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Abstract. Accurate estimates of snow water equivalent
(SWE) based on remote sensing have been elusive, partic-
ularly in mountain areas. However, there now appears to be
some potential for direct satellite-based SWE observations
along ground tracks that only cover a portion of a spatial do-
main (e.g., watershed). Fortunately, spatiotemporally contin-
uous meteorological and surface variables could be leveraged
to infer SWE in the gaps between satellite ground tracks.
Here, we evaluate statistical and machine learning (ML) ap-
proaches to performing track-to-area (TTA) transformations
of SWE observations in California’s upper Tuolumne River
watershed using synthetic data. The synthetic SWE mea-
surements are designed to mimic a potential future P-band
Signals of Opportunity (P-SoOP) satellite mission with a
(along-track) spatial resolution of about 500 m. We construct
relationships between multiple meteorological and surface
variables and synthetic SWE observations along observation
tracks, and we then extend these relationships to unobserved
areas between ground tracks to estimate SWE over the en-
tire watershed. Domain-wide, SWE inferred on 1 April using
two synthetic satellite tracks (∼ 4.5 % basin coverage) led to
percent errors of basin-averaged SWE (PEBAS) of 24.5 %,
4.5 % and 6.3 % in an extremely dry water year (WY2015),
a normal water year (WY2008) and an extraordinarily wet
water year (WY2017), respectively. Assuming a 10 d over-
pass interval, percent errors of basin-averaged SWE during
both snow accumulation and snowmelt seasons were mostly
less than 10 %. We employ a feature sensitivity analysis to
overcome the black-box nature of ML methods and increase
the explainability of the ML results. Our feature sensitiv-

ity analysis shows that precipitation is the dominant variable
controlling the TTA SWE estimation, followed by net long-
wave radiation (NetLong). We find that a modest increase in
the accuracy of SWE estimation occurs when more than two
ground tracks are leveraged. The accuracy of 1 April SWE
estimation is only modestly improved for track repeats more
often than about 15 d.

1 Introduction

Snow is a key component of the water cycle and a critical wa-
ter resource for human and natural systems. Seasonal snow-
pack serves as a natural “water tower” that stores water in
winter and releases it during spring and early summer. It also
shifts the time of peak runoff to be more aligned with the
peak water demands from agricultural and municipal water
users. It therefore mitigates water shortages in summer and
fall (Li et al., 2017a). Snow-dominated watersheds account
for over half of the Northern Hemisphere’s land area, and
seasonal snowpacks (and glaciers to a much lesser extent)
provide water for over one-sixth of the world’s population
(Barnett et al., 2005). Also, snow plays a crucial role in mod-
ulating the ecological functioning of terrestrial and aquatic
ecosystems (Trujillo et al., 2012).

Snow water equivalent (SWE) is a measure of the amount
of water stored in a snowpack; it is the depth of water that
would result if the snowpack was melted. However, while
in situ measurements of SWE have long been made at snow
courses and more recently at automated snow pillows (which
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weigh snow accumulated on a measurement platform), these
point-scale SWE measurements poorly characterize the spa-
tial variability of SWE because of the relatively small num-
ber of observations and under-sampling in high-elevation
areas where large amounts of snow accumulate (Dozier,
2011). In situ observations are further complicated by the
complex snow accumulation and ablation processes (Dong,
2018). In mountainous areas, SWE has high spatial variabil-
ity caused by complex physiographic and atmospheric con-
ditions (Molotch and Bales, 2005, 2006), making SWE mea-
surements even more challenging. Lettenmaier et al. (2015)
state that spatial SWE data acquisition from satellite sensors
has been elusive, especially in mountainous areas, and “de-
serves new strategic thinking from the hydrologic commu-
nity”.

Remote sensing is attractive for snow measurements over
large areas because it avoids the need to access remote areas
and complex terrain (Nolin, 2010; Guan et al., 2013; Schnei-
der and Molotch, 2016). Remote sensing also has the poten-
tial to provide spatial rather than point observations of SWE.
Over the last 40 years, many studies have examined the ap-
plication of satellite-based passive microwave (PM) sensors
for SWE retrieval. The interest in PM-based retrievals has
been motivated by (1) the many PM sensors that have been
put into service for other purposes, such as the SSM/I (Spe-
cial Sensor Microwave/Imager) on the DMSP (Defense Me-
teorological Satellite Program) satellites, and (2) PM has the
capability to provide global SWE observations that are not
affected by cloud cover and darkness (except when precipi-
tating events are occurring; Foster et al., 2005). However, a
number of limitations of PM-based SWE observations such
as coarse spatial resolution (tens of kilometers), signal satu-
ration for deep snow, relatively large errors in forested and
topographically complex areas (Li et al., 2017b), and loss
of signal during snowmelt periods when the snowpack is wet
(Walker and Goodison, 1993) have severely restricted its use,
especially in mountainous areas.

For these reasons, over the last few years, there has been
a shift in interest within the mountain snow community to
new technologies that have the potential to obtain snow mea-
surements with higher accuracy and spatial resolution. For
instance, retrieval algorithms have been developed for ob-
taining regional- or global-scale snow depth maps with sub-
kilometer spatial resolutions (e.g., Sentinel-1 snow depth re-
trieval described in Lievens et al., 2022 and stereo satellite
imagery described in Deschamps-Berger et al., 2020). An-
other avenue that has been explored for estimating SWE
(rather than snow depth) directly is P-band Signals of Oppor-
tunity (P-SoOp) which has the potential to provide estimates
at sub-km spatial scales. This is an emerging technology that
has the capability of penetrating through dense vegetation
and into the root zone (because of the long wavelength of
P-band), with a reflection coefficient phase that is able to si-
multaneously measure SWE (of dry snow; depth of wet snow

is retrievable) and root zone soil moisture (see Garrison et al.,
2019 and Yueh et al., 2021 for details).

Although P-SoOP has potential advantages for SWE re-
trieval, due to orbital constraints, all methods noted above
provide track (or narrow swath) observations rather than
continuous SWE maps. However, snow distribution and
snowmelt runoff generation are spatiotemporally continuous
processes. Hence, developing “track-to-area” (TTA) transfor-
mation would be a key step in providing space–time contin-
uous SWE that would significantly increase the utility and
value of the track observations.

