https://doi.org/10.5194/hess-22-1931-2018, 2018
Short summary
Short summary
Surface soil moisture was retrieved from a grassland site in southwestern France using the GNSS-IR technique. In order to efficiently limit the impact of perturbing vegetation effects, the grass growth period and the senescence period are treated separately. While the vegetation biomass effect can be corrected for, the litter water interception influences the observations and cannot be easily accounted for.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018, https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Short summary
Due to the effects of wind, precipitation gauges typically underestimate the amount of precipitation that occurs as snow. Measurements recorded during a World Meteorological Organization intercomparison of precipitation gauges were used to evaluate and improve the adjustments that are available to address this issue. Adjustments for specific types of precipitation gauges and wind shields were tested and recommended.
Bart Schilperoort, Miriam Coenders-Gerrits, Willem Luxemburg, César Jiménez Rodríguez, César Cisneros Vaca, and Hubert Savenije
Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, https://doi.org/10.5194/hess-22-819-2018, 2018
Short summary
Short summary
Using the
DTStechnology, we measured the evaporation of a forest using fibre optic cables. The cables work like long thermometers, with a measurement every 12.5 cm. We placed the cables vertically along the tower, one cable being dry, the other kept wet. By looking at the dry and wet cable temperatures over the height we are able to study heat storage and the amount of water the forest is evaporating. These results can be used to better understand the storage and heat exchange of forests.
Sungmin O, Ulrich Foelsche, Gottfried Kirchengast, Juergen Fuchsberger, Jackson Tan, and Walter A. Petersen
Hydrol. Earth Syst. Sci., 21, 6559–6572, https://doi.org/10.5194/hess-21-6559-2017, https://doi.org/10.5194/hess-21-6559-2017, 2017
Short summary
Short summary
We evaluate gridded satellite rainfall estimates, from GPM IMERG, through a direct grid-to-grid comparison with gauge data from the WegenerNet Feldbach (WEGN) network in southeastern Austria. As the WEGN data are independent of the IMERG gauge adjustment process, we could analyze the IMERG estimates across its three different runs. Our results show the effects of additional retrieval processes on the final rainfall estimates, and consequently provide IMERG accuracy information for data users.
René D. Garreaud, Camila Alvarez-Garreton, Jonathan Barichivich, Juan Pablo Boisier, Duncan Christie, Mauricio Galleguillos, Carlos LeQuesne, James McPhee, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 21, 6307–6327, https://doi.org/10.5194/hess-21-6307-2017, https://doi.org/10.5194/hess-21-6307-2017, 2017
Short summary
Short summary
This work synthesizes an interdisciplinary research on the megadrought (MD) that has afflicted central Chile since 2010. Although 1- or 2-year droughts are not infrequent in this Mediterranean-like region, the ongoing dry period stands out because of its longevity and large extent, leading to unseen hydrological effects and vegetation impacts. Understanding the nature and biophysical impacts of the MD contributes to confronting a dry, warm future regional climate scenario in subtropical regions.
Craig D. Smith, Garth van der Kamp, Lauren Arnold, and Randy Schmidt
Hydrol. Earth Syst. Sci., 21, 5263–5272, https://doi.org/10.5194/hess-21-5263-2017, https://doi.org/10.5194/hess-21-5263-2017, 2017
Short summary
Short summary
This research provides an example of how groundwater pressures measured in deep observation wells can be used as a reliable estimate, and perhaps as a reference, for event-based precipitation. Changes in loading at the surface due to the weight of precipitation are transferred to the groundwater formation and can be measured in the observation well. Correlations in precipitation measurements made with the
geolysimeterand the co-located sheltered precipitation gauge are high.
