Articles | Volume 25, issue 3
Hydrol. Earth Syst. Sci., 25, 1151–1163, 2021
https://doi.org/10.5194/hess-25-1151-2021
Hydrol. Earth Syst. Sci., 25, 1151–1163, 2021
https://doi.org/10.5194/hess-25-1151-2021

Research article 05 Mar 2021

Research article | 05 Mar 2021

Partial energy balance closure of eddy covariance evaporation measurements using concurrent lysimeter observations over grassland

Peter Widmoser and Dominik Michel

Related authors

Terrestrial water loss at night: global relevance from observations and climate models
Ryan S. Padrón, Lukas Gudmundsson, Dominik Michel, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 24, 793–807, https://doi.org/10.5194/hess-24-793-2020,https://doi.org/10.5194/hess-24-793-2020, 2020
Short summary
A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration
Martin Hirschi, Dominik Michel, Irene Lehner, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 21, 1809–1825, https://doi.org/10.5194/hess-21-1809-2017,https://doi.org/10.5194/hess-21-1809-2017, 2017
Short summary
The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets
D. G. Miralles, C. Jiménez, M. Jung, D. Michel, A. Ershadi, M. F. McCabe, M. Hirschi, B. Martens, A. J. Dolman, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016,https://doi.org/10.5194/hess-20-823-2016, 2016
Short summary
The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms
D. Michel, C. Jiménez, D. G. Miralles, M. Jung, M. Hirschi, A. Ershadi, B. Martens, M. F. McCabe, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016,https://doi.org/10.5194/hess-20-803-2016, 2016
Short summary
The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data
M. F. McCabe, A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel, and E. F. Wood
Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016,https://doi.org/10.5194/gmd-9-283-2016, 2016
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Rivers in the sky, flooding on the ground: the role of atmospheric rivers in inland flooding in central Europe
Monica Ionita, Viorica Nagavciuc, and Bin Guan
Hydrol. Earth Syst. Sci., 24, 5125–5147, https://doi.org/10.5194/hess-24-5125-2020,https://doi.org/10.5194/hess-24-5125-2020, 2020
Short summary
Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements
Craig D. Smith, Amber Ross, John Kochendorfer, Michael E. Earle, Mareile Wolff, Samuel Buisán, Yves-Alain Roulet, and Timo Laine
Hydrol. Earth Syst. Sci., 24, 4025–4043, https://doi.org/10.5194/hess-24-4025-2020,https://doi.org/10.5194/hess-24-4025-2020, 2020
Short summary
Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020,https://doi.org/10.5194/hess-24-2931-2020, 2020
Short summary
Radar-based characterisation of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model
Moshe Armon, Francesco Marra, Yehouda Enzel, Dorita Rostkier-Edelstein, and Efrat Morin
Hydrol. Earth Syst. Sci., 24, 1227–1249, https://doi.org/10.5194/hess-24-1227-2020,https://doi.org/10.5194/hess-24-1227-2020, 2020
Short summary
Effect of disdrometer type on rain drop size distribution characterisation: a new dataset for south-eastern Australia
Adrien Guyot, Jayaram Pudashine, Alain Protat, Remko Uijlenhoet, Valentijn R. N. Pauwels, Alan Seed, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 4737–4761, https://doi.org/10.5194/hess-23-4737-2019,https://doi.org/10.5194/hess-23-4737-2019, 2019
Short summary

Cited articles

Alfieri, J., Kustas, W., Prueger, J., Hipps, L., Evett, J., Basara, B., Neale, Ch., French, A., Colaizzi, P., Agam, N., Cosh, M., Chavez, J., and Howell, T.: On the discrepancy between eddy covariance and lysimetry-based surface flux measurements under strongly advective conditions, Adv. Water Resour., 50, 62–78, 2012. 
Charuchittipan, D., Babel, W., Mauder, M., Leps, J.-P., and Foken, T.: Extension of the Averaging Time in Eddy-Covariance Measurements and Its Effect on the Energy Balance Closure, Bound.-Layer Meteorol., 152, 303–327, https://doi.org/10.1007/s10546-014-9922-6, 2014. 
Chavez, J. and Howell, T.: Evaluating eddy covariance cotton ET measurements in an advective environment with large weighing lysimeters, Irrig. Sci., 28, 35–50, 2009. 
Ding, R., Kang, S., Li, F., Zhang, Y., Tong, L., and Sun, Q.: Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China, Agric. Water Manage., 98, 87–95, 2010. 
Endrizzi, S., Gruber, S., Dall'Amico, M., and Rigon, R.: GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects, Geosci. Model Dev., 7, 2831–2857, https://doi.org/10.5194/gmd-7-2831-2014, 2014. 
Download
Short summary
With respect to ongoing discussions about the causes of energy imbalance, a method for closing the latent heat flux gap based on lysimeter measurements is assessed at four measurement stations over grassland in humid and semiarid climates. The applied partial closure yields excellent adjustments of eddy covariance data as compared to results found in the literature. The method also allows a distinction between systematic and random deviation of eddy covariance and lysimeter measurements.