The TTA could be achieved by leveraging snow-
pattern repeatability and data-assimilation techniques. For
instance, based on snow-pattern repeatability, Pflug and
Lundquist (2020) inferred the spatial distribution of snow
depth on 7 April 2014, in California’s Tuolumne watershed
using snow depth observations subsampled across only a por-
tion of the study domain (<4 %) and observed snow patterns
from a different water year (WY). Their results for inferred
distributed snow depth had a mean absolute error of less
than about 10 %. Other studies have estimated SWE maps
from track information using data assimilation. For instance,
Magnusson et al. (2014) assimilated point SWE observations
into a SWE modeling framework, with results that suggested
an ability to transfer information from point snow observa-
tions to the distributed snow estimation. Also, Schneider and
Molotch (2016) performed a real-time estimation of the spa-
tial distribution of SWE using the regression of in situ point
SWE observations combined with topographic information
and historical SWE patterns.

The P-SoOP has the potential to be deployed in space and
to provide direct SWE and root zone soil moisture measure-
ments during snow accumulation periods, including near the
time of peak SWE that is the most significant time for wa-
ter management (Shah et al., 2018). For example, NASA’s
proposed SNoOPI satellite (SigNals of Opportunity: P-band
Investigation) is in the planning stage (https://esto.nasa.gov/
invest/snoopi/, last access: 23 December 2022) and Yueh et
al. (2021) describe a satellite synthetic aperture radar concept
based on P-SoOp. However, none of these P-SoOP projects
are yet operational, and the issue of TTA transition that we
address here will become critical as they are further de-
veloped. Furthermore, our investigation is not limited to P-
SoOP but is applicable to any intermittent track-based satel-
lite observations. Although potential methods for TTA in-
clude interpolation, statistical models, data assimilation, and
machine learning (ML), here we focus on ML.

Our analysis is based on the Western US Snow Reanalysis
data (WUS-SR; Fang et al. 2022, hereafter F2022) as “truth”
from which we synthesize P-band SWE observations along
tracks, and in turn explore TTA transformation strategies.
The TTA transformation of along-track SWE observations
are achieved using statistical and ML approaches. Specifi-
cally, we address the following four questions: (1) How does
the spatially distributed SWE inferred from TTA on 1 April
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Figure 1. Elevation of the upper Tuolumne watershed (above Hetch
Hetchy Reservoir). Blue lines are the synthetic ground tracks pass-
ing through the study domain. The hypothetical tracks are about
1 km wide and the distance between the two tracks is approximately
21 km.

compare with the synthetic truth, and how do their differ-
ences vary in dry, normal and wet years? (2) What are the
dominant variables for SWE estimation of 1 April in statisti-
cal and ML TTA methods, and which method has the highest
accuracy? (3) How does the accuracy of the domain-wide
SWE estimates from TTA approaches evolve within a sea-
son at different temporal observation resolutions? (4) How
does the performance of TTA change as a function of the spa-
tial sampling density (number of hypothetical ground tracks),
and what is the preferred number of tracks? Our study is
intended to provide a pathway forward in support of future
snow satellite design and SWE estimation over snow-covered
areas globally.

2 Study area and data

2.1 Study area

Our study area is the upper Tuolumne watershed (above
Hetch Hetchy Reservoir) in the Sierra Nevada of California.
This Tuolumne basin has a drainage area of approximately
1650 km2 that is characterized by complex high-elevation to-
pography (Figs. 1 and S1 in the Supplement). Elevations in
the watershed range from about 700 to 3900 m, with most
of the basin area located above 2500 m (Fig. 1). Slopes are
distributed between 0 and greater than 50◦ and the terrain
surface mostly has NW and SE facing aspects. Fractional
vegetation cover ranges from 0 % (in high-elevation areas)
to up to 60 % in low-elevation areas. The runoff in the upper
Tuolumne watershed is dominated by snow with a substan-
tial high-elevation contribution (30 % of its runoff originates
from elevations of 3000 m and above). In this respect, it is

typical of many watersheds that head in the Sierra Nevada
and supply much of California’s water.

2.2 Data

We leveraged the F2022 snow reanalysis data as the ba-
sis for our synthesis of satellite observations along ground
tracks. The F2022 dataset is available for entire water years
(October–September), including the wet snow period after
peak SWE. The period of record is WY1985 through 2019.
The spatial resolution of F2022 is 480 m, so the data size
of the synthetic snow observations is 480 m, and all the syn-
thetic tracks are 960 m wide (two 480 m pixels in width). This
dataset was generated (by F2022) based on a Bayesian snow
reanalysis framework with ensemble prior SWE estimates
updated by assimilating fractional snow-covered area (fSCA)
observations from the Landsat satellite platforms using a Par-
ticle Batch Smoother approach (Margulis et al., 2015). Prior
SWE estimates (required by the data-assimilation approach)
were derived from the land surface model SSiB-SAST (Sun
and Xue, 2001; Xue et al., 2003) with the Liston (2004) snow
depletion curve. The F2022 shows that the reanalysis SWE
estimates match in situ observations of peak SWE well across
the Sierra Nevada, with a mean difference of −13 cm and
correlation coefficient 0.86 taken over 1432 site years of ob-
servations.

We sub-sampled the snow reanalysis data along the postu-
lated ground tracks to synthesize the SWE observations that
P-band sensors would produce (see Sect. 3.1 for details). We
also used F2022 as the SWE “truth” to evaluate our TTA
SWE data-transformation accuracy.

We used meteorological variables and static parameters
including topographical characteristics and vegetation cover
data as the ML training inputs (along ground tracks) and
as the model inputs (full-domain). The ML training sam-
ples and domain-wide model inputs are from F2022. Mete-
orological forcings included precipitation (PPT), air temper-
ature (Ta), surface air pressure (Ps), specific humidity (q),
net short-wave radiation (NetShort), net long-wave radiation
(NetLong), and wind speed (wind). The meteorological forc-
ing fields were obtained from the Modern-Era Retrospective
analysis for Research and Applications, version 2 (MERRA-
2;. Gelaro et al., 2017) updated via the F2022 snow data
assimilation. The digital elevation model (DEM) was ob-
tained from the Shuttle Radar Topography Mission (SRTM;
Farr et al., 2007), with gaps filled by the global digital ele-
vation model (GDEM, version 2) product of the Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER). The original spatial resolution of these two DEMs
was 1 arcsec. The fractional vegetation cover data were taken
from the Tree Canopy Cover (TCC) product containing the
Landsat Vegetation Continuous Fields (Sexton et al., 2013).
The meteorological, topographic and land cover data were re-
sampled to the same spatial resolution of the snow reanalysis
dataset (i.e., 16 arcsec). In real applications, the meteorolog-
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ical forcings could come from any multi-source surface and
weather modeling data, e.g., weather forecast model analysis
(real-time) or reanalysis (retrospective) fields.

