Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-5699-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5699-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of published palaeoclimate records suitable for reconstructing annual to sub-decadal hydroclimatic variability in eastern Australia: implications for water resource management and planning
Anna L. Flack
Centre for Water, Climate and Land (CWCL), Faculty of Science,
University of Newcastle, Callaghan, NSW, Australia
Anthony S. Kiem
CORRESPONDING AUTHOR
Centre for Water, Climate and Land (CWCL), Faculty of Science,
University of Newcastle, Callaghan, NSW, Australia
Tessa R. Vance
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
previously Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC), University of Tasmania, Hobart, Tasmania, Australia
Carly R. Tozer
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
previously Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC), University of Tasmania, Hobart, Tasmania, Australia
Jason L. Roberts
Australian Antarctic Division, Kingston, Tasmania, Australia
Related authors
No articles found.
Jordan R. W. Martin, Joel B. Pedro, and Tessa R. Vance
Clim. Past, 20, 2487–2497, https://doi.org/10.5194/cp-20-2487-2024, https://doi.org/10.5194/cp-20-2487-2024, 2024
Short summary
Short summary
We use existing palaeoclimate data and a statistical model to predict atmospheric CO2 concentrations across the Mid-Pleistocene Transition. Our prediction assumes that the relationship between CO2 and benthic ẟ18Ocalcite over the past 800 000 years can be extended over the last 1.8 million years. We find no clear evidence from existing blue ice or proxy-based CO2 data to reject the predicted record. A definitive test awaits analysis of continuous oldest ice core records from Antarctica.
Margaret Mallory Harlan, Jodi Fox, Helle Astrid Kjær, Tessa R. Vance, Anders Svensson, and Eliza Cook
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-64, https://doi.org/10.5194/cp-2024-64, 2024
Preprint under review for CP
Short summary
Short summary
We identify two tephra horizons in the Mount Brown South (MBS) ice core originating from the mid-1980s eruptive period of Mt. Erebus and the 1991 eruption of Cerro Hudson. They represent an important addition to East Antarctic tephrochronology, with implications for understanding atmospheric dynamics and ice core chronologies. This work underpins the importance of the MBS ice core as a new tephrochronological archive in an underrepresented region of coastal East Antarctica.
Margaret Harlan, Helle Astrid Kjær, Aylin de Campo, Anders Svensson, Thomas Blunier, Vasileios Gkinis, Sarah Jackson, Christopher Plummer, and Tessa Vance
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-335, https://doi.org/10.5194/essd-2024-335, 2024
Preprint under review for ESSD
Short summary
Short summary
This paper provides high-resolution chemistry and impurity measurements from the Mount Brown South ice core in East Antarctica, from 873 to 2009 CE. Measurements include sodium, ammonium, hydrogen peroxide, electrolytic conductivity, and insoluble microparticles. Data are provided on three scales: 1 mm and 3 cm averaged depth resolution and decadally averaged. The paper also describes the continuous flow analysis systems used to collect the data as well as uncertainties and data quality.
Helen J. Shea, Ailie Gallant, Ariaan Purich, and Tessa R. Vance
EGUsphere, https://doi.org/10.5194/egusphere-2024-2660, https://doi.org/10.5194/egusphere-2024-2660, 2024
Short summary
Short summary
The tropical Pacific influences sea salt levels in the ice core from Mount Brown South (MBS), East Antarctica. High sea salt years are linked to stronger westerly winds and increased sea ice near MBS's northeast coast. El Niño events affect wind patterns around MBS, impacting sea salt sources. Low pressure storms off the coast might transport sea salts from sea ice regions to MBS. Identifying these mechanisms aids in the understanding of climate variability before instrumental records.
Max T. Nilssen, Danielle G. Udy, and Tessa R. Vance
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-39, https://doi.org/10.5194/cp-2024-39, 2024
Preprint under review for CP
Short summary
Short summary
Reanalyses use historical weather observations combined with computer models to estimate past weather, but they perform poorly in data sparse regions, like the southern Indian Ocean. We used weather typing and an ice core record to show that a reanalysis product does a better job at representing the weather conditions that lead to snowfall at the ice core site when key observations from the southern Indian Ocean (e.g. Macquarie Island) commence around the mid-20th century.
Tessa R. Vance, Nerilie J. Abram, Alison S. Criscitiello, Camilla K. Crockart, Aylin DeCampo, Vincent Favier, Vasileios Gkinis, Margaret Harlan, Sarah L. Jackson, Helle A. Kjær, Chelsea A. Long, Meredith K. Nation, Christopher T. Plummer, Delia Segato, Andrea Spolaor, and Paul T. Vallelonga
Clim. Past, 20, 969–990, https://doi.org/10.5194/cp-20-969-2024, https://doi.org/10.5194/cp-20-969-2024, 2024
Short summary
Short summary
This study presents the chronologies from the new Mount Brown South ice cores from East Antarctica, which were developed by counting annual layers in the ice core data and aligning these to volcanic sulfate signatures. The uncertainty in the dating is quantified, and we discuss initial results from seasonal cycle analysis and mean annual concentrations. The chronologies will underpin the development of new proxy records for East Antarctica spanning the past millennium.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
Sarah L. Jackson, Tessa R. Vance, Camilla Crockart, Andrew Moy, Christopher Plummer, and Nerilie J. Abram
Clim. Past, 19, 1653–1675, https://doi.org/10.5194/cp-19-1653-2023, https://doi.org/10.5194/cp-19-1653-2023, 2023
Short summary
Short summary
Ice core records are useful tools for reconstructing past climate. However, ice cores favour recording climate conditions at times when snowfall occurs. Large snowfall events in Antarctica are often associated with warmer-than-usual temperatures. We show that this results in a tendency for the Mount Brown South ice core record to preserve a temperature record biased to the climate conditions that exist during extreme events, rather than a temperature record that reflects the mean annual climate.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023, https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary
Short summary
We use satellite imagery and ice penetrating radar to investigate the stability of the Shackleton system in East Antarctica. We find significant changes in surface structures across the system and observe a significant increase in ice flow speed (up to 50 %) on the floating part of Scott Glacier. We conclude that knowledge remains woefully insufficient to explain recent observed changes in the grounded and floating regions of the system.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Yaowen Zheng, Lenneke M. Jong, Steven J. Phipps, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, and Tas D. van Ommen
Clim. Past, 17, 1973–1987, https://doi.org/10.5194/cp-17-1973-2021, https://doi.org/10.5194/cp-17-1973-2021, 2021
Short summary
Short summary
South West Western Australia has experienced a prolonged drought in recent decades. The causes of this drought are unclear. We use an ice core from East Antarctica to reconstruct changes in rainfall over the past 2000 years. We find that the current drought is unusual, with only two other droughts of similar severity having occurred during this period. Climate modelling shows that greenhouse gas emissions during the industrial era are likely to have contributed to the recent drying trend.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Lisa Craw, Adam Treverrow, Sheng Fan, Mark Peternell, Sue Cook, Felicity McCormack, and Jason Roberts
The Cryosphere, 15, 2235–2250, https://doi.org/10.5194/tc-15-2235-2021, https://doi.org/10.5194/tc-15-2235-2021, 2021
Short summary
Short summary
Ice sheet and ice shelf models rely on data from experiments to accurately represent the way ice moves. Performing experiments at the temperatures and stresses that are generally present in nature takes a long time, and so there are few of these datasets. Here, we test the method of speeding up an experiment by running it initially at a higher temperature, before dropping to a lower target temperature to generate the relevant data. We show that this method can reduce experiment time by 55 %.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Syed Abdul Salam, Jason L. Roberts, Felicity S. McCormack, Richard Coleman, and Jacqueline A. Halpin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-146, https://doi.org/10.5194/essd-2020-146, 2020
Publication in ESSD not foreseen
Short summary
Short summary
Accurate estimates of englacial temperature and geothermal heat flux are incredibly important
for constraining model simulations of ice dynamics (e.g. viscosity is temperature-dependent) and sliding. However, we currently have few direct measurements of vertical temperature (i.e. only at boreholes/ice domes) and geothermal heat flux in Antarctica. This method derives attenuation rates, that can then be mapped directly to englacial temperatures and geothermal heat flux.
