Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-5937-2020
https://doi.org/10.5194/hess-24-5937-2020
Research article
 | 
16 Dec 2020
Research article |  | 16 Dec 2020

Simulation analysis of local land atmosphere coupling in rainy season over a typical underlying surface in the Tibetan Plateau

Genhou Sun, Zeyong Hu, Yaoming Ma, Zhipeng Xie, Jiemin Wang, and Song Yang

Related authors

The statistics of blowing snow occurrences from multi-year autonomous snow flux measurements in the French Alps
Zhipeng Xie, Yaoming Ma, Weiqiang Ma, Zeyong Hu, and Genhou Sun
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-260,https://doi.org/10.5194/tc-2021-260, 2021
Preprint withdrawn
Short summary
Decision tree-based detection of blowing snow events in the European Alps
Zhipeng Xie, Weiqiang Ma, Yaoming Ma, Zeyong Hu, Genhou Sun, Yizhe Han, Wei Hu, Rongmingzhu Su, and Yixi Fan
Hydrol. Earth Syst. Sci., 25, 3783–3804, https://doi.org/10.5194/hess-25-3783-2021,https://doi.org/10.5194/hess-25-3783-2021, 2021
Short summary
A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau
Yaoming Ma, Zeyong Hu, Zhipeng Xie, Weiqiang Ma, Binbin Wang, Xuelong Chen, Maoshan Li, Lei Zhong, Fanglin Sun, Lianglei Gu, Cunbo Han, Lang Zhang, Xin Liu, Zhangwei Ding, Genhou Sun, Shujin Wang, Yongjie Wang, and Zhongyan Wang
Earth Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020,https://doi.org/10.5194/essd-12-2937-2020, 2020
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
High-resolution land surface modelling over Africa: the role of uncertain soil properties in combination with forcing temporal resolution
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025,https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Investigating the global and regional response of drought to idealized deforestation using multiple global climate models
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
Hydrol. Earth Syst. Sci., 29, 1637–1658, https://doi.org/10.5194/hess-29-1637-2025,https://doi.org/10.5194/hess-29-1637-2025, 2025
Short summary
Distribution, trends, and drivers of flash droughts in the United Kingdom
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 29, 1295–1317, https://doi.org/10.5194/hess-29-1295-2025,https://doi.org/10.5194/hess-29-1295-2025, 2025
Short summary
Are dependencies of extreme rainfall on humidity more reliable in convection-permitting climate models?
Geert Lenderink, Nikolina Ban, Erwan Brisson, Ségolène Berthou, Virginia Edith Cortés-Hernández, Elizabeth Kendon, Hayley J. Fowler, and Hylke de Vries
Hydrol. Earth Syst. Sci., 29, 1201–1220, https://doi.org/10.5194/hess-29-1201-2025,https://doi.org/10.5194/hess-29-1201-2025, 2025
Short summary
Leveraging a radar-based disdrometer network to develop a probabilistic precipitation phase model in eastern Canada
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci., 29, 1135–1158, https://doi.org/10.5194/hess-29-1135-2025,https://doi.org/10.5194/hess-29-1135-2025, 2025
Short summary

Cited articles

Betts A. K.: Boundary Layer Thermodynamics of a High Plains Severe Storm, Mon. Weather Rev., 112, 2199–2211, 1984. 
Betts, A. K.: FIFE atmospheric boundary layer budget methods, J. Geophys. Res., 97D, 18523–18532, 1992. 
Bougeault, P. and Lacarrere, P.: Parameterization of orography-induced turbulence in a mesobeta – scale model, Mon. Weather Rev., 117, 1872–1890, 1989. 
Chang, Y. and Guo, X.: Characteristics of convective cloud and precipitation during summertime at Nagqu over Tibetan Plateau, Chinese Sci. Bull., 61, 1706–1720, 2016. 
Chen, J., Wu, X., and Yin, Y.: Thermal effects of the surface heat flux on cloud systems over the Tibetan Plateau in boreal summer, J. Climate, 32, 4699–4714, 2019. 
Download
Short summary
We investigate the influence of soil conditions on the planetary boundary layer (PBL) thermodynamics and convective cloud formations over a typical underlying surface, based on a series of simulations on a sunny day in the Tibetan Plateau, using the Weather Research and Forecasting (WRF) model. The real-case simulation and sensitivity simulations indicate that the soil moisture could have a strong impact on PBL thermodynamics, which may be favorable for the convective cloud formations.
Share