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Introduction  

This supporting information contains: 

• Ancillary information on the study domain including physiographic 

characteristics across the watershed (Figure S1). 

• The description of mathematical structure and working principles of statistical and 

machine learning methods used in this track-to-area (TTA) transformation. (Text 

S1, Figure S2, Figure S3). 

 

• Results of feature sensitivity test based on statistical and ML methods in the 

extremely dry year (WY2015; Figure S4), the normal year (WY2008; Figure S5) 

and the extremely wet year (WY2017; Figure S6).  

 

• Histogram of elevations of the pixels on the hypothetical ground tracks (Figure 

S7). Observation coverages (%) with the number of hypothetical ground tracks in 

the Tuolumne Watershed (Table S1).  

 

• Changes in MAE (mm) of the MVLR-, RF-, SVM-, and DNN-based inferred 

April 1st SWE in dry, normal, and wet years with the number of ground tracks 

(Figure S8). 

 

 



 

Figure S1. Elevation (a; in m), slope (b; in °), aspect (c), and fractional vegetation cover (d; 

in %) in the Upper Tuolumne River Basin. Elevations in the watershed range from around 

700 m to approximately 3900 m. Slopes are distributed between 0° and larger than 50°. The 

terrain surface mostly has NW and SE facing aspects.  Fractional vegetation cover ranges 

from 0% (in high-elevation areas) to up to 60% (in low-elevation areas). 

 

 

 

 

 

 

 

 



Text S1. 

Mathematical structure of multivariate linear regression 

Multivariate linear regression (MVLR) is a statistical method based on assumed linear 

relationships between multiple independent variables (input variables) and one dependent 

variable (also termed here the target variable). In this project, the input variables are the 

meteorological forcings and static land cover features; the target variable is SWE. 

 

It assigns a regression coefficient for each input variable and all coefficients are optimized 

together based on an algorithm that minimizes the sum of squares of the differences 

between observations and model predictions (least squares). 

 

The MVLR structure takes the following form: 

𝑦 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 +⋯+ 𝑏𝑛𝑥𝑛   (1) 

 

where y is the target (dependent) variable, a is a constant coefficient or intercept of the 

regression, bi (i = 1, 2, 3, …, n) are regression coefficients, x is a vector of input 

(independent) variables, and ε is the model error.  

 

 

 

 



Machine Learning Algorithms 

1. Random Forest algorithms 

 In the random forest model, each tree is built using a deterministic algorithm by selecting 

a random set of variables and training samples. The basic building units of random forest 

are an ensemble of decision trees that split  a subset of features on each split (Kuter, 2021). 

RF employs a series of decision trees to achieve sufficient accuracy for final prediction 

(Liu et al., 2020). The final prediction results are the weighted average of multiple selected 

decision trees. The selection of decision trees is carried out by voting. The higher the degree 

of repetition, the higher the contribution to the RF model.  

 

The RF regression algorithm works as follows: (1) Extract Ntree bootstrap samples from the 

original training data set. (2). Grow a regression tree for each bootstrap sample.  One-third 

(the default fraction for the number of different predictors tested at each node was 1/3) of 

the predictors are randomly sampled and the best split was selected from among those 

variables. (3). Predict new data by averaging the predictions from the Ntree regression 

trees. RF regression is appealing in scientific and engineering applications mainly because 

(1) RF is relatively robust to outliers (outliers in predictors are handled by binning them); 

(2) RF models can be trained efficiently since the algorithm works on only a subset of 

features in training inputs; (3) RF models are self-explainable because we can measure the 

relative importance of each predictor using the “out-of-bag” data (Cutler et al., 2012). 

 

In this project, the “out-of-bag” prediction (“OOBPrediction” and 

“OOBPredictorImportance” in the “TreeBagger” function in MATLAB) was on during the 



modeling tuning process and was off after we finished the construction of the RF model. 

 

Figure S2.  The change of “out-of-bagger” mean squared errors with the number of 

growing trees as the minimum number of observations per tree leaf is 5, 10, 20, 50, 100, 

respetively.  



 

Figure S3.  The change of “out-of-bag” mean squared errors with the number of growing 

trees as the minimum number of observations per tree leaf is 5. 

 

2. Support Vector Machine  

Originally, support vector machines (SVM) was designed as a linear binary classifier that 

aims to find the optimal decision boundary that (1) maximizes the margins between classes 

and (2) minimizes the misclassification errors (Vapnik, 2000). For regression-based SVM, 

the basic logic behind the learning task is to find a function f(x) that has the universal 

minimum deviation from the measured response values for the full range of observations 

(Vapnic, 1998). Using MATLAB “fitrsvm” function, we carried out 10-fold cross 

validation to optimize two hyperparameters: (1) the kernel function, which specifies the 

method used to transform inputs to the required target, and (2) the kernel scale: the software 



divides all elements of the predictor matrix X by the value of kernel scale. Then, the 

software applies the appropriate kernel norm to compute the Gram matrix. For (1), we 

chose “Gaussian” from the linear, polynomial, and Gaussian function. For (2), we selected 

“auto” from 1 and “auto”.  