3 Methodology

3.1 Experiment design

We addressed our four research questions (Sect. 1) via four
TTA experiments. Each of the experiments used four al-
gorithms: one statistical and three ML methods (details in
Sects. 3.2 and 3.3). For all the TTA experiments, the general
idea is that we use the algorithms to build a connection be-
tween the observed SWE and the meteorological and static
variables along the ground tracks on the observation days;
these relationships reflect the physical control of the meteo-
rological and static variables on SWE under different terrain,
landscape, meteorological and climatic conditions. We then
extend these relationships to the unobserved areas and peri-
ods where and when meteorological and static variables are
available to estimate SWE across the entire basin.

In the experiments, the target day can be any date (not nec-
essarily one for which there is a satellite overpass). We used
observations with close temporal proximity to train the four
algorithms. For example, if we intend to fill the spatial SWE
gaps on 1 April, our target day would be 1 April and we used
the SWE (track) observations available within a short period
before or on the target day for model training.

We first focused on estimating spatially continuous peak
annual SWE in the basin because of its water resource im-
portance (Sect. 3.2.1). We then explored the seasonal evolu-
tion of the TTA SWE estimation, where we sequentially set
the target day to be all days within a water year to obtain
spatially and temporally continuous SWE estimates over the
entire Tuolumne basin (Sect. 3.2.2). Furthermore, we con-
ducted two experiments to evaluate the impact of meteoro-
logical variable and SWE sample density on the accuracy
of the SWE estimates (Sect. 3.2.3 and 3.2.4). The two ex-
periments introduced in Sect. 3.2.3 and 3.2.4 aim to align
with explainable artificial intelligence (AI; e.g., Chakraborty
et al., 2021; Dikshit and Pradhan, 2021a, b; Kratzert et al.,
2019), which facilitates the comprehension and trust of the
results and outputs created by ML algorithms. A major ob-
jective of explainable AI is to overcome the black-box nature
of ML systems, which is particularly important for hydro-
logic applications that are mostly process-oriented.

We used four metrics to quantify the performance of our
TTA experiments: (1) mean absolute errors (MAE), (2) me-
dian (50th percentile) of percent absolute error at a pixel-
level (PAE_50), (3) 90th percentile of percent absolute error
at a pixel level (PAE_90), and (4) percent error of basin-
averaged SWE (PEBAS). When calculating PAE_50 and
PAE_90, we first calculated the percent absolute error of
SWE estimates for each pixel within the study area, and then

found the median and the 90th percentile of the pixel-level
percent errors. To avoid extremely high percent errors due to
zero or nearly zero SWE values, we filtered out pixels with
SWE truth less than 50 mm when calculating PAE_50 and
PAE_90. For annual peak SWE estimation (see Sect. 3.2.1
and 4.1 for details), we also calculated the bias ratio to quan-
tify the degree of over- or underestimations of our TTA trans-
formations.

3.2 Model training, estimation and output correction

3.2.1 Annual peak SWE estimation

In the annual peak SWE estimation experiment, we sought
to fill spatial gaps between ground tracks on 1 April of 3 tar-
get years: WY2015, WY2008 and WY2017. The SWE on
1 April has long been used as a proxy of peak snow wa-
ter resource availability and is a critical variable for seasonal
streamflow forecasting. We selected WY2015, WY2008 and
WY2017 as the extremely dry, normal and extremely wet
years, respectively because they had the lowest (∼ 50.4 % of
the average of the MERRA2 gridded-based precipitation be-
tween WY1985 to WY2019), normal (∼ 96.8 % of average),
and highest (∼ 174.0 % of average) winter (1 November to
31 March) precipitation over the recorded period. To train
the models for each of the 3 target years, we assumed that
we had 7 SWE observations before and on 1 April in the tar-
get year and the 2 years ahead of that target year, and the
temporal interval between observations within each of the
3 years was 5 d. For example, for the SWE TTA on 1 April
WY2008, we used observations from late February to 1 April
of WY2008, WY2007 and WY2006. On each observation
day, we assumed that there were two ground tracks at the
same locations that cover approximately 4.5 % of the study
area (Fig. 1). We also selected 12 typical years from WY2000
to 2019. Among the 20 years, we defined wet years as the 4
years with the greatest winter precipitation, the dry years as
the 4 years with the least winter precipitation, and normal
years as the 4 years with winter precipitation closest to the
median. We performed TTA transformation experiments for
the selected 12 years to better understand the impacts of cli-
mate conditions on the accuracy of domain-wide SWE esti-
mation near the time of peak SWE time.

The training target is to reproduce the synthetic SWE ob-
servations along the two ground tracks. The training input
features include the 5 d averaged meteorological forcings
within each 5 d observation cycle (i.e., each observation day
and the 4 d ahead) and static variables, which include topo-
graphical and vegetation cover data along the two hypotheti-
cal ground tracks (Fig. 1). The training builds the connection
between all available training input features and target pairs.
After the connections are built along the ground tracks (i.e.,
models are trained), we used the domain-wide 5 d averaged
meteorological forcings (i.e., from 28 March to 1 April) and
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static variables as the input to the trained models to estimate
domain-wide SWE on 1 April in the target year.

After the estimation step, we implemented an error cor-
rection to the domain-wide SWE estimates. Specifically, we
first conducted probability density function (PDF) matching
between the estimated SWE on the ground tracks and the
synthetic true SWE along the ground tracks and applied the
derived PDF correction to the off-track pixels. These cor-
rections aimed to leverage the observations on the synthetic
ground tracks to eliminate systematic biases and large errors
in domain-wide SWE estimates.

3.2.2 Seasonal basin-wide SWE estimation

We also applied the TTA transformation for each day over a
full water year, assuming that the temporal interval between
satellite observations was 0, 5, 10, 15, 20 or 30 d. We in-
vestigated the performance of the SWE TTA estimation in
different phases of a snow season (i.e., accumulation, peak,
and melting periods) and the sensitivity of the performance
to the observation frequency.

The seasonal SWE TTA transformation filled both the spa-
tial and temporal gaps of SWE observations. In the seasonal
TTA estimation with a fixed observation interval, on the days
with SWE observations, we only need to fill the spatial gaps,
so the training and estimation processes in this case are iden-
tical with the 1 April experiment (as in Sect. 3.2.1). During
the temporal gaps between SWE observations, the target days
have no SWE observations to train the statistical and ML
models, so we used the established model from the closest
previous observation day and input the domain-wide forc-
ings (5 d averaged before and on the target day) and static
variables to the borrowed models from the closest previous
observation day to obtain domain-wide SWE estimates on
this non-observed day. We performed a PDF-matching cor-
rection for the domain-wide estimates based on the closest
(in time) previous observations on ground tracks.

After SWE estimation was implemented for every day
over a full water year, we obtained daily and spatially contin-
uous SWE maps for the upper Tuolumne basin for full water
years 2015, 2008 and 2017. We calculated the daily time se-
ries of basin-averaged SWE by averaging SWE values for all
pixels in the study domain and compared the estimated daily
basin-averaged SWE with that computed from the synthetic
truth.

