Articles | Volume 25, issue 7
https://doi.org/10.5194/hess-25-3837-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3837-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The evolution of stable silicon isotopes in a coastal carbonate aquifer on Rottnest Island, Western Australia
Ashley N. Martin
CORRESPONDING AUTHOR
Connected Waters Initiative Research Centre, UNSW Sydney, Sydney NSW 2052, Australia
Australian Nuclear Science and Technology Organisation, Lucas Heights NSW 2234, Australia
School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney NSW 2052, Australia
Institut für Mineralogie, Leibniz Universität Hannover, Callinstraße 3, 30167 Hannover, Germany
Karina Meredith
Connected Waters Initiative Research Centre, UNSW Sydney, Sydney NSW 2052, Australia
Australian Nuclear Science and Technology Organisation, Lucas Heights NSW 2234, Australia
Andy Baker
Connected Waters Initiative Research Centre, UNSW Sydney, Sydney NSW 2052, Australia
School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney NSW 2052, Australia
Marc D. Norman
Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia
Eliza Bryan
Connected Waters Initiative Research Centre, UNSW Sydney, Sydney NSW 2052, Australia
Australian Nuclear Science and Technology Organisation, Lucas Heights NSW 2234, Australia
School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney NSW 2052, Australia
Related authors
No articles found.
Christina Song, Micheline Campbell, and Andy Baker
Hydrol. Earth Syst. Sci., 29, 4241–4250, https://doi.org/10.5194/hess-29-4241-2025, https://doi.org/10.5194/hess-29-4241-2025, 2025
Short summary
Short summary
Groundwater can be replenished by rainfall that percolates from the surface to the water table. The amount of rainfall that is needed to generate this groundwater recharge is hard to measure. We determined this rainfall amount by identifying recharge events as water percolates from the surface, through a cave. During our monitoring, an intense fire occurred above the cave, and we were able to quantify any change in the amount of rainfall necessary to generate recharge before and after the fire.
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024, https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Short summary
Much of the world relies on groundwater as a water resource, yet it is hard to know when and where rainfall replenishes our groundwater aquifers. Caves, mines, and tunnels that are situated above the groundwater table are unique observatories of water transiting from the land surface to the aquifer. This paper will show how networks of loggers deployed in these underground spaces across Australia have helped understand when, where, and how much rainfall is needed to replenish the groundwater.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Cited articles
Albarède, F. and Beard, B.:
Analytical methods for non-traditional isotopes,
Rev. Mineral. Geochem.,
55, 113–152, 2004.
Baronas, J. J., Torres, M. A., West, A. J., Rouxel, O., Georg, B., Bouchez, J., Gaillardet, J., and Hammond, D. E.:
Ge and Si isotope signatures in rivers: A quantitative multi-proxy approach,
Earth Planet. Sc. Lett.,
503, 194–215, 2018.
Basile-Doelsch, I., Meunier, J. D., and Parron, C.:
Another continental pool in the terrestrial silicon cycle,
Nature,
433, 399–402, 2005.
Beck, A. J., Charette, M. A., Cochran, J. K., Gonneea, M. E., and Peucker-Ehrenbrink, B.:
Dissolved strontium in the subterranean estuary–Implications for the marine strontium isotope budget,
Geochim. Cosmochim. Ac.,
117, 33–52, 2013.
Brooke, B.:
The distribution of carbonate eolianite,
Earth-Sci. Rev.,
55, 135–164, https://doi.org/10.1016/S0012-8252(01)00054-X, 2001.
Bryan, E., Meredith, K. T., Baker, A., Post, V. E., and Andersen, M. S.: Island groundwater resources, impacts of abstraction and a drying climate: Rottnest Island, Western Australia, J. Hydrol., 542, 704–718, 2016.
Bryan, E., Meredith, K. T., Baker, A., Andersen, M. S., and Post, V. E. A.:
Carbon dynamics in a Late Quaternary-age coastal limestone aquifer system undergoing saltwater intrusion,
Sci. Total Environ.,
607–608, 771–785, https://doi.org/10.1016/j.scitotenv.2017.06.094, 2017.
Bryan, E., Meredith, K. T., Baker, A., Andersen, M. S., Post, V. E., and Treble, P. C.:
How water isotopes (18O, 2H, 3H) within an island freshwater lens respond to changes in rainfall,
Water Res.,
170, 115301, https://doi.org/10.1016/j.watres.2019.115301, 2020.
Cho, H.-M., Kim, G., Kwon, E. Y., Moosdorf, N., Garcia-Orellana, J., and Santos, I. R.:
Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean,
Sci. Rep.-UK,
8, 1–7, 2018.
Christina, L., Brzezinski, M. A., and DeNiro, M. J.:
A first look at the distribution of the stable isotopes of silicon in natural waters,
Geochim. Cosmochim. Ac.,
64, 2467–2477, 2000.