Lanying Zhang, George Kuczera, Anthony S. Kiem, and Garry Willgoose
Hydrol. Earth Syst. Sci., 22, 6399–6414, https://doi.org/10.5194/hess-22-6399-2018, https://doi.org/10.5194/hess-22-6399-2018, 2018
Short summary
Short summary
Analyses of run lengths of Pacific decadal variability (PDV) suggest that there is no significant difference between run lengths in positive and negative phases of PDV and that it is more likely than not that the PDV run length has been non-stationary in the past millennium. This raises concerns about whether variability seen in the instrumental record (the last ~100 years), or even in the shorter 300–400 year paleoclimate reconstructions, is representative of the full range of variability.
Marie G. P. Cavitte, Frédéric Parrenin, Catherine Ritz, Duncan A. Young, Brice Van Liefferinge, Donald D. Blankenship, Massimo Frezzotti, and Jason L. Roberts
The Cryosphere, 12, 1401–1414, https://doi.org/10.5194/tc-12-1401-2018, https://doi.org/10.5194/tc-12-1401-2018, 2018
Short summary
Short summary
We reconstruct the pattern of surface accumulation in the region around Dome C, East Antarctica, over the last 73 kyr. We use internal isochrones interpreted from ice-penetrating radar surveys and a 1-D ice flow model to invert for time-averaged and paleo-accumulation rates. We observe that surface accumulation patterns are stable through the last 73 kyr, consistent with current observed regional precipitation gradients and consistent interactions between prevailing winds and surface slope.
A. F. M. Kamal Chowdhury, Natalie Lockart, Garry Willgoose, George Kuczera, Anthony S. Kiem, and Nadeeka Parana Manage
Hydrol. Earth Syst. Sci., 21, 6541–6558, https://doi.org/10.5194/hess-21-6541-2017, https://doi.org/10.5194/hess-21-6541-2017, 2017
Short summary
Short summary
Stochastic rainfall models are required to be be able to assess the reliability of dams used for urban water supply. Traditional Markov chain stochastic models do well at reproducing the mean and variance of rainfall at daily to weekly resolution but fail to simultaneously reproduce the variability of monthly to decadal rainfall. This paper presents four new extensions to Markov chain models that address this decadal deficiency and compares their performance for two field sites.
Elizabeth R. Thomas, J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, Brooke Medley, Jan Lenaerts, Nancy Bertler, Michiel R. van den Broeke, Daniel A. Dixon, Massimo Frezzotti, Barbara Stenni, Mark Curran, and Alexey A. Ekaykin
Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, https://doi.org/10.5194/cp-13-1491-2017, 2017
Short summary
Short summary
Regional Antarctic snow accumulation derived from 79 ice core records is evaluated as part of the PAGES Antarctica 2k working group. Our results show that surface mass balance for the total Antarctic ice sheet has increased at a rate of 7 ± 0.13 Gt dec-1 since 1800 AD, representing a net reduction in sea level of ~ 0.02 mm dec-1 since 1800 and ~ 0.04 mm dec-1 since 1900 AD. The largest contribution is from the Antarctic Peninsula.
Frédéric Parrenin, Marie G. P. Cavitte, Donald D. Blankenship, Jérôme Chappellaz, Hubertus Fischer, Olivier Gagliardini, Valérie Masson-Delmotte, Olivier Passalacqua, Catherine Ritz, Jason Roberts, Martin J. Siegert, and Duncan A. Young
The Cryosphere, 11, 2427–2437, https://doi.org/10.5194/tc-11-2427-2017, https://doi.org/10.5194/tc-11-2427-2017, 2017
Short summary
Short summary
The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC), reaching ~ 800 000 years. Obtaining an older palaeoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we estimate the age of basal ice in the Dome C area. We find that old ice (> 1.5 Myr) likely exists in two regions a few tens of kilometres away from EDC:
Little Dome C Patchand
North Patch.
Jason Roberts, Andrew Moy, Christopher Plummer, Tas van Ommen, Mark Curran, Tessa Vance, Samuel Poynter, Yaping Liu, Joel Pedro, Adam Treverrow, Carly Tozer, Lenneke Jong, Pippa Whitehouse, Laetitia Loulergue, Jerome Chappellaz, Vin Morgan, Renato Spahni, Adrian Schilt, Cecilia MacFarling Meure, David Etheridge, and Thomas Stocker
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-96, https://doi.org/10.5194/cp-2017-96, 2017
Preprint withdrawn
Short summary
Short summary
Here we present a revised Law Dome, Dome Summit South (DSS) ice core age model (denoted LD2017) that significantly improves the chronology over the last 88 thousand years. An ensemble approach was used, allowing for the computation of both a median age and associated uncertainty as a function of depth. We use a non-linear interpolation between age ties and unlike previous studies, we made an independent estimate of the snow accumulation rate, where required, for the use of gas based age ties.
Duncan A. Young, Jason L. Roberts, Catherine Ritz, Massimo Frezzotti, Enrica Quartini, Marie G. P. Cavitte, Carly R. Tozer, Daniel Steinhage, Stefano Urbini, Hugh F. J. Corr, Tas van Ommen, and Donald D. Blankenship
The Cryosphere, 11, 1897–1911, https://doi.org/10.5194/tc-11-1897-2017, https://doi.org/10.5194/tc-11-1897-2017, 2017
Short summary
Short summary
To find records of the greenhouse gases found in key periods of climate transition, we need to find sites of unmelted old ice at the base of the Antarctic ice sheet for ice core retrieval. A joint US–Australian–EU team performed a high-resolution survey of such a site (1 km line spacing) near Concordia Station in East Antarctica, using airborne ice-penetrating radar. We found promising targets in rough subglacial terrain, surrounded by subglacial lakes restricted below a minimum hydraulic head.