3.2.3 Sensitivity of TTA to input meteorological
forcings

We performed an analysis of the TTA sensitivity to the in-
put meteorological forcing fields on the 1 April SWE TTA
transformation. In so doing, the training and estimation se-
tups were the same as those in Sect. 3.2.1, except that we
employed the following two methods to investigate the sen-

sitivity of the basin-wide SWE estimates to the input meteo-
rological forcings:

1. Missing feature analysis: we withheld one training me-
teorological variable during the training process each
time and re-trained all four models with the remaining
training fields. The change in the estimated basin-wide
SWE compared with the original SWE estimates (i.e.,
the outputs from the model trained with all the forcing
fields) could reflect the influence of this missing feature
on domain-wide SWE estimates. We normalized the ab-
solute change of MAE as an indicator to quantify the
relative contribution and the magnitude of influences of
each meteorological forcing field to SWE estimation.

2. Forcing uncertainty analysis: for each pixel, we per-
turbed each training meteorological field with a per-
centage error (−50 % to 50 % with an interval of 1 %),
and each time we perturb only one field while holding
the other forcing fields unchanged. A 0 % error meant
that the meteorological inputs were the same as their
original values (i.e., the same as what we used in the
experiment described above). A β% (β is a constant
here) error meant that we added β% of the difference
between the maxima and minima of a specific variable
within the study period (i.e., 1985 to 2019) for this pixel
to the original value. Every time we added more error
to a training field, we re-trained the statistical and ML
models. We then used the trained model to predict the
basin-wide SWE and used MAE to quantify the SWE
estimate errors caused by the error perturbation. With
the 100 realizations for each training field (−50 % error
to 50 % error with an interval of 1 %), we explored the
corresponding changes in domain-wide SWE estimates,
which allowed us to determine the influence of forcing
errors on SWE estimates and identify sources of model
errors.

3.2.4 Sensitivity to the number of ground tracks

The investigations discussed above were all based on the two
hypothetical ground tracks shown in Fig. 1. To explore the
relationship between the number of ground tracks and esti-
mation accuracy, we assumed that there were 1–6 overpasses
covering from 2.42 % to 12.10 % of the study area on 1 April,
so that the available observations for model training vary
with the different numbers of tracks passing through the wa-
tershed. All the tracks in each scenario were distributed over
the entire Tuolumne basin with equal spacing. The training
and estimation processes were the same as the experiment on
1 April (details in Sect. 3.2.1).

3.3 Satellite observation gap-filling methods

We utilized and compared the four algorithms to transform
the postulated track-based satellite observations into space-
continuous SWE estimates, as described below.
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3.3.1 Statistical method

As applied, multivariate linear regression (MVLR) defines
a linear relationship between multiple independent variables
(input variables) and one dependent variable (the target vari-
able) based on pre-defined rules, e.g., the regressed results
are Best Linear Unbiased Estimator (BLUE) of the depen-
dent variable (see Sect. S1 in the Supplement for details). In
our case, this refers to the input variables were the meteo-
rological forcings and static land cover features; the target
variable was SWE.

3.3.2 Machine learning algorithms

We explored three machine learning (ML) methods: random
forest (RF; Breiman, 2001), support vector machines (SVM;
Vapnik, 1982), and deep neural networks (DNN; Tanaka and
Okutomi, 2014) on building the relationship between inputs
and SWE along ground tracks. The hyperparameters of the
three ML methods were optimized using 10-fold cross val-
idation. After the selection of model hyperparameters, we
train each model 10 times. During each of the 10 training
cycles, we randomly reserved 15 % of the training dataset
as the test the dataset that was used for evaluating the es-
timation results, we trained the three ML models using the
remaining 85 % of the training dataset and estimated model
performance using the test dataset. The 10-fold cross valida-
tion repeated this training-validating process 10 times with
the training (85 %) and validation (15 %) sub-dataset ran-
domly selected each time. After the 10 cycles, we selected
the 5 model setups with the lowest MAE for the test dataset
and used these 5 selected model sets with domain-wide input
features to obtain 5 sets of SWE estimates over the whole
watershed. Our final domain-wide SWE estimates were the
average of the SWE estimates from the 5 selected models.

Random forest

We used the random forest (RF) method introduced by
Breiman (2001), implemented to simulate the non-linear re-
lationship between input features and SWE. The basic build-
ing units of RF are an ensemble of decision trees (DTs) that
split a subset of features on each split (Kuter, 2021). Usually,
a series of DTs is employed to achieve sufficient accuracy of
final prediction by weighted averaging the prediction results
of multiple selected DTs (Liu et al., 2020). The selection of
DTs was carried out by voting, that is, the higher the repeti-
tion degree of the DT, the higher the contribution of this DT
to the RF model.

During the training process, we optimized two hyperpa-
rameters in the RF system: (1) Ntree – the number of decision
trees grown based on a bootstrap sample of observations;
(2) Sleaf – minimum number of observations per tree leaf.
One useful characteristic of RF is that it is a self-explainable
model where the implementation and examination of the out-

of-bag score is a form of model validation. To optimize the
two hyperparameters, we carried out 10-fold cross validation
to find the optimal hyperparameter combinations with the
lowest out-of-bag errors. The change of errors with Ntree and
Sleaf were shown in Figs. S2 and S3. Our analysis showed
that the preferred number of decision trees was 50 and the
minimum leaf size was 5.

Support vector machine

Support vector machine (SVM) method is a supervised
and non-parametric ML algorithm (Vapnik, 1982). For
regression-based SVM, the basic logic behind the learning
task is to find a function that has the universal minimum de-
viation from the measured response values for the full range
of observations (Vapnik, 1998).

During the training process of the SVM method, we
mainly optimized two hyperparameters: (1) the kernel func-
tion, which specifies the method used to transform inputs to
the required target, and (2) the kernel scale, which is a scaling
parameter for the input data. Based on 10-fold cross valida-
tion, we specified the Gaussian kernel function and selected
the kernel scale based on a heuristic procedure, which used
the subsampling and set a random number seed before train-
ing, so estimates can vary for every running process.