Idit Belachsen, Francesco Marra, Nadav Peleg, and Efrat Morin
Hydrol. Earth Syst. Sci., 21, 5165–5180, https://doi.org/10.5194/hess-21-5165-2017, https://doi.org/10.5194/hess-21-5165-2017, 2017
Short summary
Short summary
Spatiotemporal rainfall patterns in arid environments are not well-known. We derived properties of convective rain cells over the arid Dead Sea region from a long-term radar archive. We found differences in cell properties between synoptic systems and between flash-flood and non-flash-flood events. Large flash floods are associated with slow rain cells, directed downstream with the main catchment axis. Results from this work can be used for hydrological models and stochastic storm simulations.
Sibo Zhang, Nicolas Roussel, Karen Boniface, Minh Cuong Ha, Frédéric Frappart, José Darrozes, Frédéric Baup, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4767–4784, https://doi.org/10.5194/hess-21-4767-2017, https://doi.org/10.5194/hess-21-4767-2017, 2017
Short summary
Short summary
GNSS SNR data were obtained from an intensively cultivated wheat field in southwestern France. The data were used to retrieve soil moisture and vegetation characteristics during the growing period of wheat. Vegetation growth broke up the constant height assumption used in soil moisture retrieval algorithms. Soil moisture could not be retrieved after wheat tillering. A new algorithm based on a wavelet analysis was implemented and used to retrieve vegetation height.
Bruce C. Scott-Shaw, Colin S. Everson, and Alistair D. Clulow
Hydrol. Earth Syst. Sci., 21, 4551–4562, https://doi.org/10.5194/hess-21-4551-2017, https://doi.org/10.5194/hess-21-4551-2017, 2017
Short summary
Short summary
In South Africa, the invasion of riparian forests by alien trees has the potential to affect the limited water resources. To justify alien clearing programs, hydrological benefits are required. Spatial upscaling of measured sapflows showed that an alien stand used 6 times more water per unit area than the indigenous stand. A gain in groundwater recharge and/or streamflow would be achieved if the alien species were removed from riparian forests and rehabilitated back to their natural state.
Francesco Marra, Elisa Destro, Efthymios I. Nikolopoulos, Davide Zoccatelli, Jean Dominique Creutin, Fausto Guzzetti, and Marco Borga
Hydrol. Earth Syst. Sci., 21, 4525–4532, https://doi.org/10.5194/hess-21-4525-2017, https://doi.org/10.5194/hess-21-4525-2017, 2017
Short summary
Short summary
Previous studies have reported a systematic underestimation of debris flow occurrence thresholds, due to the use of sparse networks in non-stationary rain fields. We analysed high-resolution radar data to show that spatially aggregated estimates (e.g. satellite data) largely reduce this issue, in light of a reduced estimation variance. Our findings are transferable to other situations in which lower envelope curves are used to predict point-like events in the presence of non-stationary fields.
Feinan Xu, Weizhen Wang, Jiemin Wang, Ziwei Xu, Yuan Qi, and Yueru Wu
Hydrol. Earth Syst. Sci., 21, 4037–4051, https://doi.org/10.5194/hess-21-4037-2017, https://doi.org/10.5194/hess-21-4037-2017, 2017
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Samuel Buisan, Timo Laine, Gyuwon Lee, Jose Luis C. Aceituno, Javier Alastrué, Ketil Isaksen, Tilden Meyers, Ragnar Brækkan, Scott Landolt, Al Jachcik, and Antti Poikonen
Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, https://doi.org/10.5194/hess-21-3525-2017, 2017
Short summary
Short summary
Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.
Nobuhle P. Majozi, Chris M. Mannaerts, Abel Ramoelo, Renaud Mathieu, Alecia Nickless, and Wouter Verhoef
Hydrol. Earth Syst. Sci., 21, 3401–3415, https://doi.org/10.5194/hess-21-3401-2017, https://doi.org/10.5194/hess-21-3401-2017, 2017
Short summary
Short summary
The study analysed the quality and partitioning of a 15-year surface energy dataset from Skukuza flux tower. The yearly mean energy balance ratio (EBR) was 0.93, with the dry season having the lowest ratio. Night ratio was lower than daytime, with analysis showing an increase in EBR with increase in friction velocity, which is also linked to time of day. The energy partitioning showed that sensible heat flux is the dominant portion in the dry season, and latent heat flux during the wet season.