Felicity S. Graham, Jason L. Roberts, Ben K. Galton-Fenzi, Duncan Young, Donald Blankenship, and Martin J. Siegert
Earth Syst. Sci. Data, 9, 267–279, https://doi.org/10.5194/essd-9-267-2017, https://doi.org/10.5194/essd-9-267-2017, 2017
Short summary
Short summary
Antarctic bed topography datasets are interpolated onto low-resolution grids because our observed topography data are sparsely sampled. This has implications for ice-sheet model simulations, especially in regions prone to instability, such as grounding lines, where detailed knowledge of the topography is required. Here, we constructed a high-resolution synthetic bed elevation dataset using observed covariance properties to assess the dependence of simulated ice-sheet dynamics on grid resolution.
Paul Vallelonga, Niccolo Maffezzoli, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Ross Edwards, Gwyn Hughes, Emily Barker, Gunnar Spreen, Alfonso Saiz-Lopez, J. Pablo Corella, Carlos A. Cuevas, and Andrea Spolaor
Clim. Past, 13, 171–184, https://doi.org/10.5194/cp-13-171-2017, https://doi.org/10.5194/cp-13-171-2017, 2017
Short summary
Short summary
We present a study of bromine, iodine and sodium in an ice core from Law Dome, in coastal East Antarctica. We find that bromine and iodine variability at Law Dome is correlated to changes in the area of sea ice along the Law Dome coast as observed by satellite since the early 1970s. These findings are in agreement with a previous study based on MSA and confirm a long-term trend of sea ice decrease for this sector of Antarctica over the 20th century.
Andrew D. Magee, Danielle C. Verdon-Kidd, and Anthony S. Kiem
Nat. Hazards Earth Syst. Sci., 16, 1431–1447, https://doi.org/10.5194/nhess-16-1431-2016, https://doi.org/10.5194/nhess-16-1431-2016, 2016
Short summary
Short summary
We examine the spatiotemporal differences between three TC databases for the southwest Pacific region. In addition, the usefulness of pre-satellite era TC data (1945–1969) is evaluated. While changes in observational technologies from 1945 have undoubtedly improved our ability to detect and monitor TCs, we show that pre-satellite era TC data are not temporally or statistically different to post-satellite era data (1970–present).
Andrew D. Magee, Danielle C. Verdon-Kidd, Anthony S. Kiem, and Stephen A. Royle
Nat. Hazards Earth Syst. Sci., 16, 1091–1105, https://doi.org/10.5194/nhess-16-1091-2016, https://doi.org/10.5194/nhess-16-1091-2016, 2016
Short summary
Short summary
This study investigates how tropical cyclones impact urban residents of Fiji, Vanuatu and Tonga. We investigate how people perceive tropical cyclones (TCs), how they are impacted and what methods of adaptation are used to offset damage from TC activity. We propose a conceptual framework to merge the non-traditional knowledge of weather forecasting and climate science with weather-related traditional knowledge, and explore the possibilities of developing a multidimensional TC forecasting tool.
Carly R. Tozer, Tessa R. Vance, Jason L. Roberts, Anthony S. Kiem, Mark A. J. Curran, and Andrew D. Moy
Hydrol. Earth Syst. Sci., 20, 1703–1717, https://doi.org/10.5194/hess-20-1703-2016, https://doi.org/10.5194/hess-20-1703-2016, 2016
Short summary
Short summary
A 1013-year annual rainfall reconstruction was developed for the Williams River catchment in coastal eastern Australia, based on a linear relationship between sea salt deposition in East Antarctica and rainfall in eastern Australia. The reconstruction allows for the instrumental climate record (~ 100 years) to be assessed in the context of millennial climate variability, allowing for better characterisation of flood and drought risk.
Tessa R. Vance, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Carly R. Tozer, Ailie J. E. Gallant, Nerilie J. Abram, Tas D. van Ommen, Duncan A. Young, Cyril Grima, Don D. Blankenship, and Martin J. Siegert
Clim. Past, 12, 595–610, https://doi.org/10.5194/cp-12-595-2016, https://doi.org/10.5194/cp-12-595-2016, 2016
Short summary
Short summary
This study details a systematic approach to finding a new high-resolution East Antarctic ice core site. The study initially outlines seven criteria that a new site must fulfil, encompassing specific accumulation, ice dynamics and atmospheric circulation aspects. We then use numerous techniques including Antarctic surface mass balance syntheses, ground-truthing of satellite data by airborne radar surveys and reanalysis products to pinpoint promising regions.
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 19, 4735–4746, https://doi.org/10.5194/hess-19-4735-2015, https://doi.org/10.5194/hess-19-4735-2015, 2015
Short summary
Short summary
Rainfall intensity-frequency-duration (IFD) relationships are required for the design and planning of water supply and management systems around the world. Currently IFD information is based on the "stationary climate assumption". However, this paper provides evidence of regime shifts in annual maxima rainfall time series using 96 daily rainfall stations and 66 sub-daily rainfall stations across Australia. Importantly, current IFD relationships may under- or overestimate the design rainfall.
J. L. Lieser, M. A. J. Curran, A. R. Bowie, A. T. Davidson, S. J. Doust, A. D. Fraser, B. K. Galton-Fenzi, R. A. Massom, K. M. Meiners, J. Melbourne-Thomas, P. A. Reid, P. G. Strutton, T. R. Vance, M. Vancoppenolle, K. J. Westwood, and S. W. Wright
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-6187-2015, https://doi.org/10.5194/tcd-9-6187-2015, 2015
Revised manuscript has not been submitted
J. Roberts, C. Plummer, T. Vance, T. van Ommen, A. Moy, S. Poynter, A. Treverrow, M. Curran, and S. George
Clim. Past, 11, 697–707, https://doi.org/10.5194/cp-11-697-2015, https://doi.org/10.5194/cp-11-697-2015, 2015
Short summary
Short summary
The Law Dome, East Antarctica snow accumulation record is extended back to 22 BCE using a power-law vertical strain rate model. The periods of 380-442, 727-783 and 1970-2009 CE show above-average snow accumulation rates, while 663-704, 933-975 and 1429-1468 CE were below average. The calculated snow accumulation rates show good correlation with atmospheric reanalysis estimates and significant spatial correlation over a wide expanse of East Antarctica.