Deep neural network

Artificial neural network (ANN) builds a non-linear relation-
ship between the independent variables and the target vari-
able by connecting neurons in one layer to the previous or
next layers. In general, ANN is a multi-layer structure that
includes an input layer, one hidden layer, and an output layer.
The hidden layer consists of several neurons, each of which
is assigned a weight. The output of each neuron is multiplied
by the weight and serves as the input for a non-linear activa-
tion function (Abiodun et al., 2018). A single-layer percep-
tron is a neural network with only one neuron that can only
understand linear relationships between the input and output
data, while with horizons of the deep neural network (DNN),
a multilayer perceptron (MLP), are expanded and the neural
network can have multiple layers of neurons, which are bet-
ter adapted to more complex patterns (Gardner and Dorling,
1998). Here, we built an MLP and tested several combina-
tions of the number of hidden layers and the number of neu-
rons in each hidden layer; we also constructed a seven-layer
neural network (which was essentially an MLP) with 10, 9,
8, 7, 6, 5 and 4 neurons in each layer, respectively. We chose
rectified linear units (ReLu) as the activation function in each
hidden layer. In this network, the algorithm used to minimize
the cost function is Levenberg–Marquardt, which is consid-
ered as one of the most efficient learning algorithms in terms
of convergence speed (Costa et al., 2007).
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Figure 2. Pixel-level scatterplots of 1 April SWE estimated by MVLR (a), RF (b), SVM (c), and DNN (d) versus the true 1 April SWE in
WY2015 (dry year; red dots), WY2008 (normal year; yellow dots), and WY2017 (wet year; blue dots).

4 Results and discussion

4.1 Basin-wide SWE estimation on 1 April

Figure 2 shows pixel-level results for all four algorithms on
1 April for WY2008, WY2015 and WY2017. The DNN gen-
erally outperforms the other three methods, which has fewer
outliers with results distributed closer to the 1 : 1 line on the
scatterplot. Statistically, domain-wide SWE estimates from
DNN are also the best among the four methods, except that
RF performs slightly better than DNN in terms of PEBAS in
the normal and wet years (Figs. 2 and 3). The DNN-based
estimates have (1) the lowest values of MAE (Fig. 2); (2)
the highest accuracy from the perspective of PEBAS in the
dry year (Fig. 3); and (3) at a pixel level, the lowest val-
ues of PAE_50 and PAE_90 (Fig. 3). A possible reason why
DNN outperforms RF is that during the training process of
RF, the discretization of continuous variables in the DT gen-
eration leads to a reduction in the number of nodes and there-

fore the loss of part of the information (Segal, 2004). Also,
SVM has some disadvantages, such as not being suitable for
large datasets and the decision model does not perform well
when the dataset is noisy. The MVLR is the worst among
the four algorithms, probably because MVLR is only capa-
ble of simulating linear relationships between model inputs
and outputs, while the process of SWE estimation involves
more complex non-linear relationships.

Accurate SWE estimation in the extremely dry year is of
key importance for water management in California. Fig-
ure 2d shows that domain-wide SWE estimates in the ex-
tremely dry year (WY2015) are nearly unbiased for MVLR
and DNN, but RF and SVM tend to overestimate SWE
(Fig. 2). All ML-based domain-wide SWE estimates in
WY2015 have higher accuracy than the statistical method
(Figs. 2 and 3). The DNN performs the best among the four
algorithms in WY2015 in terms of MAE (27.5 mm), PAE_50
(20.0 %), PAE_90 (76.0 %) and PEBAS (24.5 %).
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Figure 3. Mean absolute error (MAE), median of percent absolute error (PAE_50), 90th percentile percent absolute error (PAE_90) and
percent error of basin-averaged SWE (PEBAS) of domain-wide SWE estimates based on MVLR, RF, SVM and DNN in WY2015 (dry year),
WY2008 (normal year) and WY2017 (wet year).

Machine learning methods are also more accurate than the
statistical method in the typical (normal) year (WY2008).
Compared to the three ML algorithms, the statistical method
has the largest MAE, PAE_50, PAE_90 and PEBAS in
WY2008 (Fig. 3). Compared to the dry year, SWE estimates
are more accurate in the normal year in terms of PAE_50,
PAE_90 and PEBAS for all four algorithms. Possible rea-
sons for the better performance in the normal year relative to
the dry year include the following: (1) the number of pixels
with zero SWE value is much less in the normal year than
in the dry year, so the useful training information for build-
ing the relationship between inputs and the target are more
abundant in the normal year; (2) there are fewer pixels with
small values of SWE in the normal year than in the dry year,
and small SWE values tend to generate large values in per-
centage error calculation, so the values of metrics regarding
percent errors are larger in the dry year. The reason for larger
values of PAE_90 in the dry year (DNN: 76.0 %) than in the
normal year (DNN: 38.4 %) is that although we omitted pix-
els with extremely small SWE (<50 mm), in the dry year,
there are still more pixels with low SWE, which are prone to
high percent errors. The TTA SWE estimation is weakest in

low-SWE situations, resulting in heavy-tailed behavior in the
percent SWE errors under that condition.

The ML-based estimates were also most accurate in the
extremely wet year (WY2017). According to the estimation
statistics, DNN is the best algorithm among the four TTA
transformation methods with the lowest MAE (220.8 mm),
PAE_50 (15.4 %), PAE_90 (50.2 %) and PEBAS (6.3 %).
Compared to the normal and dry years, the wet year has
fewer pixels with zero or nearly zero SWE values, thus the
number of useful pixels for training ML algorithms is larger.
Also, SWE values are larger, which tends to reduce the per-
cent absolute errors, making PAE_50 and PAE_90 values
generally smaller than those in the dry or normal years.

Overall, DNN outperforms the other three algorithms for
all 3 years (Figs. 2 and 3), while the statistical method
(MVLR) has larger values of MAE, PAE_50, PAE_90 and
PEBAS than all the ML methods for all the 3 years. Due to
the superior performance of DNN, the following results and
discussion are based on DNN only; results for the other three
methods are included in the supplemental material.

The SWE on 1 April is highly correlated with cumula-
tive winter precipitation, so SWE estimation errors tend to be
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Figure 4. DNN-inferred 1 April SWE maps (a–c) and 1 April SWE errors (estimate minus truth; d–f) in WY2015, WY2008 and WY2017.
Yellow lines are hypothetical ground tracks across the upper Tuolumne watershed, which are approximately 1 km wide and the distance
between the two tracks is around 21 km.

small in dry years and large in wet years. Correspondingly, as
shown in the spatial maps of SWE estimates and estimation
errors (Fig. 4), in WY2015, for nearly all the pixels within
the study area, the overall estimation errors are within the
range±200 mm (PAE_50: 20.0 % and PEBAS: 24.5 %). The
error range is larger in WY2008 than in the dry year, which
is about ±300 mm (PAE_50: 9.4 % and PEBAS: 4.5 %) and
larger still (±500 mm) in WY2017 (PAE_50: 15.43 % and
PEBAS: 6.31 %).

