Articles | Volume 27, issue 1
https://doi.org/10.5194/hess-27-21-2023
https://doi.org/10.5194/hess-27-21-2023
Research article
 | 
02 Jan 2023
Research article |  | 02 Jan 2023

Estimating spatiotemporally continuous snow water equivalent from intermittent satellite observations: an evaluation using synthetic data

Xiaoyu Ma, Dongyue Li, Yiwen Fang, Steven A. Margulis, and Dennis P. Lettenmaier

Related authors

Improved modelling of mountain snowpacks with spatially distributed precipitation bias correction derived from historical reanalysis
Manon von Kaenel and Steven A. Margulis
The Cryosphere, 19, 3309–3327, https://doi.org/10.5194/tc-19-3309-2025,https://doi.org/10.5194/tc-19-3309-2025, 2025
Short summary
Evaluation of the Snow Climate Change Initiative (Snow CCI) snow-covered area product within a mountain snow water equivalent reanalysis
Haorui Sun, Yiwen Fang, Steven A. Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
The Cryosphere, 19, 2017–2036, https://doi.org/10.5194/tc-19-2017-2025,https://doi.org/10.5194/tc-19-2017-2025, 2025
Short summary
Improving runoff simulation in the Western United States with Noah-MP and VIC models
Lu Su, Dennis P. Lettenmaier, Ming Pan, and Benjamin Bass
Hydrol. Earth Syst. Sci., 28, 3079–3097, https://doi.org/10.5194/hess-28-3079-2024,https://doi.org/10.5194/hess-28-3079-2024, 2024
Short summary
Spatiotemporal snow water storage uncertainty in the midlatitude American Cordillera
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023,https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Interactions between thresholds and spatial discretizations of snow: insights from estimates of wolverine denning habitat in the Colorado Rocky Mountains
Justin M. Pflug, Yiwen Fang, Steven A. Margulis, and Ben Livneh
Hydrol. Earth Syst. Sci., 27, 2747–2762, https://doi.org/10.5194/hess-27-2747-2023,https://doi.org/10.5194/hess-27-2747-2023, 2023
Short summary

Cited articles

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., and Arshad, H.: State-of-the-art in artificial neural network applications, A survey, Heliyon, 4, 3–6, https://doi.org/10.1016/j.heliyon.2018.e00938, 2018. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Chakraborty, D., Başağaoğlu, H., Gutierrez, L., and Mirchi, A.: Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management, Environ. Res. Lett., 16, 114024, https://doi.org/10.1088/1748-9326/ac2fde, 2021. 
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B., Cullen, N. J., Kerr, T., Örn Hreinsson, E., and Woods, R. A.: Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review, Water Resour. Res., 47, 17–18, https://doi.org/10.1029/2011WR010745, 2011. 
Download
Short summary
We explore satellite retrievals of snow water equivalent (SWE) along hypothetical ground tracks that would allow estimation of SWE over an entire watershed. The retrieval of SWE from satellites has proved elusive, but there are now technological options that do so along essentially one-dimensional tracks. We use machine learning (ML) algorithms as the basis for a track-to-area (TTA) transformation and show that at least one is robust enough to estimate domain-wide SWE with high accuracy.
Share