Juan C. Chacon-Hurtado, Leonardo Alfonso, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 21, 3071–3091, https://doi.org/10.5194/hess-21-3071-2017, https://doi.org/10.5194/hess-21-3071-2017, 2017
Short summary
Short summary
This paper compiles most of the studies (as far as the authors are aware) on the design of sensor networks for measurement of precipitation and streamflow. The literature shows that there is no overall consensus on the methods for the evaluation of sensor networks, as different design criteria often lead to different solutions. This paper proposes a methodology for the classification of methods, and a general framework for the design of sensor networks.
John Kochendorfer, Roy Rasmussen, Mareile Wolff, Bruce Baker, Mark E. Hall, Tilden Meyers, Scott Landolt, Al Jachcik, Ketil Isaksen, Ragnar Brækkan, and Ronald Leeper
Hydrol. Earth Syst. Sci., 21, 1973–1989, https://doi.org/10.5194/hess-21-1973-2017, https://doi.org/10.5194/hess-21-1973-2017, 2017
Short summary
Short summary
Snowfall measurements recorded using precipitation gauges are subject to significant underestimation due to the effects of wind. Using measurements recorded at two different precipitation test beds, corrections for unshielded gauges and gauges within different types of windshields were developed and tested. Using the new corrections, uncorrectable errors were quantified, and measurement biases were successfully eliminated.
Stephen D. Parkes, Matthew F. McCabe, Alan D. Griffiths, Lixin Wang, Scott Chambers, Ali Ershadi, Alastair G. Williams, Josiah Strauss, and Adrian Element
Hydrol. Earth Syst. Sci., 21, 533–548, https://doi.org/10.5194/hess-21-533-2017, https://doi.org/10.5194/hess-21-533-2017, 2017
Short summary
Short summary
Determining atmospheric moisture sources is required for understanding the water cycle. The role of land surface fluxes is a particular source of uncertainty for moisture budgets. Water vapour isotopes have the potential to improve constraints on moisture sources. In this work relationships between water vapour isotopes and land–atmosphere exchange are studied. Results show that land surface evaporative fluxes play a minor role in the daytime water and isotope budgets in semi-arid environments.
Ehsan Rabiei, Uwe Haberlandt, Monika Sester, Daniel Fitzner, and Markus Wallner
Hydrol. Earth Syst. Sci., 20, 3907–3922, https://doi.org/10.5194/hess-20-3907-2016, https://doi.org/10.5194/hess-20-3907-2016, 2016
Short summary
Short summary
The value of using moving cars for rainfall measurement purposes (RCs) was investigated with laboratory experiments by Rabiei et al. (2013). They analyzed the Hydreon and Xanonex optical sensors against different rainfall intensities. A continuous investigation of using RCs with the derived uncertainties from laboratory experiments for areal rainfall estimation as well as implementing the data in a hydrological model are addressed in this study.
Sergio M. Vicente-Serrano, Cesar Azorin-Molina, Arturo Sanchez-Lorenzo, Ahmed El Kenawy, Natalia Martín-Hernández, Marina Peña-Gallardo, Santiago Beguería, and Miquel Tomas-Burguera
Hydrol. Earth Syst. Sci., 20, 3393–3410, https://doi.org/10.5194/hess-20-3393-2016, https://doi.org/10.5194/hess-20-3393-2016, 2016
Short summary
Short summary
In this work we analyse the recent evolution and meteorological drivers of the atmospheric evaporative demand in the Canary Islands. We found that the reference evapotranspiration increased by 18.2 mm decade−1 – on average – between 1961 and 2013, with the highest increase recorded during summer. This increase was mainly driven by changes in the aerodynamic component, caused by a statistically significant reduction of the relative humidity.