The spatial maps of DNN-based domain-wide SWE esti-
mation errors (Fig. 4d–f) show that the patterns of error dis-
tribution are similar for the 3 years, that is, underestimates
are more likely to appear in the low-elevation areas in the
western watershed (elevation range: around 1500 to 2800 m)
while overestimates appear mainly in the high-elevation ar-
eas in the northern parts of the watershed (elevation range:

approximately 2800 to 3800 m), especially in the normal and
wet years (i.e., WY2008 and WY2017). A possible explana-
tion for this error pattern is that during the training process,
ML models would leave out some outliers, some of which
are probably the extreme values in low- or high-elevation ar-
eas, thus the estimates from the ML systems may tend to
approach an average situation, that is, predict higher for low
values and lower for high values. Pixels in the low-elevation
areas generally have low SWE, therefore overestimates tend
to occur in these regions; in contrast, underestimation tends
to occur more for pixels in high-elevation areas.

We also evaluate errors in domain-wide 1 April SWE for
a larger number (12) of years (4 driest, 4 normal and 4
wettest years from WY2000 to WY2019) to better under-
stand the impacts of climate conditions on the accuracy of
domain-wide SWE estimation near the time of peak SWE
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Figure 5. MAE (mm; first row), PAE_50 (%; second row), PAE_90 (%; third row), PEBAS (%; fourth row) and bias ratio (slope; fifth
row) of the DNN-based estimated 1 April SWE for the 4 driest years (red dots; WY2015, 2012, 2014 and 2001), 4 normal years (yellow
square points; WY2003, 2002, 2008, and 2016) and 4 wettest years (blue triangle points; WY2006, 2009, 2011, and 2017) from WY2000 to
WY2019.

time (Fig. 5). The metrics used to quantify the accuracy of
SWE estimation include MAE, PAE_50, PAE_90, PEBAS
and bias ratio (slope of the regression line (intercept was
forced to be 0) between estimation and truth). Our results
indicate that overall, the MAE of 1 April SWE estimates
becomes larger as precipitation increases (MAE: wet years
> normal years > dry years). For example, the MAE in
WY2017 is twice as large as the average MAE of the other
years (MAE in WY2017: 220.8 mm; average MAE of the
other years: 79.3 mm). This is likely because SWE is largely
determined by the amount of winter precipitation in the given
year. To better compare the performance of DNN-based TTA
transformation in different water years with climate condi-
tions, we further show the PAE_50, PAE_90 and PEBAS for
each of the 4 years. According to PAE_50, at a pixel level,
half of the pixels have absolute percent errors smaller than
20 % (except for WY2001), even in the 4 driest years when
extremely low SWE values may lead to large values of per-
cent absolute errors for many pixels in the study area. As
noted above, the PAE_90 values are relatively large in the dry
years; on the other hand, the values of PAE_90 are smaller
than or close to 50 % in the normal and wet years, indicating
that 90 % of the pixels in the study area have relatively small
SWE estimation errors. In addition, the values of PEBAS are
less than 20 % for all years except for WY2015 (which has
zero 1 April SWE in many locations that had not previously
been snow-free during the instrumental record).

The bias ratio (quantified by the regression slope between
the SWE estimate and truth with intercept forced to be 0)
provides information about the degree of over- or underes-
timation of domain-wide SWE estimates. The bias ratio for
the 12 years (Fig. 5) indicates that DNN provides an approx-
imately unbiased estimate of domain-wide SWE across all
climate conditions with slopes of the zero-intercept regres-
sions, all within the range 0.9–1.1. In the normal years, all
slope values are close to 1.0 (WY2003: 1.01; WY2002: 1.01;
WY2008: 1.01; WY2016: 0.99). The SWE estimation mod-
estly degrades under dry and wet conditions with slight un-
derestimation of SWE (with a bias ratio around 0.93) in the
2 driest years (Fig. 5).

4.2 Daily time series of basin averaged SWE estimates

Daily time series of basin-averaged SWE estimates based on
DNN for the dry, average, and wet water years (Fig. 6) show
that for satellite observations with daily through 15 d revis-
its, the daily time series of SWE estimates is highly consis-
tent with that of SWE truth for all three years, aside from a
slight overestimation of SWE around the time of peak SWE
and during snow ablation periods. The longer the interval be-
tween satellite overpasses, the larger the overestimation of
domain-wide SWE, especially for the days without snow ob-
servations. This is likely because the previous TTA relation-
ship applied to the unobserved dates is not well-suited for
conditions on the target day, that is, the delays between the
TTA relationship and the domain-wide input features lead to
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Figure 6. Daily time series of basin-averaged SWE truth (blue line) and DNN-based SWE estimates (red line) in a dry year (WY2015), a
normal year (WY2008) and a wet year (WY2017) for daily, 5, 10, 15, 20 and 30 d revisits (rows 1–6, respectively).

overestimates near and after the time of peak SWE. For 20
and 30 d revisit intervals, this mismatch can be larger (up to
19 or 29 d), leading to large differences between SWE truth
and SWE estimates (underestimation during snow accumu-
lation periods and overestimation during snow ablation sea-
sons).

Daily time series of MAE during the snow accumulation
season (January to April) and snowmelt season (April to
June) are shown in Fig. 7 (first column). Generally, MAE
increases and has larger fluctuations as the satellite revisit in-
terval increases, especially in the extreme wet year (2017).
In WY2017, the values of MAE are mostly less than 300 mm
when observations are available daily and less than about
500 mm up to 15 d intervals. For revisit intervals greater than
20 d, the absolute averaged estimate errors exceed 800 mm
for most of the snow accumulation and melt seasons.

The evolution of PAE_50, PAE_90 and PEBAS during the
snow accumulation and snowmelt seasons (Fig. 7) shows that
the errors increase with the time interval between overpasses.
Differences in accuracy for time intervals up to about 15 d
are not apparent, despite slight underestimation at the begin-

ning of January and overestimation near the end of May (es-
pecially for the normal year) but becoming more apparent
with longer time intervals. For most days during snow ac-
cumulation and snowmelt periods, the values of PEBAS and
PAE_50 are less than 30 %. Assuming a 10 d overpass in-
terval, percent errors in basin-averaged SWE are mostly less
than 10 %. However, as the overpass interval increases be-
yond 20 d, the values of PEBAS and PAE_50 exceed 50 %
for most of the days from January to June. Also, the un-
derestimates at the beginning of the snow accumulation sea-
son and overestimates at the end of the snowmelt period are
much more apparent for overpass intervals exceeding 20 d.
From the perspective of PAE_90, except for the 1 and 5 d re-
visit scenarios, the values of PAE_90 are mostly larger than
50 % from January to June. This is probably because there
are many low SWE pixels during snow accumulation and
snowmelt seasons in addition to the days near the time of
peak SWE. With the longer time interval, the ability of SWE
estimation degrades, so that more than 10 % of the pixels
(most of them are low-SWE pixels) in the study area have
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Figure 7. Daily time series of MAE (mm; first column), PAE_50 (%; second column), PAE_90 (%; third column), PEBAS (%; fourth
column) from January to June in WY2015 (red line), 2008 (yellow line), and 2017 (blue line) based on revisit intervals of 1- through 30 d
(rows 1–6, respectively).

large percent absolute errors despite different climate condi-
tions.