Coshell, L. and Rosen, M. R.: Stratigraphy and Holocene history of lake Hayward, Swan coastal plain wetlands, western Australia, 1994.
De La Rocha, C., Brzezinski, M. A., DeNiro, M., and Shemesh, A.:
Silicon-isotope composition of diatoms as an indicator of past oceanic change,
Nature,
395, 680–683, 1998.
Ding, T., Zhou, J., Wan, D., Chen, Z., Wang, C., and Zhang, F.:
Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon,
Geochim. Cosmochim. Ac.,
72, 1381–1395, 2008.
Ehlert, C., Reckhardt, A., Greskowiak, J., Liguori, B. T., Böning, P., Paffrath, R., Brumsack, H.-J., and Pahnke, K.:
Transformation of silicon in a sandy beach ecosystem: insights from stable silicon isotopes from fresh and saline groundwaters,
Chem. Geol.,
440, 207–218, 2016.
Falkowski, P. G., Barber, R. T., and Smetacek, V.:
Biogeochemical controls and feedbacks on ocean primary production,
Science,
281, 200–206, 1998.
Fein, J. B., Scott, S., and Rivera, N.:
The effect of Fe on Si adsorption by Bacillus subtilis cell walls: insights into non-metabolic bacterial precipitation of silicate minerals,
Chem. Geol.,
182, 265–273, 2002.
Frings, P. J., Clymans, W., Fontorbe, G., Gray, W., Chakrapani, G. J., Conley, D. J., and De La Rocha, C.:
Silicate weathering in the Ganges alluvial plain,
Earth Planet. Sc. Lett.,
427, 136–148, https://doi.org/10.1016/j.epsl.2015.06.049, 2015.
Frings, P. J., Clymans, W., Fontorbe, G., Christina, L., and Conley, D. J.:
The continental Si cycle and its impact on the ocean Si isotope budget,
Chem. Geol.,
425, 12–36, 2016.
Geilert, S., Vroon, P. Z., Roerdink, D. L., Van Cappellen, P., and van Bergen, M. J.:
Silicon isotope fractionation during abiotic silica precipitation at low temperatures: Inferences from flow-through experiments,
Geochim. Cosmochim. Ac.,
142, 95–114, https://doi.org/10.1016/j.gca.2014.07.003, 2014.
Geilert, S., Grasse, P., Wallmann, K., Liebetrau, V., and Menzies, C. D.:
Serpentine alteration as source of high dissolved silicon and elevated δ30Si values to the marine Si cycle,
Nat. Commun.,
11, 1–11, 2020.
Georg, R. B., Reynolds, B. C., Frank, M., and Halliday, A. N.: New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS, Chem. Geol., 235, 95–104, 2006.
Georg, R., West, A., Basu, A., and Halliday, A.:
Silicon fluxes and isotope composition of direct groundwater discharge into the Bay of Bengal and the effect on the global ocean silicon isotope budget,
Earth Planet. Sc. Lett.,
283, 67–74, 2009a.
Georg, R., Zhu, C., Reynolds, B., and Halliday, A.:
Stable silicon isotopes of groundwater, feldspars, and clay coatings in the Navajo Sandstone aquifer, Black Mesa, Arizona, USA,
Geochim. Cosmochim. Ac.,
73, 2229–2241, 2009b.
Georg, R. B., Reynolds, B. C., West, A. J., Burton, K. W., and Halliday, A. N.:
Silicon isotope variations accompanying basalt weathering in Iceland,
Earth Planet. Sc. Lett.,
261, 476–490, https://doi.org/10.1016/j.epsl.2007.07.004, 2007.
Grasse, P., Ehlert, C., and Frank, M.:
The influence of water mass mixing on the dissolved Si isotope composition in the Eastern Equatorial Pacific,
Earth Planet. Sc. Lett.,
380, 60–71, 2013.
Grasse, P., Brzezinski, M. A., Cardinal, D., De Souza, G. F., Andersson, P., Closset, I., Cao, Z., Dai, M., Ehlert, C., and Estrade, N.:
GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater,
J. Anal. Atom. Spectrom.,
32, 562–578, 2017.
Gouramanis, C., Dodson, J., Wilkins, D., De Deckker, P., and Chase, B. M.: . Holocene palaeoclimate and sea level fluctuation recorded from the coastal Barker Swamp, Rottnest Island, south-western Western Australia, Quaternary Sci. Rev., 54, 40–57, 2012.
Gunnarsson, I. and Arnórsson, S.:
Amorphous silica solubility and the thermodynamic properties of in the range of 0∘ to 350 ∘C at Psat,
Geochim. Cosmochim. Ac.,
64, 2295–2307, 2000.