Luca Panziera, Marco Gabella, Stefano Zanini, Alessandro Hering, Urs Germann, and Alexis Berne
Hydrol. Earth Syst. Sci., 20, 2317–2332, https://doi.org/10.5194/hess-20-2317-2016, https://doi.org/10.5194/hess-20-2317-2016, 2016
Short summary
Short summary
This paper presents a novel system to issue heavy rainfall alerts for predefined geographical regions by evaluating the sum of precipitation fallen in the immediate past and expected in the near future. In order to objectively define the thresholds for the alerts, an extreme rainfall analysis for the 159 regions used for official warnings in Switzerland was developed. It is shown that the system has additional lead time with respect to thunderstorm tracking tools targeted for convective storms.
Auguste Gires, Catherine L. Muller, Marie-Agathe le Gueut, and Daniel Schertzer
Hydrol. Earth Syst. Sci., 20, 1751–1763, https://doi.org/10.5194/hess-20-1751-2016, https://doi.org/10.5194/hess-20-1751-2016, 2016
Short summary
Short summary
Educational activities are now a common channel to increase impact of research projects. Here, we present innovative activities for young children that aim to help them (and their teachers) grasp some of the complex underlying scientific issues in environmental fields. The activities developed are focused on rainfall: observation and modeling of rain drop size and the succession of dry and rainy days, and writing of a scientific book. All activities were implemented in classrooms.
Cited articles
Amponsah, W., Ayral, P.-A., Boudevillain, B., Bouvier, C., Braud, I., Brunet,
P., Delrieu, G., Didon-Lescot, J.-F., Gaume, E., Lebouc, L., Marchi, L.,
Marra, F., Morin, E., Nord, G., Payrastre, O., Zoccatelli, D., and Borga, M.:
Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods, Earth Syst. Sci. Data, 10, 1783–1794,
https://doi.org/10.5194/essd-10-1783-2018, 2018. a, b
Assuralia: Actualisation relative aux inondations de juillet 2021,
https://press.assuralia.be/actualisation-relative-aux-inondations-de-juillet-2021
(last access: 3 February 2023), 2022. a
Brauer, C. C., Teuling, A. J., Overeem, A., van der Velde, Y., Hazenberg, P.,
Warmerdam, P. M. M., and Uijlenhoet, R.: Anatomy of extraordinary rainfall
and flash flood in a Dutch lowland catchment, Hydrol. Earth Syst. Sci., 15, 1991–2005, https://doi.org/10.5194/hess-15-1991-2011, 2011. a, b
Carreira-Perpiñán, M.: A Review of Dimension Reduction Techniques, Technical Report CS-96-09, Department of Computer Science, University of Sheffield, Sheffield, UK, https://www.cse-lab.ethz.ch/wp-content/uploads/2018/03/DimensionReductionBrifReview.pdf, (last access: 24 August 2023), 1997. a
Cunningham, P.: Dimension Reduction, Springer, 91–112,
https://doi.org/10.1007/978-3-540-75171-7_4, 2008. a
Delrieu, G., Nicol, J., Yates, E., Kirstetter, P.-E., Creutin, J.-D., Anquetin, S., Obled, C., Saulnier, G.-M., Ducrocq, V., Gaume, E., Payrastre, O., Andrieu, H., Ayral, P.-A., Bouvier, C., Neppel, L., Livet, M., Lang, M.,
du Châtelet, J. P., Walpersdorf, A., and Wobrock, W.: The Catastrophic
Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First
Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological
Observatory, J. Hydrometeorol., 6, 34–52, https://doi.org/10.1175/JHM-400.1, 2005. a
Fodor, I.: A survey of dimension reduction techniques, Tech. Rep. UCRL-ID-148494, US Department of Energy Office of Scientific and Technical Information, https://doi.org/10.2172/15002155, 2003. a
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A.,
Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos,