Considering revisit intervals from 1 to 30 d, in general 5,
10 and 15 d intervals are plausible options that balance revisit
frequency and estimation accuracy. The 1 d interval does not
improve the results much, relative to, for instance, 5 d, but
performance for greater than 20 d revisits is substantially de-
graded.

4.3 Input feature sensitivity test

The missing feature analysis evaluates the relative influ-
ence of each forcing field on the estimation of domain-wide
SWE (Fig. 8). In general, winter precipitation is the most
influential of the meteorological forcings in SWE estima-
tion (Raleigh and Lundquist, 2012; Luce et al., 2014). The
results show that in the dry, normal and wet years, precip-
itation is the dominant variable with relative contributions
exceeding 50 % (WY2015: 77.3 %; WY2008: 50.6 %; and
WY2017: 50.3 %), confirming that precipitation is the vari-
able that provides the most useful information for establish-
ing the DNN-based TTA relationship, regardless of climate
conditions. The dominance of precipitation is most signifi-
cant in WY2015 with thinner snowpacks, the longevity of

which is more sensitive to winter precipitation than in wet-
ter years. In addition to precipitation, long-wave radiation
and short-wave radiation also play important roles in the
domain-wide SWE estimation due to their critical controls
on snowmelt rate and timing. We noticed that the occasional
removal of a particular meteorological forcing inversely in-
creased MAE (e.g., q in WY2015 and WY2018, NetShort
in WY2008, and NetLong in WY2017). This is probably be-
cause these meteorological variables do not play an impor-
tant role in the corresponding years and including the infor-
mation of such variables would bring noises to the ML sys-
tem and therefore deteriorate the performance of the TTA
SWE transformation. For example, the influence of q was
negligible, and sometimes q has been assumed to be constant
in previous snow modeling (e.g., Cline et al., 1998; Clark et
al., 2011) and Netlong and NetShort may only provide lim-
ited information for SWE modeling as the winter precipita-
tion is relatively abundant (e.g., Clark et al., 2011).

The changes of model performance as a result of the error
perturbation in the training dataset (Fig. 9) show the poten-
tial influence of forcing biases on the SWE estimation results
in the dry year (WY2015), normal year (WY2008) and wet
year (WY2017). We explored the sensitivities of DNN-based
(which is the best TTA transformation method) domain-wide
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Figure 8. Relative importance (%; normalized values of absolute change of MAE after removing one forcing field) of each meteorological
forcing in DNN-based full-domain SWE estimates in WY2015, WY2008 and WY2017. The bars with dashed lines indicate that removing
those variables decreases the value of MAE, while solid bars indicate that removing those variables increases MAE.

Figure 9. Changes of MAE (mm; relative to no bias) of the inferred 1 April SWE in WY2015 (dry year; first row), WY2008 (normal year;
second row) and WY2017 (wet year; third row) with biases perturbed in the meteorological forcings of the training datasets. The limit of the
y-axis scale in the WY2015 panel is smaller than that of WY2008 and WY2017 to make the small MAE in WY2015 discernible.

SWE estimation results to different levels of biases perturbed
to the training dataset. Figure 9 shows two points. First, the
bias in the training meteorological features propagate to the
SWE estimates, especially in the years with normal and deep
snow, which is not surprising because the bias affects the
model training and larger biases have larger impacts. Sec-
ond, the fluctuation in each MAE curve in Fig. 9 is obvious.
The reasons for the fluctuation in the curves are as follows:
(1) Every time we add biases to the training meteorological

data, we need to re-train the DNN-based TTA relationship.
The weights assigned for each neuron in each hidden layers
in DNNs have a degree of randomness, so even though the
object of every DNN is to achieve the optimal estimation re-
sults, the inner structure of the DNNs are different to adapt to
the biased training dataset. (2) We only use 85 % of training
data that are randomly split from the original dataset (the re-
mained 15 % are used for model test). With different training
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data, each time we obtain a different DNN, so SWE estimates
from the network are slightly different.

In the extremely dry year (WY2015), the DNN-based
domain-wide SWE estimates are not sensitive to the biases
in the meteorological training inputs (Fig. 9), likely due to
its extremely low snow cover. Among the seven meteorolog-
ical forcings, Ta (primarily the positive biases of Ta) has rela-
tively larger impacts on the accuracy of SWE estimates than
the other meteorological forcings in WY2015. In the normal
(WY2008) and wet (WY2017) years, positive biases of long-
wave radiation and negative biases of precipitation are the
main sources of DNN-based SWE estimate errors (Fig. 9).
In the years with relatively abundant precipitation (normal
and wet years), precipitation is highly positively correlated
with SWE values, so any precipitation errors in the training
dataset can have a large impact on the accuracy of SWE es-
timation. In addition, we propose the following possible rea-
son for the larger MAE caused by positive errors rather than
negative errors: essentially decreasing long-wave radiation
cannot increase 1 April SWE above the accumulated snow-
fall, but increasing long-wave radiation can decrease SWE
all the way to zero (in theory), so increased net long-wave
radiation influences the SWE estimates more than a decrease
thereof (Sicart et al., 2006). In the DNN-based SWE esti-
mates, errors in air pressure (Ps), air temperature (Ta), spe-
cific humidity (q), net short-wave radiation (NetShort) and
wind speed (wind) have very small impacts on domain-wide
SWE estimation under normal or wet climate conditions.

The robustness and stability of SWE estimate models are
critical to estimating full-domain SWE in real applications.
Overall, the performance of DNN degrades with more bi-
ases added to the training meteorological inputs in the nor-
mal and wet years, while the dry year is less sensitive to bi-
ases in the training data. Despite the fact that forcing biases
can lead to lower SWE estimation accuracy in the normal and
wet years, DNN-based SWE estimation has MAE <300 mm
when the biases in training forcings are as large as ±50 %,
indicating the robustness of DNN in the TTA SWE trans-
formation. The feature sensitivity results for the other three
methods (MVLR, RF and SVM) in the dry, normal and wet
years are shown in Fig. S4–6.