D. C. Verdon-Kidd, A. S. Kiem, and R. Moran
Hydrol. Earth Syst. Sci., 18, 2235–2256, https://doi.org/10.5194/hess-18-2235-2014, https://doi.org/10.5194/hess-18-2235-2014, 2014
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 18, 2257–2264, https://doi.org/10.5194/hess-18-2257-2014, https://doi.org/10.5194/hess-18-2257-2014, 2014
D. E. Gwyther, B. K. Galton-Fenzi, J. R. Hunter, and J. L. Roberts
Ocean Sci., 10, 267–279, https://doi.org/10.5194/os-10-267-2014, https://doi.org/10.5194/os-10-267-2014, 2014
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, https://doi.org/10.5194/tc-7-375-2013, 2013
J. L. Roberts, A. D. Moy, T. D. van Ommen, M. A. J. Curran, A. P. Worby, I. D. Goodwin, and M. Inoue
The Cryosphere, 7, 263–273, https://doi.org/10.5194/tc-7-263-2013, https://doi.org/10.5194/tc-7-263-2013, 2013
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Theory development
Phosphorus transport in a hotter and drier climate: in-channel release of legacy phosphorus during summer low-flow conditions
Synchronization frequency analysis and stochastic simulation of multisite flood flows based on the complicated vine-copula structure
Guiding community discussions on human–water challenges by serious gaming in the upper Ewaso Ngiro River basin, Kenya
Levee system transformation in coevolution between humans and water systems along the Kiso River, Japan
Reframing water demand management: a new co-governance framework coupling supply-side and demand-side solutions toward sustainability
HESS Opinions: The unsustainable use of groundwater conceals a “Day Zero”
Water productivity is in the eye of the beholder: benchmarking the multiple values produced by water use in the Phoenix metropolitan area
HESS Opinions: Drought impacts as failed prospects
Drought intensity–duration–frequency curves based on deficit in precipitation and streamflow for water resources management
Uncertainty in three dimensions: the challenges of communicating probabilistic flood forecast maps
To which extent are socio-hydrology studies truly integrative? The case of natural hazards and disaster research
Power and empowerment in transdisciplinary research: a negotiated approach for peri-urban groundwater problems in the Ganges Delta
A socio-hydrological framework for understanding conflict and cooperation with respect to transboundary rivers
A review of the applicability of the motivations and abilities (MOTA) framework for assessing the implementation success of water resources management plans and policies
Social dilemmas and poor water quality in household water systems
The limits to large-scale supply augmentation: exploring the crossroads of conflicting urban water system development pathways
Structural gaps of water resources knowledge in global river basins
Water sharing policies conditioned on hydrologic variability to inform reservoir operations
Characteristics of droughts in Argentina's core crop region
Quantifying the impacts of compound extremes on agriculture
Unraveling intractable water conflicts: the entanglement of science and politics in decision-making on large hydraulic infrastructure
A Water-Energy-Food Nexus approach for conducting trade-off analysis: Morocco's phosphate industry in the Khouribga region
A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada
Role-play simulations as an aid to achieve complex learning outcomes in hydrological science
Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions
Geostatistical interpolation by quantile kriging
Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience
Challenges to implementing bottom-up flood risk decision analysis frameworks: how strong are social networks of flooding professionals?
Socio-hydrological spaces in the Jamuna River floodplain in Bangladesh
An improved method for calculating the regional crop water footprint based on a hydrological process analysis
How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers
An alternative approach for socio-hydrology: case study research
HESS Opinions: A conceptual framework for assessing socio-hydrological resilience under change
Socio-hydrological perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain
Towards systematic planning of small-scale hydrological intervention-based research
Geoscience on television: a review of science communication literature in the context of geosciences
A "mental models" approach to the communication of subsurface hydrology and hazards
Review and classification of indicators of green water availability and scarcity
Socio-hydrological water balance for water allocation between human and environmental purposes in catchments
Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields
Complex network theory, streamflow, and hydrometric monitoring system design
Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts
Linked hydrologic and social systems that support resilience of traditional irrigation communities
Assessing blue and green water utilisation in wheat production of China from the perspectives of water footprint and total water use
A new framework for resolving conflicts over transboundary rivers using bankruptcy methods
Quantifying the human impact on water resources: a critical review of the water footprint concept
Endogenous change: on cooperation and water availability in two ancient societies
Socio-hydrology and the science–policy interface: a case study of the Saskatchewan River basin
Relationships between environmental governance and water quality in a growing metropolitan area of the Pacific Northwest, USA
A journey of a thousand miles begins with one small step – human agency, hydrological processes and time in socio-hydrology
Christine L. Dolph, Jacques C. Finlay, Brent Dalzell, and Gary W. Feyereisen
Hydrol. Earth Syst. Sci., 28, 5249–5294, https://doi.org/10.5194/hess-28-5249-2024, https://doi.org/10.5194/hess-28-5249-2024, 2024
Short summary
Short summary
“Legacy phosphorus” is the accumulation of phosphorus (P) in soils and sediments due to past inputs from fertilizer, manure, urban runoff, and wastewater. The release of this P from where it is stored in the landscape can cause poor water quality. Here, we examined whether legacy P is being released from stream and river channels in summer across a large number of watersheds, and we examined what factors (such as climate, land use, and soil types) might be driving that release.
Xinting Yu, Yuxue Guo, Siwei Chen, Haiting Gu, and Yue-Ping Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2266, https://doi.org/10.5194/egusphere-2024-2266, 2024
Short summary
Short summary
This study introduces RDV-Copula, a new method to simplify complex vine copula structures by reducing dimensionality while retaining essential data. Applied to Shifeng Creek in China, RDV-Copula captured critical spatial-temporal relationships, demonstrating high synchronization probabilities and significant flood risks. Notably, it was found that increasing structure complexity does not always improve accuracy. This method offers an efficient tool for analyzing and simulating multisite flows.
Charles Nduhiu Wamucii, Pieter R. van Oel, Adriaan J. Teuling, Arend Ligtenberg, John Mwangi Gathenya, Gert Jan Hofstede, Meine van Noordwijk, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3495–3518, https://doi.org/10.5194/hess-28-3495-2024, https://doi.org/10.5194/hess-28-3495-2024, 2024
Short summary
Short summary
The study explored the role of serious gaming in strengthening stakeholder engagement in addressing human–water challenges. The gaming approach guided community discussions toward implementable decisions. The results showed increased active participation, knowledge gain, and use of plural pronouns. We observed decreased individual interests and conflicts among game participants. The study presents important implications for creating a collective basis for water resources management.
Shinichiro Nakamura, Fuko Nakai, Yuichiro Ito, Ginga Okada, and Taikan Oki
Hydrol. Earth Syst. Sci., 28, 2329–2342, https://doi.org/10.5194/hess-28-2329-2024, https://doi.org/10.5194/hess-28-2329-2024, 2024
Short summary
Short summary
The formation of levee systems is an important factor in determining whether a society fights or adapts to floods. This study presents the levee system transformation process over the past century, from the indigenous levee system to modern continuous levees, and its impacts on human–flood coevolution in the Kiso River basin, Japan, and reveals the interactions between levee systems and human–water systems involving different scales and water phenomena.
Yueyi Liu, Hang Zheng, and Jianshi Zhao
Hydrol. Earth Syst. Sci., 28, 2223–2238, https://doi.org/10.5194/hess-28-2223-2024, https://doi.org/10.5194/hess-28-2223-2024, 2024
Short summary
Short summary
Global climate change is causing some previously arid regions to become more humid. Economic downturns in these areas are leading to a decrease in water demand. These factors are further leading to a certain level of under-utilization of existing water supply projects in the area. This study finds that actively releasing ecological water increases the sustainability of these water supply projects. The cost of ecological water supply can be recovered by investment in water-related businesses.
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Javier González, Roberto Rondanelli, Eugenia Gayó, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 28, 1605–1616, https://doi.org/10.5194/hess-28-1605-2024, https://doi.org/10.5194/hess-28-1605-2024, 2024
Short summary
Short summary
This opinion paper reflects on the risks of overusing groundwater savings to supply permanent water use requirements. Using novel data recently developed for Chile, we reveal how groundwater is being overused, causing ecological and socioeconomic impacts and concealing a Day Zero
scenario. Our argument underscores the need for reformed water allocation rules and sustainable management, shifting from a perception of groundwater as an unlimited source to a finite and vital one.
