Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-445-2022
https://doi.org/10.5194/hess-26-445-2022
Research article
 | 
31 Jan 2022
Research article |  | 31 Jan 2022

Rediscovering Robert E. Horton's lake evaporation formulae: new directions for evaporation physics

Solomon Vimal and Vijay P. Singh

Related authors

Comparison between canonical vine copulas and a meta-Gaussian model for forecasting agricultural drought over China
Haijiang Wu, Xiaoling Su, Vijay P. Singh, Te Zhang, Jixia Qi, and Shengzhi Huang
Hydrol. Earth Syst. Sci., 26, 3847–3861, https://doi.org/10.5194/hess-26-3847-2022,https://doi.org/10.5194/hess-26-3847-2022, 2022
Short summary
Time-varying copula and design life level-based nonstationary risk analysis of extreme rainfall events
Pengcheng Xu, Dong Wang, Vijay P. Singh, Yuankun Wang, Jichun Wu, Huayu Lu, Lachun Wang, Jiufu Liu, and Jianyun Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-358,https://doi.org/10.5194/hess-2019-358, 2019
Revised manuscript not accepted
Short summary
Discrete k-nearest neighbor resampling for simulating multisite precipitation occurrence and model adaption to climate change
Taesam Lee and Vijay P. Singh
Geosci. Model Dev., 12, 1189–1207, https://doi.org/10.5194/gmd-12-1189-2019,https://doi.org/10.5194/gmd-12-1189-2019, 2019
Short summary
Design water demand of irrigation for a large region using a high-dimensional Gaussian copula
Xinjun Tu, Yiliang Du, Vijay P. Singh, Xiaohong Chen, Kairong Lin, and Haiou Wu
Hydrol. Earth Syst. Sci., 22, 5175–5189, https://doi.org/10.5194/hess-22-5175-2018,https://doi.org/10.5194/hess-22-5175-2018, 2018
Short summary
Hydrological effects of climate variability and vegetation dynamics on annual fluvial water balance in global large river basins
Jianyu Liu, Qiang Zhang, Vijay P. Singh, Changqing Song, Yongqiang Zhang, Peng Sun, and Xihui Gu
Hydrol. Earth Syst. Sci., 22, 4047–4060, https://doi.org/10.5194/hess-22-4047-2018,https://doi.org/10.5194/hess-22-4047-2018, 2018
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Theory development
Ionic aluminium concentrations exceed thresholds for aquatic health in Nova Scotian rivers, even during conditions of high dissolved organic carbon and low flow
Shannon M. Sterling, Sarah MacLeod, Lobke Rotteveel, Kristin Hart, Thomas A. Clair, Edmund A. Halfyard, and Nicole L. O'Brien
Hydrol. Earth Syst. Sci., 24, 4763–4775, https://doi.org/10.5194/hess-24-4763-2020,https://doi.org/10.5194/hess-24-4763-2020, 2020
Short summary
Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model
Georgiy Kirillin, Ilya Aslamov, Vladimir Kozlov, Roman Zdorovennov, and Nikolai Granin
Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020,https://doi.org/10.5194/hess-24-1691-2020, 2020
Short summary
Changing suspended sediment in United States rivers and streams: linking sediment trends to changes in land use/cover, hydrology and climate
Jennifer C. Murphy
Hydrol. Earth Syst. Sci., 24, 991–1010, https://doi.org/10.5194/hess-24-991-2020,https://doi.org/10.5194/hess-24-991-2020, 2020
Short summary
Freshwater pearl mussels from northern Sweden serve as long-term, high-resolution stream water isotope recorders
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020,https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Integrating network topology metrics into studies of catchment-level effects on river characteristics
Eleanore L. Heasley, Nicholas J. Clifford, and James D. A. Millington
Hydrol. Earth Syst. Sci., 23, 2305–2319, https://doi.org/10.5194/hess-23-2305-2019,https://doi.org/10.5194/hess-23-2305-2019, 2019
Short summary

Cited articles

Accavitti, J.: Robert E. Horton Papers. Finding aid with Archivists' Toolkit, available at: https://library.albion.edu/sites/default/files/Robert E. Horton papers.pdf, last access: 13 August 2019. 
Bennett, A. R., Hamman, J. J., and Nijssen, B.: MetSim: A Python package for estimation and disaggregation of meteorological data, J. Open Source Softw., 5, 2042, https://doi.org/10.21105/joss.02042, 2020. 
Bernard, M.: Appendix B – A review of “A new method of estimating stream-flow” by J. A. Folse, Eos Trans. Am. Geophys. Union, 17, 309–312, https://doi.org/10.1029/TR017i002p00309, 1936. 
Beven, K.: Infiltration excess at the Horton Hydrology Laboratory (or not?), J. Hydrol., 293, 219–234, https://doi.org/10.1016/j.jhydrol.2004.02.001, 2004a. 
Beven, K.: Robert E. Horton and abrupt rises of ground water, Hydrol. Process., 18, 3687–3696, https://doi.org/10.1002/hyp.5741, 2004b. 
Download
Short summary
Evaporation from open water is a well-studied problem in hydrology. Robert E. Horton, unknown to most investigators on the subject, studied it in great detail by conducting experiments and relating them to physical laws. His work furthered known theories of lake evaporation but was not recognized. This is unfortunate because it performs better than five variously complex methods across scales (local to continental; 30 min–2 months) and seems quite relevant for climate-change-era problems.