Articles | Volume 27, issue 13
https://doi.org/10.5194/hess-27-2499-2023
https://doi.org/10.5194/hess-27-2499-2023
Technical note
 | 
10 Jul 2023
Technical note |  | 10 Jul 2023

Technical note: Statistical generation of climate-perturbed flow duration curves

Veysel Yildiz, Robert Milton, Solomon Brown, and Charles Rougé

Related authors

Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling
Charles Rougé, Patrick M. Reed, Danielle S. Grogan, Shan Zuidema, Alexander Prusevich, Stanley Glidden, Jonathan R. Lamontagne, and Richard B. Lammers
Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021,https://doi.org/10.5194/hess-25-1365-2021, 2021
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Modelling approaches
Floods and droughts: a multivariate perspective
Manuela Irene Brunner
Hydrol. Earth Syst. Sci., 27, 2479–2497, https://doi.org/10.5194/hess-27-2479-2023,https://doi.org/10.5194/hess-27-2479-2023, 2023
Short summary
Deep learning methods for flood mapping: a review of existing applications and future research directions
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022,https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Extreme floods in Europe: going beyond observations using reforecast ensemble pooling
Manuela I. Brunner and Louise J. Slater
Hydrol. Earth Syst. Sci., 26, 469–482, https://doi.org/10.5194/hess-26-469-2022,https://doi.org/10.5194/hess-26-469-2022, 2022
Short summary
Hydroinformatics education – the Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training
Thorsten Wagener, Dragan Savic, David Butler, Reza Ahmadian, Tom Arnot, Jonathan Dawes, Slobodan Djordjevic, Roger Falconer, Raziyeh Farmani, Debbie Ford, Jan Hofman, Zoran Kapelan, Shunqi Pan, and Ross Woods
Hydrol. Earth Syst. Sci., 25, 2721–2738, https://doi.org/10.5194/hess-25-2721-2021,https://doi.org/10.5194/hess-25-2721-2021, 2021
Short summary
Wetropolis extreme rainfall and flood demonstrator: from mathematical design to outreach
Onno Bokhove, Tiffany Hicks, Wout Zweers, and Thomas Kent
Hydrol. Earth Syst. Sci., 24, 2483–2503, https://doi.org/10.5194/hess-24-2483-2020,https://doi.org/10.5194/hess-24-2483-2020, 2020
Short summary

Cited articles

Blöschl, G., Sivapalan, M., Wagener, T., Savenije, H., and Viglione, A.: Runoff prediction in ungauged basins: synthesis across processes, places and scales, Cambridge University Press, https://doi.org/10.1017/CBO9781139235761, 2013. a
Boscarello, L., Ravazzani, G., Cislaghi, A., and Mancini, M.: Regionalization of flow-duration curves through catchment classification with streamflow signatures and physiographic–climate indices, J. Hydrol. Eng., 21, 05015027, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001307, 2016. a
Brown, A. E., Western, A. W., McMahon, T. A., and Zhang, L.: Impact of forest cover changes on annual streamflow and flow duration curves, J. Hydrol., 483, 39–50, 2013. a
Brown, C., Ghile, Y., Laverty, M., and Li, K.: Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector, Water Resour. Res., 48, W09537, https://doi.org/10.1029/2011WR011212, 2012. a, b
Bryant, B. P. and Lempert, R. J.: Thinking inside the box: A participatory, computer-assisted approach to scenario discovery, Technol. Forecast. Soc., 77, 34–49, 2010. a
Download
Short summary
The proposed approach is based on the parameterisation of flow duration curves (FDCs) to generate hypothetical streamflow futures. (1) We sample a broad range of future climates with modified values of three key streamflow statistics. (2) We generate an FDC for each hydro-climate future. (3) The resulting ensemble is ready to support robustness assessments in a changing climate. Our approach seamlessly represents a large range of futures with increased frequencies of both high and low flows.