Benjamin L. Ruddell and Richard Rushforth
Hydrol. Earth Syst. Sci., 28, 1089–1106, https://doi.org/10.5194/hess-28-1089-2024, https://doi.org/10.5194/hess-28-1089-2024, 2024
Short summary
Short summary
This study finds that bedroom cities show higher water productivity based on the standard efficiency benchmark of gallons per capita, but core cities that host large businesses show higher water productivity using a basket of economic values like taxes, payroll, and business revenues. Using a broader basket of water productivity benchmarks that consider more of the community’s socio-economic values and goals could inform more balanced and equitable water allocation decisions by policymakers.
Germano G. Ribeiro Neto, Sarra Kchouk, Lieke A. Melsen, Louise Cavalcante, David W. Walker, Art Dewulf, Alexandre C. Costa, Eduardo S. P. R. Martins, and Pieter R. van Oel
Hydrol. Earth Syst. Sci., 27, 4217–4225, https://doi.org/10.5194/hess-27-4217-2023, https://doi.org/10.5194/hess-27-4217-2023, 2023
Short summary
Short summary
People induce and modify droughts. However, we do not know exactly how relevant human and natural processes interact nor how to evaluate the co-evolution of people and water. Prospect theory can help us to explain the emergence of drought impacts leading to failed welfare expectations (“prospects”) due to water shortage. Our approach helps to explain socio-hydrological phenomena, such as reservoir effects, and can contribute to integrated drought management considering the local context.
Yonca Cavus, Kerstin Stahl, and Hafzullah Aksoy
Hydrol. Earth Syst. Sci., 27, 3427–3445, https://doi.org/10.5194/hess-27-3427-2023, https://doi.org/10.5194/hess-27-3427-2023, 2023
Short summary
Short summary
With intensified extremes under climate change, water demand increases. Every drop of water is more valuable than before when drought is experienced particularly. We developed drought intensity–duration–frequency curves using physical indicators, the deficit in precipitation and streamflow, for a more straightforward interpretation. Tests with the observed major droughts in two climatologically different catchments confirmed the practical applicability of the curves under drought conditions.
Valérie Jean, Marie-Amélie Boucher, Anissa Frini, and Dominic Roussel
Hydrol. Earth Syst. Sci., 27, 3351–3373, https://doi.org/10.5194/hess-27-3351-2023, https://doi.org/10.5194/hess-27-3351-2023, 2023
Short summary
Short summary
Flood forecasts are only useful if they are understood correctly. They are also uncertain, and it is difficult to present all of the information about the forecast and its uncertainty on a map, as it is three dimensional (water depth and extent, in all directions). To overcome this, we interviewed 139 people to understand their preferences in terms of forecast visualization. We propose simple and effective ways of presenting flood forecast maps so that they can be understood and useful.
Franciele Maria Vanelli, Masato Kobiyama, and Mariana Madruga de Brito
Hydrol. Earth Syst. Sci., 26, 2301–2317, https://doi.org/10.5194/hess-26-2301-2022, https://doi.org/10.5194/hess-26-2301-2022, 2022
Short summary
Short summary
We conducted a systematic literature review of socio-hydrological studies applied to natural hazards and disaster research. Results indicate that there is a wide range of understanding of what
socialmeans in socio-hydrology, and monodisciplinary studies prevail. We expect to encourage socio-hydrologists to investigate different disasters using a more integrative approach that combines natural and social sciences tools by involving stakeholders and broadening the use of mixed methods.
Leon M. Hermans, Vishal Narain, Remi Kempers, Sharlene L. Gomes, Poulomi Banerjee, Rezaul Hasan, Mashfiqus Salehin, Shah Alam Khan, A. T. M. Zakir Hossain, Kazi Faisal Islam, Sheikh Nazmul Huda, Partha Sarathi Banerjee, Binoy Majumder, Soma Majumder, and Wil A. H. Thissen
Hydrol. Earth Syst. Sci., 26, 2201–2219, https://doi.org/10.5194/hess-26-2201-2022, https://doi.org/10.5194/hess-26-2201-2022, 2022
Short summary
Short summary
Transdisciplinary water research involves the co-creation of knowledge between various stakeholders to advance science and resolve complex societal problems. In this paper, we describe challenges and responses to address power and politics as part of transdisciplinary research. This is done based on a project that combined known principles for transdisciplinary research with a negotiated approach to support groundwater management in peri-urban villages in India and Bangladesh.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
John Conallin, Nathan Ning, Jennifer Bond, Nicholas Pawsey, Lee J. Baumgartner, Dwi Atminarso, Hannah McPherson, Wayne Robinson, and Garry Thorncraft
Hydrol. Earth Syst. Sci., 26, 1357–1370, https://doi.org/10.5194/hess-26-1357-2022, https://doi.org/10.5194/hess-26-1357-2022, 2022
Short summary
Short summary
Implementation failure is well known to be a major barrier to the success of water resource plans and policies. The motivations and abilities (MOTA) approach attempts to address this barrier, by providing a multi-stakeholder, multilevel tool to assess triggers, motivations and abilities supporting the implementation feasibility of plans. We review existing MOTA applications in various water management contexts and propose several complementary add-in applications to complement the approach.
Gopal Penny, Diogo Bolster, and Marc F. Müller
Hydrol. Earth Syst. Sci., 26, 1187–1202, https://doi.org/10.5194/hess-26-1187-2022, https://doi.org/10.5194/hess-26-1187-2022, 2022
Short summary
Short summary
In residential areas with a high housing density, septic contamination of private wells raises multiple health concerns. Often, few regulations exist to ensure good water quality in such systems, and water quality is often left to the homeowner. To address the potential obstacles to effective management, we identify situations where misplaced economic incentives hinder effective policy to support water quality in such systems.
Jonatan Godinez Madrigal, Nora Van Cauwenbergh, Jaime Hoogesteger, Pamela Claure Gutierrez, and Pieter van der
Zaag
Hydrol. Earth Syst. Sci., 26, 885–902, https://doi.org/10.5194/hess-26-885-2022, https://doi.org/10.5194/hess-26-885-2022, 2022
Short summary
Short summary
Urban water systems are facing an increasing pressure on their water resources to guarantee safe and sufficient water access. Water managers often use tried and tested strategies like large supply augmentation infrastructure to address water problems. However, these projects do not address key problems and cause water conflicts. We conducted transdisciplinary research to show how water conflicts can change the development pathway of urban water systems by implementing alternative solutions.
Shuanglei Wu, Yongping Wei, and Xuemei Wang
Hydrol. Earth Syst. Sci., 25, 5381–5398, https://doi.org/10.5194/hess-25-5381-2021, https://doi.org/10.5194/hess-25-5381-2021, 2021
Short summary
Short summary
Using publications indexed in the Web of Science, we investigated water resources knowledge development at the river basin scale since 1900 and found that legacy-driven knowledge structures, increasingly homogenized management issues, and largely static cross-disciplinary collaborations dominated highly researched river basins. A structural shift of water resources knowledge development to cope with the rapidly changing hydrological systems and associated management issues is urgently needed.