 

SVM regression is attractive because: (1) it does not require assumptions about the 

underlying probability distribution of the data; and (2) it can handle large and complex 

training data since the position of the decision surface is determined by only a portion of 

the training dataset and has no relation with the training data set’s dimension (Mathur and 

Foody, 2008; Mountrakis et al., 2011). 

 

3. Deep neural network 

Here we constructed a seven-layer neural network with 10, 9, 8, 7, 6, 5, and 4 neurons in 

each hidden layer, respectively based on the MATLAB deep learning toolbox. Here, we 

chose Rectified Linear Units (ReLu) as the activation function in each hidden layer. In the 

process of model training, the training data are given to each layer, and the neuron weights 

are adjusted to achieve the minimum error between the model output and the observations 

used for training. A portion of training data (not present in the training process) remain for 

model validation. Also, different inputs (not present in the training and validation phases) 

are used for model testing by tuning model parameters (primarily weights). Here, the 

percentage of the training, validation, and test data set is 75%, 15%, and 15%, respectively. 

 



The output of a neuron can be expressed as follows: 

𝑦𝑖 = 𝜑(∑𝑊𝑗𝑖 𝑥𝑖 + 𝑏𝑖)     (2) 

 

Where φ is the activation function (herein, ReLU function) for the jth neuron in the hidden 

layer, yi is the output, Wji is the weight of the jth neuron, xi is the input, and bi represents 

the bias vector.  

 

The cost function used in this network is the mean squared error (MSE) and the Levenberg-

Marquardt algorithm is adopted to solve the problem of overfitting. 

 

 

 

 

 

 



 

Figure S4. Changes of MAE (mm; relative to no-bias situation) of the inferred April 1st 

SWE in WY2015 (extremely dry year) with biases in the forcings of the training data set. 

The modeled SWE results are from MVLR (first row), RF (second row), SVM (third row), 

and DNN (fourth row). 



 

Figure S5. Changes of MAE (mm; relative to no-bias situation) of the inferred April 1st 

SWE in WY2008 (typical normal year) with biases in the forcings of the training data set. 

The modeled SWE results are from MVLR (first row), RF (second row), SVM (third row), 

and DNN (fourth row). 



 

Figure S6. Changes of MAE (mm; relative to no-bias situation) of the inferred April 1st SWE 

in WY2017 (extremely wet year) with biases in the forcings of the training data set. The 

modeled SWE results are from MVLR (first row), RF (second row), SVM (third row), and 

DNN (fourth row). 

 

 

MVLR has a relatively flat trend in MAE as the absolute biases become larger. As the 

biases of each meteorological field increase from 0 to +/-50%, MAE from all sensitivity 

tests increase except for Ta and wind, which has a much smaller influence on the results of 

SWE estimates based on MVLR. PPT and NetLong are the two variables that have the 



largest impacts on SWE estimation results. Positive biases of PPT and negative biases of 

NetLong and PPT can lead to larger errors than any positive/negative biases in other 

forcing fields. Generally, the values of MAE are less than 5 mm in the dry year and less 

than 100 mm in the normal and wet years if the biases in meteorological inputs are up to 

+/-50%.  

 

RF is the algorithm that is least sensitive to forcing errors in the training processes among 

the three ML methods. Basically, the MAE is less than 150 mm in WY2015 and WY2008 

and less than 250 mm in WY2017 even though larger biases (i.e., ±50%) are added. Errors 

in precipitation are the main source of SWE estimate errors. It is noticeable that positive 

biases in NetLong can lead to greater errors in the results. Thus, in the real application, 

quality control of NetLong is of key significance when employing RF for TTA SWE 

observation transformation. SVM is the ML algorithm that is most sensitive to the biases 

in the training data set. Except for wind speed, biases (negative or positive) in all the forcing 

fields cause relatively larger errors in SWE estimation. Especially, SVM-based TTA 

transformation is more sensitive to the biases in PPT and NetLong.  

 

 

 

 

 

 

 



 

Figure S7. Histogram of elevations of the pixels on the hypothetical ground tracks. The red 

lines show the fitted normal distribution of elevations on ground tracks with mean and 

standard deviation (std) listed on the figures.  

 

Table S1. Observation coverages (%) with the corresponding number of ground tracks. 

Number of ground tracks 1 2 3 4 5 6 

Observation coverage (%) 2.4% 4.6% 6.5% 8.8% 10.8% 12.1% 

 



 

Figure S8. Changes in MAE (mm) of the MVLR-, RF-, SVM-, and DNN-based inferred 

April 1st SWE in dry, normal, and wet years with the number of ground tracks. 
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