I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L.,
Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G.,
Szolgay, J., Tsanis, I., Velasco, D., and Viglione, A.: A compilation of data
on European flash floods, J. Hydrol., 367, 70–78, https://doi.org/10.1016/j.jhydrol.2008.12.028, 2009. a
Gillis, N.: Nonnegative Matrix Factorization, Society for Industrial and
Applied Mathematics, Philadelphia, PA, https://doi.org/10.1137/1.9781611976410, 2020. a
Gonzalez Sotelino, L., De Coster, N., Beirinckx, P., and Peeters, P.:
Environmental Classification of RMI Automatic Weather Station Network, in: WMO TECO 2016 Conference, WMO TECO Conference, Madrid, Spain, 27–30 September 2006,
https://www.wmocimo.net/eventpapers/session1/posters1/P1(14)_sotelino.pdf
(last access: 24 August 2023), 2016. a
Goudenhoofdt, E. and Delobbe, L.: Generation and Verification of Rainfall
Estimates from 10-Yr Volumetric Weather Radar Measurements, J. Hydrometeorol., 17, 1223–1242, https://doi.org/10.1175/jhm-d-15-0166.1, 2016. a, b
Gouvernement Wallon: Inondations de juillet 2021: bilan et perspectives,
https://www.wallonie.be/fr/actualites/inondations-de-juillet-2021-bilan-et-perspectives
(last access: 1 February 2023), 2022. a
Hudson, G. and Wackernagel, H.: Mapping temperature using kriging with external drift: Theory and an example from scotland, Int. J. Climatol., 14, 77–91, https://doi.org/10.1002/joc.3370140107, 1994. a
IPCC: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press, https://doi.org/10.1017/9781009157896, 2023. a
Jolliffe, I. and Cadima, J.: Principal component analysis: A review and recent developments, Philos. T. Roy. Soc. A, 374, 20150202,
https://doi.org/10.1098/rsta.2015.0202, 2016. a
Journée, M., Goudenhoofdt, E., and Delobbe, L.: Observational rainfall data
of the 2021 mid-July flood event in Belgium – Part 1. Rain gauges
observations, Zenodo [data set], https://doi.org/10.5281/zenodo.7739983, 2023. a, b, c, d
Kreienkamp, F., Philip, S. Y., Tradowsky, J. S., Kew, S. F., Lorenz, P.,
Arrighi, J., Belleflamme, A., Bettmann, T., Caluwaerts, S., Chan, S. C.,
Ciavarella, A., De Cruz, L., de Vries, H., Demuth, N., Ferrone, A., Fischer,
R. M., Fowler, H. J., Goergen, K., Heinrich, D., Henrichs, Y., Lenderink, G.,
Kaspar, F., Nilson, E., Otto, F. E. L., Ragone, F., Seneviratne, S. I.,
Singh, R. K., Skålevåg, A., Termonia, P., Thalheimer, L., van Aalst, M.,
Van den Bergh, J., Van de Vyver, H., Vannitsem, S., van Oldenborgh, G. J.,
Van Schaeybroeck, B., Vautard, R., Vonk, D., and Wanders, N.: Rapid
attribution of heavy rainfall events leading to the severe flooding in
Western Europe during July 2021, https://www.worldweatherattribution.org/wp-content/uploads/Scientific-report-Western-Europe-floods-2021-attribution.pdf (last access: 24 August 2023), 2021. a, b
Ludwig, P., Ehmele, F., Franca, M. J., Mohr, S., Caldas-Alvarez, A., Daniell, J. E., Ehret, U., Feldmann, H., Hundhausen, M., Knippertz, P., Küpfer, K., Kunz, M., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Seidel, F., and Wisotzky, C.: A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 2: Historical context and relation to climate change, Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, 2023. a
Marchi, L., Borga, M., Preciso, E., and Gaume, E.: Characterisation of Selected Extreme Flash Floods in Europe and Implications for Flood Risk Management, J. Hydrol., 394, 118–133, https://doi.org/10.1016/j.jhydrol.2010.07.017,
2010. a, b
Meyer, J., Neuper, M., Mathias, L., Zehe, E., and Pfister, L.: Atmospheric
conditions favouring extreme precipitation and flash floods in temperate