Guang Yang and Paul Block
Hydrol. Earth Syst. Sci., 25, 3617–3634, https://doi.org/10.5194/hess-25-3617-2021, https://doi.org/10.5194/hess-25-3617-2021, 2021
Short summary
Short summary
There is a clear trade-off between reservoir hydropower generation and the variability in reservoir water release, which can be used to derive water-sharing policies and provide critical insights during riparian negotiations regarding downstream flows supplementing during drought conditions. This type of water-sharing policy can effectively mitigate the water use conflicts between upstream and downstream countries, especially during drought periods.
Leandro Carlos Sgroi, Miguel Angel Lovino, Ernesto Hugo Berbery, and Gabriela Viviana Müller
Hydrol. Earth Syst. Sci., 25, 2475–2490, https://doi.org/10.5194/hess-25-2475-2021, https://doi.org/10.5194/hess-25-2475-2021, 2021
Short summary
Short summary
This study advances the understanding and impacts of drought on wheat, corn, and soybean yields over Argentina's main crop region, where crop production is more intense and represents the main contribution to the country's gross domestic product. Our analysis focuses on drought properties, including the magnitude, frequency at different timescales, duration, and severity. This new approach can be helpful for regional decision-making and planning by water managers and in agricultural contexts.
Iman Haqiqi, Danielle S. Grogan, Thomas W. Hertel, and Wolfram Schlenker
Hydrol. Earth Syst. Sci., 25, 551–564, https://doi.org/10.5194/hess-25-551-2021, https://doi.org/10.5194/hess-25-551-2021, 2021
Short summary
Short summary
This study combines a fine-scale weather product with outputs of a hydrological model to construct functional metrics of individual and compound hydroclimatic extremes for agriculture. Then, a yield response function is estimated with individual and compound metrics focusing on corn in the United States during the 1981–2015 period. The findings suggest that metrics of compound hydroclimatic extremes are better predictors of corn yield variations than metrics of individual extremes.
Jonatan Godinez-Madrigal, Nora Van Cauwenbergh, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 24, 4903–4921, https://doi.org/10.5194/hess-24-4903-2020, https://doi.org/10.5194/hess-24-4903-2020, 2020
Short summary
Short summary
Our research studies whether science depoliticizes water conflicts or instead conflicts politicize science–policy processes. We analyze a water conflict due to the development of large infrastructure. We interviewed key actors in the conflict and replicated the results of water resources models developed to solve the conflict. We found that knowledge produced in isolation has no positive effect in transforming the conflict; instead, its potential could be enhanced if produced collaboratively.
Sang-Hyun Lee, Amjad T. Assi, Bassel Daher, Fatima E. Mengoub, and Rabi H. Mohtar
Hydrol. Earth Syst. Sci., 24, 4727–4741, https://doi.org/10.5194/hess-24-4727-2020, https://doi.org/10.5194/hess-24-4727-2020, 2020
Short summary
Short summary
Proper water availability for the right place and time in a changing climate requires analysis of complex scientific, technical, socioeconomic, regulatory, and political issues. A Water-Energy-Food Nexus Phosphate (WEF-P) Tool, based on integrating supply chain processes, transportation, and water–energy footprints could assess the various scenarios to offer an effective means of ensuring sustainable management of limited resources to both agricultural areas and the phosphate industry.
Jared D. Wolfe, Kevin R. Shook, Chris Spence, and Colin J. Whitfield
Hydrol. Earth Syst. Sci., 23, 3945–3967, https://doi.org/10.5194/hess-23-3945-2019, https://doi.org/10.5194/hess-23-3945-2019, 2019
Short summary
Short summary
Watershed classification can identify regions expected to respond similarly to disturbance. Methods should extend beyond hydrology to include other environmental questions, such as ecology and water quality. We developed a classification for the Canadian Prairie and identified seven classes defined by watershed characteristics, including elevation, climate, wetland density, and surficial geology. Results provide a basis for evaluating watershed response to land management and climate condition.
Arvid Bring and Steve W. Lyon
Hydrol. Earth Syst. Sci., 23, 2369–2378, https://doi.org/10.5194/hess-23-2369-2019, https://doi.org/10.5194/hess-23-2369-2019, 2019
Short summary
Short summary
Hydrology education strives to teach students both quantitative ability and complex professional skills. Our research shows that role-play simulations are useful to make students able to integrate various analytical skills in complicated settings while not interfering with traditional teaching that fosters their ability to solve mathematical problems. Despite this there are several potential challenging areas in using role-plays, and we therefore suggest ways around these potential roadblocks.
Jin-Young Hyun, Shih-Yu Huang, Yi-Chen Ethan Yang, Vincent Tidwell, and Jordan Macknick
Hydrol. Earth Syst. Sci., 23, 2261–2278, https://doi.org/10.5194/hess-23-2261-2019, https://doi.org/10.5194/hess-23-2261-2019, 2019
Short summary
Short summary
This study applies a two-way coupled agent-based model (ABM) with a river-reservoir management model (RiverWare) to analyze the role of risk perception in water management decisions using the Bayesian inference mapping joined with the cost–loss model. The calibration results capture the dynamics of historical irrigated area and streamflow changes and suggest that the proposed framework improves the representation of human decision-making processes compared to conventional rule-based ABMs.
Henning Lebrenz and András Bárdossy
Hydrol. Earth Syst. Sci., 23, 1633–1648, https://doi.org/10.5194/hess-23-1633-2019, https://doi.org/10.5194/hess-23-1633-2019, 2019
Short summary
Short summary
Many variables, e.g., in hydrology, geology, and social sciences, are only observed at a few distinct measurement locations, and their actual distribution in the entire space remains unknown. We introduce the new geostatistical interpolation method of
quantile kriging, providing an improved estimator and associated uncertainty. It can also host variables, which would not fulfill the implicit presumptions of the traditional geostatistical interpolation methods.
Gemma J. Venhuizen, Rolf Hut, Casper Albers, Cathelijne R. Stoof, and Ionica Smeets
Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019, https://doi.org/10.5194/hess-23-393-2019, 2019
Short summary
Short summary
Do experts attach the same meaning as laypeople to terms often used in hydrology such as "river", "flooding" and "downstream"? In this study a survey was completed by 34 experts and 119 laypeople to answer this question. We found that there are some profound differences between experts and laypeople: words like "river" and "river basin" turn out to have a different interpretation between the two groups. However, when using pictures there is much more agreement between the groups.
James O. Knighton, Osamu Tsuda, Rebecca Elliott, and M. Todd Walter
Hydrol. Earth Syst. Sci., 22, 5657–5673, https://doi.org/10.5194/hess-22-5657-2018, https://doi.org/10.5194/hess-22-5657-2018, 2018
Short summary
Short summary
Decision-making for flood risk management is often the collective effort of professionals within government, NGOs, private practice, and advocacy groups. Our research investigates differences among flood experts within Tompkins County, New York (USA). We explore how they differ in their perceptions of flooding risk, desired project outcomes, and knowledge. We observe substantial differences among experts, and recommend formally acknowledging these perceptions when engaging in flood management.