Hearty, P. J. and O'Leary, M. J.:
Carbonate eolianites, quartz sands, and Quaternary sea-level cycles, Western Australia: a chronostratigraphic approach,
Quat. Geochronol.,
3, 26–55, 2008.
Hu, C., Huang, J., Fang, N., Xie, S., Henderson, G. M., and Cai, Y.:
Adsorbed silica in stalagmite carbonate and its relationship to past rainfall,
Geochim. Cosmochim. Ac.,
69, 2285–2292, 2005.
Hughes, H., Sondag, F., Santos, R., André, L., and Cardinal, D.:
The riverine silicon isotope composition of the Amazon Basin,
Geochim. Cosmochim. Ac.,
121, 637–651, 2013.
Hughes, H. J., Delvigne, C., Korntheuer, M., de Jong, J., André, L., and Cardinal, D.:
Controlling the mass bias introduced by anionic and organic matrices in silicon isotopic measurements by MC-ICP-MS,
J. Anal. Atom. Spectrom.,
26, 1892–1896, 2011.
Martin, A. N., Meredith, K., Norman, M. D., Bryan, E., and Baker, A.:
Lithium and strontium isotope dynamics in a carbonate island aquifer, Rottnest Island, Western Australia,
Sci. Total Environ.,
715, 136906, https://doi.org/10.1016/j.scitotenv.2020.136906, 2020.
Mayfield, K. K., Eisenhauer, A., Santiago Ramos, D. P., Higgins, J. A., Horner, T. J., Auro, M., Magna, T., Moosdorf, N., Charette, M. A., Gonneea, M. E., Brady, C. E., Komar, N., Peucker-Ehrenbrink, B., and Paytan, A.:
Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba,
Nat. Commun.,
12, 148, https://doi.org/10.1038/s41467-020-20248-3, 2021.
Meyerink, S., Ellwood, M. J., Maher, W. A., and Strzepek, R.:
Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia inermis and Eucampia antarctica) and a Coastal Diatom (Thalassiosira pseudonana),
Frontiers in Marine Science,
4, 217, https://doi.org/10.3389/fmars.2017.00217, 2017.
Muhs, D. R.:
Evaluation of simple geochemical indicators of aeolian sand provenance: Late Quaternary dune fields of North America revisited,
Quaternary Sci. Rev.,
171, 260–296, https://doi.org/10.1016/j.quascirev.2017.07.007, 2017.
Oelze, M., von Blanckenburg, F., Hoellen, D., Dietzel, M., and Bouchez, J.:
Si stable isotope fractionation during adsorption and the competition between kinetic and equilibrium isotope fractionation: Implications for weathering systems,
Chem. Geol.,
380, 161–171, https://doi.org/10.1016/j.chemgeo.2014.04.027, 2014.
Oelze, M., von Blanckenburg, F., Bouchez, J., Hoellen, D., and Dietzel, M.:
The effect of Al on Si isotope fractionation investigated by silica precipitation experiments,
Chem. Geol.,
397, 94–105, 2015.
Opfergelt, S., de Bournonville, G., Cardinal, D., André, L., Delstanche, S., and Delvaux, B.:
Impact of soil weathering degree on silicon isotopic fractionation during adsorption onto iron oxides in basaltic ash soils, Cameroon,
Geochim. Cosmochim. Ac.,
73, 7226–7240, https://doi.org/10.1016/j.gca.2009.09.003, 2009.
Opfergelt, S., Eiriksdottir, E., Burton, K., Einarsson, A., Siebert, C., Gislason, S., and Halliday, A.:
Quantifying the impact of freshwater diatom productivity on silicon isotopes and silicon fluxes: Lake Myvatn, Iceland,
Earth Planet. Sc. Lett.,
305, 73–82, 2011.
Opfergelt, S., Williams, H., Cornelis, J.-T., Guicharnaud, R., Georg, R., Siebert, C., Gislason, S., Halliday, A., and Burton, K.:
Iron and silicon isotope behaviour accompanying weathering in Icelandic soils, and the implications for iron export from peatlands,
Geochim. Cosmochim. Ac.,
217, 273–291, 2017.
Parkhurst, D. L. and Appelo, C. A. J.: Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 pp., https://doi.org/10.3133/tm6A43, 2013.
Playford, P. E., Low, G., and Cockbain, A. E.:
Geology of the Perth Basin, Western Australia,
Geological Survey of Western Australia Bulletin, Perth, 1976.
Playford, P. E.: Geology and groundwater potential, in: Geology and Hydrology of Rottnest Island, edited by: PE Playford and REJ Leech, Geol. Surv. West. Aust. Rep, 6, 1977.
Playford, P. E., Leech, R., and Kendrick, G. W.:
Geology and hydrology of Rottnest Island,
Geological Survey of Western Australia, Geological Survey of Western Australia, Perth, Volume 6, ISSN 0508-4741, 1977.