regions of Europe, Hydrol. Earth Syst. Sci., 26, 6163–6183,
https://doi.org/10.5194/hess-26-6163-2022, 2022. a
Mohr, S., Ehret, U., Kunz, M., Ludwig, P., Caldas-Alvarez, A., Daniell, J. E., Ehmele, F., Feldmann, H., Franca, M. J., Gattke, C., Hundhausen, M., Knippertz, P., Küpfer, K., Mühr, B., Pinto, J. G., Quinting, J., Schäfer, A. M., Scheibel, M., Seidel, F., and Wisotzky, C.: A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis, Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, 2023. a, b, c
MunichRe: Hurricanes, cold waves, tornadoes: Weather disasters in USA dominate natural disaster losses in 2021, Europe: Extreme flash floods with record losses,
https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2022/natural-disaster-losses-2021.html
(last access: 20 December 2022), 2022. a
Ruiz-Villanueva, V., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., and
Ehret, U.: Extreme flood response to short-duration convective rainfall in
South-West Germany, Hydrol. Earth Syst. Sci., 16, 1543–1559,
https://doi.org/10.5194/hess-16-1543-2012, 2012. a
Sun, J., Xu, Y., Lopiano, K., and Young, S.: Robust Non-Negative Matrix
Factorization Procedures for Analyzing Tumor and Face Image Data, in: Proceedings of the Joint Statistical Meetings, Joint Statistical Meetings, Boston, Massachusetts, 2–7 August 2014, https://www.researchgate.net/publication/263039018_Robust_Non-Negative_Matrix_Factorization_Procedures_for_Analyzing_Tumor_and_Face_Image_Data (last access: 24 August 2023), 2013. a
Van Camp, M., de Viron, O., Dassargues, A., Delobbe, L., Chanard, K., and
Gobron, K.: Extreme Hydrometeorological Events, a Challenge for Gravimetric
and Seismology Networks, Earth's Future, 10, e2022EF002737, https://doi.org/10.1029/2022EF002737, 2022. a, b
van Montfort, M.: Sliding maxima, J. Hydrol., 118, 77–85,
https://doi.org/10.1016/0022-1694(90)90251-r, 1990. a
Vergara-Temprado, J., Ban, N., Ban, N., and Schär, C.: Extreme Sub‐Hourly
Precipitation Intensities Scale Close to the Clausius‐Clapeyron Rate Over
Europe, Geophys. Res. Lett., 48, e2020GL08950, https://doi.org/10.1029/2020gl089506, 2021. a
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, in: vol. 100,
Elsevier Academic Press, Amsterdam, Boston, ISBN 9780123850225, 2011. a
WMO: Operational Measurement Uncertainty Requirements and Instrument Performance Requirements, Annex 1.A. of the guide to meteorological instruments and methods of observation (CIMO guide), WMO No. 8, Vol. 1, Secretariat of the World Meteorological Organization, Geneva, Switzerland, https://library.wmo.int/index.php?id=12407&lvl=notice_display (last accessed: 24 August 2023), 2021a. a
WMO: Siting Classifications for Surface Observing Stations on Land, Annex 1.D. of the guide to meteorological instruments and methods of observation (CIMO guide), WMO No. 8, Vol. 1, Secretariat of the World Meteorological Organization, Geneva, Switzerland,
https://library.wmo.int/index.php?id=12407&lvl=notice_display (last access: 24 August 2023), 2021b. a
Short summary
The exceptional flood of July 2021 in central Europe impacted Belgium severely. This study aims to characterize rainfall amounts in Belgium from 13 to 16 July 2021 based on observational data (i.e., rain gauge data and a radar-based rainfall product). The spatial and temporal distributions of rainfall during the event aredescribed. In order to document such a record-breaking event as much as possible, the rainfall data are shared with the scientific community on Zenodo for further studies.
The exceptional flood of July 2021 in central Europe impacted Belgium severely. This study aims...