Md Ruknul Ferdous, Anna Wesselink, Luigia Brandimarte, Kymo Slager, Margreet Zwarteveen, and Giuliano Di Baldassarre
Hydrol. Earth Syst. Sci., 22, 5159–5173, https://doi.org/10.5194/hess-22-5159-2018, https://doi.org/10.5194/hess-22-5159-2018, 2018
Short summary
Short summary
Socio-hydrological space (SHS) is a concept that enriches the study of socio-hydrology because it helps understand the detailed human–water interactions in a specific location. The concept suggests that the interactions between society and water are place-bound because of differences in social processes and river dynamics. This would be useful for developing interventions under disaster management, but also other development goals. SHS provides a new way of looking at socio-hydrological systems.
Xiao-Bo Luan, Ya-Li Yin, Pu-Te Wu, Shi-Kun Sun, Yu-Bao Wang, Xue-Rui Gao, and Jing Liu
Hydrol. Earth Syst. Sci., 22, 5111–5123, https://doi.org/10.5194/hess-22-5111-2018, https://doi.org/10.5194/hess-22-5111-2018, 2018
Short summary
Short summary
At present, the water footprint calculated by the quantitative method of crop production water footprint is only a field-scale water footprint, which does not contain all the water consumption of the crop growth process, so its calculated crop production water footprint is incomplete. In this study, the hydrological model SWAT was used to analyze the real water consumption in the course of crop growth, so that the actual water consumption of the crops could be more accurately reflected.
Hafsa Ahmed Munia, Joseph H. A. Guillaume, Naho Mirumachi, Yoshihide Wada, and Matti Kummu
Hydrol. Earth Syst. Sci., 22, 2795–2809, https://doi.org/10.5194/hess-22-2795-2018, https://doi.org/10.5194/hess-22-2795-2018, 2018
Short summary
Short summary
An analytical framework is developed drawing on ideas of regime shifts from resilience literature to understand the transition between cases where water scarcity is or is not experienced depending on whether water from upstream is or is not available. The analysis shows 386 million people dependent on upstream water to avoid possible stress and 306 million people dependent on upstream water to avoid possible shortage. This provides insights into implications for negotiations between sub-basins.
Erik Mostert
Hydrol. Earth Syst. Sci., 22, 317–329, https://doi.org/10.5194/hess-22-317-2018, https://doi.org/10.5194/hess-22-317-2018, 2018
Short summary
Short summary
This paper argues for an alternative approach for socio‒hydrology: detailed case study research. Detailed case study research can increase understanding of how society interacts with hydrology, offers more levers for management than coupled modelling, and facilitates interdisciplinary cooperation. The paper presents a case study of the Dommel Basin in the Netherlands and Belgium and compares this with a published model of the Kissimmee Basin in Florida.
Feng Mao, Julian Clark, Timothy Karpouzoglou, Art Dewulf, Wouter Buytaert, and David Hannah
Hydrol. Earth Syst. Sci., 21, 3655–3670, https://doi.org/10.5194/hess-21-3655-2017, https://doi.org/10.5194/hess-21-3655-2017, 2017
Short summary
Short summary
The paper aims to propose a conceptual framework that supports nuanced understanding and analytical assessment of resilience in socio-hydrological contexts. We identify three framings of resilience for different human–water couplings, which have distinct application fields and are used for different water management challenges. To assess and improve socio-hydrological resilience in each type, we introduce a
resilience canvasas a heuristic tool to design bespoke management strategies.
Songjun Han, Fuqiang Tian, Ye Liu, and Xianhui Duan
Hydrol. Earth Syst. Sci., 21, 3619–3633, https://doi.org/10.5194/hess-21-3619-2017, https://doi.org/10.5194/hess-21-3619-2017, 2017
Short summary
Short summary
The history of the co-evolution of the coupled human–groundwater system in Cangzhou (a region with the most serious depression cone in the North China Plain) is analyzed with a particular focus on how the groundwater crisis unfolded and how people attempted to settle the crisis. The evolution of the system was substantially impacted by two droughts. Further restoration of groundwater environment could be anticipated, but the occurrence of drought still remains an undetermined external forcing.
Kharis Erasta Reza Pramana and Maurits Willem Ertsen
Hydrol. Earth Syst. Sci., 20, 4093–4115, https://doi.org/10.5194/hess-20-4093-2016, https://doi.org/10.5194/hess-20-4093-2016, 2016
Short summary
Short summary
The effects of human actions in small-scale water development initiatives and the associated hydrological research activities are basically unspecified. We argue that more explicit attention helps to design more appropriate answers to the challenges faced in field studies. A more systematic approach is proposed that would be useful when designing field projects: two sets of questions on (1) dealing with surprises and (2) cost–benefits of data gathering.
Rolf Hut, Anne M. Land-Zandstra, Ionica Smeets, and Cathelijne R. Stoof
Hydrol. Earth Syst. Sci., 20, 2507–2518, https://doi.org/10.5194/hess-20-2507-2016, https://doi.org/10.5194/hess-20-2507-2016, 2016
Short summary
Short summary
To help geo-scientists prepare for TV appearances, we review the scientific literature on effective science communication related to TV. We identify six main themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We provide a detailed case study as illustration for each theme.
Hazel Gibson, Iain S. Stewart, Sabine Pahl, and Alison Stokes
Hydrol. Earth Syst. Sci., 20, 1737–1749, https://doi.org/10.5194/hess-20-1737-2016, https://doi.org/10.5194/hess-20-1737-2016, 2016
Short summary
Short summary
This paper provides empirical evidence for the value of using a psychology-based approach to communication of hydrology and hazards. It demonstrates the use of the "mental models" approach to risk assessment used in a regional geoscience context to explore the conceptions of the geological subsurface between experts and non-experts, and how that impacts on communication.
J. F. Schyns, A. Y. Hoekstra, and M. J. Booij
Hydrol. Earth Syst. Sci., 19, 4581–4608, https://doi.org/10.5194/hess-19-4581-2015, https://doi.org/10.5194/hess-19-4581-2015, 2015
Short summary
Short summary
The paper draws attention to the fact that green water (soil moisture returning to the atmosphere through evaporation) is a scarce resource, because its availability is limited and there are competing demands for green water. Around 80 indicators of green water availability and scarcity are reviewed and classified based on their scope and purpose of measurement. This is useful in order to properly include limitations in green water availability in water scarcity assessments.