Pogge von Strandmann, P. A., Porcelli, D., James, R. H., van Calsteren, P., Schaefer, B., Cartwright, I., Reynolds, B. C., and Burton, K. W.:
Chemical weathering processes in the Great Artesian Basin: Evidence from lithium and silicon isotopes,
Earth Planet. Sc. Lett.,
406, 24–36, 2014.
Pogge von Strandmann, P. A. E., Opfergelt, S., Lai, Y.-J., Sigfússon, B., Gislason, S. R., and Burton, K. W.:
Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland,
Earth Planet. Sc. Lett.,
339–340, 11–23, https://doi.org/10.1016/j.epsl.2012.05.035, 2012.
Rahman, S., Aller, R., and Cochran, J.:
The missing silica sink: Revisiting the marine sedimentary Si cycle using cosmogenic 32Si,
Global Biogeochem. Cy.,
31, 1559–1578, 2017.
Rahman, S., Tamborski, J. J., Charette, M. A., and Cochran, J. K.:
Dissolved silica in the subterranean estuary and the impact of submarine groundwater discharge on the global marine silica budget,
Mar. Chem.,
208, 29–42, 2019.
Savage, P. S., Georg, R. B., Williams, H. M., and Halliday, A. N.:
The silicon isotope composition of the upper continental crust,
Geochim. Cosmochim. Ac.,
109, 384–399, https://doi.org/10.1016/j.gca.2013.02.004, 2013.
Semeniuk, V. and Semeniuk, C.:
Sedimentary fill of basin wetlands, central Swan Coastal Plain, southwestern Australia. Part 2: distribution of sediment types and their stratigraphy,
Journal of the Royal Society of Western Australia,
89, .185–220, 2006.
Singh, S. P., Singh, S. K., Bhushan, R., and Rai, V. K.:
Dissolved silicon and its isotopes in the water column of the Bay of Bengal: Internal cycling versus lateral transport,
Geochim. Cosmochim. Ac.,
151, 172–191, 2015.
Smith, A., Massuel, S., Pollock, D., and Dillon, P.:
Geohydrology of the Tamala Limestone Formation in the Perth region: Origin and role of secondary porosity, Water for a Healthy Country Flagship Report series, ISSN: 1835-095X, CSIRO, Australia, 2012.
Stewart, A., Sweet, I., Needham, R., Raymond, O., Whitaker, A., Liu, S., Phillips, D., Retter, A., Connolly, D., and Stewart, G.:
Surface geology of Australia 1 : 1,000,000 scale, Western Australia (digital dataset),
Geoscience Australia: Canberra, ACT, Australia, 2008.
Tréguer, P., Nelson, D. M., Van Bennekom, A. J., DeMaster, D. J., Leynaert, A., and Queguiner, B.:
The silica balance in the world ocean: a reestimate,
Science,
268, 375–379, 1995.
Tréguer, P. J. and De La Rocha, C. L.:
The world ocean silica cycle,
Annu. Rev. Mar. Sci.,
5, 477–501, 2013.
van den Boorn, S. H., Vroon, P. Z., and van Bergen, M. J.:
Sulfur-induced offsets in MC-ICP-MS silicon-isotope measurements,
J. Anal. Atom. Spectrom.,
24, 1111–1114, 2009.
Wille, M., Sutton, J., Ellwood, M. J., Sambridge, M., Maher, W., Eggins, S., and Kelly, M.:
Silicon isotopic fractionation in marine sponges: A new model for understanding silicon isotopic variations in sponges,
Earth Planet. Sc. Lett.,
292, 281–289, 2010.
Zektser, I. and Loaiciga, H. A.:
Groundwater fluxes in the global hydrologic cycle: past, present and future,
J. Hydrol.,
144, 405–427, 1993.
Zektser, I. S., Everett, L. G., and Dzhamalov, R. G.: Submarine groundwater, CRC Press, ISBN-10: 0-8493-3576-0 (Hardcover), 2006.
Ziegler, K., Young, E. D., Schauble, E. A., and Wasson, J. T.:
Metal–silicate silicon isotope fractionation in enstatite meteorites and constraints on Earth's core formation,
Earth Planet. Sc. Lett.,
295, 487–496, 2010.
Short summary
We measured the silicon isotopic composition of groundwater from Rottnest Island, Western Australia, to investigate water–rock interactions in a coastal aquifer. Silicon isotopic ratios varied spatially across the island and were related to secondary mineral formation and vertical mixing within the aquifer. We find that silicate dissolution occurs in the freshwater–seawater transition zone, supporting the recent recognition of submarine groundwater discharge in the oceanic silicon isotope cycle.
We measured the silicon isotopic composition of groundwater from Rottnest Island, Western...