4.4 Sensitivity of TTA to the number of ground tracks

Figures 10 and 11 show the changes in MAE of the domain-
wide 1 April SWE estimates with different numbers of
ground tracks. We compared the SWE estimation errors in
the dry, normal and wet years (i.e., WY2015, 2008, 2017,
respectively) using the DNN-based TTA method. In gen-
eral, the performance of the DNN-based domain-wide SWE
estimates improve with more ground tracks in the 3 years
(Fig. 11). The improvement in the domain-wide SWE es-
timation is most distinct in the wet year, probably because
more information for building the TTA relationship is avail-

able when snow accumulation is larger, and the number of
pixels with zero or nearly zero SWE is smaller.

Statistically, in WY2015, DNN estimates the basin-wide
1 April SWE with MAE less than 40 mm when two or more
ground tracks are available. Similarly, in WY2008 (a normal
year), the DNN method has MAE less than 100 mm with two
or more ground tracks. In all years, improvements in accu-
racy are small when the number of tracks exceeds two.

Regardless of snow climatologic conditions, the improve-
ments of TTA performance with additional overpasses are
limited when the number of ground tracks is larger than or
equal to two. Based on the elevation distribution of pixels on
synthetical ground tracks (Fig. S7), if more than two ground
tracks pass through the study area, the useful information
added to the training data become limited since pixels at dif-
ferent elevation bands seem to be similarly distributed, thus
the decrease of MAE is limited. Also, the decrease of MAE
as the number of the ground tracks increases from one to
two could likely benefit from the addition of training data in
low-elevation regions (elevation <2500 m). Considering the
trade-off between SWE estimation accuracy and the cost of
additional overpasses, one or two ground tracks is likely the
optimal choice for purposes of domain-wide SWE estima-
tion. It is noticeable that topography plays an important role
in the performance of TTA SWE transformation. The MAE
increases in the course of the number of ground tracks added
from two to threee in the wet year and the number of ground
tracks increases from four to five in the normal years. The
reason for the outliers is probably because in the wet and
normal years, as there are more than or equal to two ground
tracks in the study area, the topography over ground tracks is
enough to represent the situations over the whole basin. Un-
der such circumstances, the increase in the number of ground
tracks can increase the training size but therefore involves
more training samples with biased conditions.

The DNN-based SWE estimation is more accurate than the
other methods regardless of the size of the training dataset
and the climate conditions. In contrast, the statistical method
is the worst of the four (Fig. S8).

5 Conclusions

Spatially continuous SWE estimates are of key importance
to the prediction of the timing and volume of streamflow
in snow-dominated regions. The potential now exists via at
least two satellite-based technologies to measure SWE along
tracks, which would cover only a small portion of a water-
shed’s area. Fortunately though, relationships exist among
multiple accessible variables (static and forcing fields) and
SWE that can be used in linear or non-linear relationships to
fill the gaps between tracks. Here, we use statistical and ma-
chine learning methods that are trained using the static vari-
ables, meteorological forcings and SWE observations along
tracks to estimate SWE over the entire domain (watershed).

Hydrol. Earth Syst. Sci., 27, 21–38, 2023 https://doi.org/10.5194/hess-27-21-2023



X. Ma et al.: An evaluation using synthetic data 35

Figure 10. Illustration of the 1–6 (a–f, respectively) hypothetical ground tracks in the upper Tuolumne watershed. The distance between
each track is roughly the same over the whole watershed.

We tested (1) how the relationship between the training in-
puts and SWE along ground tracks could be used to infer
SWE across the entire basin, (2) the performance of four
algorithms applied over a full water year, (3) the influence
of biases in meteorological forcings of the training dataset
on the accuracy of the MVLR and three ML methods, and
(4) changes in model performance with various numbers
of overpasses. We focused on estimate accuracy over the
upper Tuolumne watershed during dry (WY2015), normal
(WY2008) and wet years (WY2017). Based on our results,
we conclude the following:

1. It is possible to derive basin-wide peak SWE (on
1 April) with high accuracy (on the basis of MAE,
PAE_50, PAE_90 and PEBAS) when the interval be-
tween satellite revisits is in the 5–10 d range.

2. The DNN method is the most accurate of the four
we tested regardless of snow climatological conditions.
The DNN is also the most robust method with respect
to biases in forcing data and reduction in the training
data size. Though the DNN employed here is a sim-
ple MLP, it outperforms the statistical and the other two
ML methods. It is reasonable to expect further improved
performance of DNN with better network structure and
hyper parameter optimization in future applications of
snow data retrieval.

3. Based on missing feature analysis, precipitation is the
dominant variable in domain-wide SWE estimation, es-
pecially in dry years. According to the results of our fea-
ture uncertainty analysis, the biases of precipitation and
the net long-wave radiation have the greatest influence
on the accuracy of domain-wide SWE estimation.
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Figure 11. Changes in MAE (mm) of the DNN-based inferred
1 April SWE in dry (WY2015; red dots), normal (WY2008; yel-
low square points) and wet years with the number of ground tracks.
The dashed lines for the number of ground tracks equal to 2 indi-
cate that the addition of more satellite overpasses do improve the
estimates much (see also Sect. 4.1).

4. As the number of ground tracks crossing the domain in-
creases, the MAE of the inferred 1 April SWE improves,
but only modestly when the number of ground tracks is
more than two.

Our work demonstrates the feasibility of using ML al-
gorithms (which almost always were more accurate than
MVLR) to achieve TTA SWE estimates. Operationally, our
feature sensitivity experiment provides a basis for determin-
ing the focus of quality control of meteorological forcings
and the corresponding selection of TTA transformation meth-
ods. Furthermore, our exploration of the effects of addition of
overpasses suggests the preferred balance between estima-
tion accuracy and the number of satellite tracks: for the most
part, increases in estimation accuracy are modest for more
than two tracks. Further research could consider the improve-
ments of ML algorithms to improve the stability, efficiency
and accuracy of the TTA transformation systems. Lastly,
due to the availabilities of the training datasets and accu-
rate short-term forecast of meteorological conditions (∼ 1–
2 weeks ahead), our ML methods can be used beyond the
TTA framework for a history-to-future (HTF) snow estima-
tion, where a trained relationship between historical snow
and forcing fields across an area can be used in conjunction
with the short-term meteorological forecasts to accurately
forecast the SWE condition over the domain.

Finally, we assumed a spatial resolution of satellite SWE
observations to be 1 km, which is now technically feasible.
However, higher spatial resolutions seem likely in the fu-
ture. In the context of our experiments, higher spatial res-
olution would increase the training size of the ML-based

TTA SWE transformation, which likely would lead to bet-
ter performance of continuous SWE estimation. Future re-
search might therefore explore the extent to which TTA per-
formance would benefit from higher spatial resolution in the
context of the trade-off between increased training size and
ML-based estimation accuracy.
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