S. Zhou, Y. Huang, Y. Wei, and G. Wang
Hydrol. Earth Syst. Sci., 19, 3715–3726, https://doi.org/10.5194/hess-19-3715-2015, https://doi.org/10.5194/hess-19-3715-2015, 2015
V. Ernstsen, P. Olsen, and A. E. Rosenbom
Hydrol. Earth Syst. Sci., 19, 3475–3488, https://doi.org/10.5194/hess-19-3475-2015, https://doi.org/10.5194/hess-19-3475-2015, 2015
M. J. Halverson and S. W. Fleming
Hydrol. Earth Syst. Sci., 19, 3301–3318, https://doi.org/10.5194/hess-19-3301-2015, https://doi.org/10.5194/hess-19-3301-2015, 2015
A. F. Van Loon, S. W. Ploum, J. Parajka, A. K. Fleig, E. Garnier, G. Laaha, and H. A. J. Van Lanen
Hydrol. Earth Syst. Sci., 19, 1993–2016, https://doi.org/10.5194/hess-19-1993-2015, https://doi.org/10.5194/hess-19-1993-2015, 2015
Short summary
Short summary
Hydrological drought types in cold climates have complex causing factors and impacts. In Austria and Norway, a lack of snowmelt is mainly related to below-normal winter precipitation, and a lack of glaciermelt is mainly related to below-normal summer temperature. These and other hydrological drought types impacted hydropower production, water supply, and agriculture in Europe and the US in the recent and far past. For selected drought events in Norway impacts could be coupled to causing factors.
A. Fernald, S. Guldan, K. Boykin, A. Cibils, M. Gonzales, B. Hurd, S. Lopez, C. Ochoa, M. Ortiz, J. Rivera, S. Rodriguez, and C. Steele
Hydrol. Earth Syst. Sci., 19, 293–307, https://doi.org/10.5194/hess-19-293-2015, https://doi.org/10.5194/hess-19-293-2015, 2015
X. C. Cao, P. T. Wu, Y. B. Wang, and X. N. Zhao
Hydrol. Earth Syst. Sci., 18, 3165–3178, https://doi.org/10.5194/hess-18-3165-2014, https://doi.org/10.5194/hess-18-3165-2014, 2014
K. Madani, M. Zarezadeh, and S. Morid
Hydrol. Earth Syst. Sci., 18, 3055–3068, https://doi.org/10.5194/hess-18-3055-2014, https://doi.org/10.5194/hess-18-3055-2014, 2014
J. Chenoweth, M. Hadjikakou, and C. Zoumides
Hydrol. Earth Syst. Sci., 18, 2325–2342, https://doi.org/10.5194/hess-18-2325-2014, https://doi.org/10.5194/hess-18-2325-2014, 2014
S. Pande and M. Ertsen
Hydrol. Earth Syst. Sci., 18, 1745–1760, https://doi.org/10.5194/hess-18-1745-2014, https://doi.org/10.5194/hess-18-1745-2014, 2014
P. Gober and H. S. Wheater
Hydrol. Earth Syst. Sci., 18, 1413–1422, https://doi.org/10.5194/hess-18-1413-2014, https://doi.org/10.5194/hess-18-1413-2014, 2014
H. Chang, P. Thiers, N. R. Netusil, J. A. Yeakley, G. Rollwagen-Bollens, S. M. Bollens, and S. Singh
Hydrol. Earth Syst. Sci., 18, 1383–1395, https://doi.org/10.5194/hess-18-1383-2014, https://doi.org/10.5194/hess-18-1383-2014, 2014
M. W. Ertsen, J. T. Murphy, L. E. Purdue, and T. Zhu
Hydrol. Earth Syst. Sci., 18, 1369–1382, https://doi.org/10.5194/hess-18-1369-2014, https://doi.org/10.5194/hess-18-1369-2014, 2014
Cited articles
Allen, K. J., Lee, G., Ling, F., Allie, S., Willis, M., and Baker, P. J.:
Palaeohydrology in climatological context: Developing the case for use of
remote predictors in Australian streamflow reconstructions, Appl. Geogr., 64, 132–152,
https://doi.org/10.1016/j.apgeog.2015.09.007, 2015a.
Allen, K. J., Nichols, S. C., Evans, R., Cook, E. R., Allie, S., Carson, G.,
Ling, F., and Baker, P. J.: Preliminary December–January inflow and
streamflow reconstructions from tree rings for western Tasmania,
southeastern Australia, Water Resour. Res., 51, 5487–5503,
https://doi.org/10.1002/2015wr017062, 2015b.
Allen, K. J., Nichols, S. C., Evans, R., Allie, S., Carson, G., Ling, F.,
Cook, E. R., Lee, G., and Baker, P. J.: A 277 year cool season dam inflow
reconstruction for Tasmania, southeastern Australia, Water Resour. Res., 53, 400–414, https://doi.org/10.1002/2016wr018906, 2017.
Armstrong, M. S., Kiem, A. S., and Vance, T. R.: Comparing instrumental,
palaeoclimate, and projected rainfall data: Implications for water resources
management and hydrological modelling, J. Hydrol., 31, 100728,
https://doi.org/10.1016/j.ejrh.2020.100728, 2020.
Barr, C., Tibby, J., Gell, P., Tyler, J., Zawadzki, A., and Jacobsen, G. E.:
Climate variability in south-eastern Australia over the last 1500 years
inferred from the high-resolution diatom records of two crater lakes,
Quat. Sci. Rev., 95, 115–131,
https://doi.org/10.1016/j.quascirev.2014.05.001, 2014.
Barr, C., Tibby, J., Leng, M. J., Tyler, J. J., Henderson, A. C. G.,
Overpeck, J. T., Simpson, G. L., Cole, J. E., Phipps, S. J., Marshall, J.
C., McGregor, G. B., Hua, Q., and McRobie, F. H.: Holocene El
Niño–Southern Oscillation variability reflected in subtropical
Australian precipitation, Sci. Rep., 9, 1627,
https://doi.org/10.1038/s41598-019-38626-3, 2019.
Barria, P., Peel, M. C., Walsh, K. J. E., and Muñoz, A.: The first
300-year streamflow reconstruction of a high-elevation river in Chile using
tree rings, Int. J. Clim., 38, 436–451,
https://doi.org/10.1002/joc.5186, 2018.
Buckley, B. M., Ummenhofer, C. C., D'Arrigo, R. D., Hansen, K. G., Truong,
L. H., Le, C. N., and Stahle, D. K.: Interdecadal Pacific Oscillation
reconstructed from trans-Pacific tree rings: 1350–2004 CE, Clim.
Dynam., 53, 3181–3196, https://doi.org/10.1007/s00382-019-04694-4, 2019.
Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., and Stahle, D. W.:
Long-Term Aridity Changes in the Western United States, Science, 306, 1015,
https://doi.org/10.1126/science.1102586, 2004.
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank,
D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L.,
Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M.,
Cooper, R., Čufar, K., Dittmar, C., Esper, J., Griggs, C., Gunnarson,
B., Günther, B., Gutierrez, E., Haneca, K., Helama, S., Herzig, F.,
Heussner, K.-U., Hofmann, J., Janda, P., Kontic, R., Köse, N., Kyncl,
T., Levanič, T., Linderholm, H., Manning, S., Melvin, T. M., Miles, D.,
Neuwirth, B., Nicolussi, K., Nola, P., Panayotov, M., Popa, I., Rothe, A.,
Seftigen, K., Seim, A., Svarva, H., Svoboda, M., Thun, T., Timonen, M.,
Touchan, R., Trotsiuk, V., Trouet, V., Walder, F., Ważny, T., Wilson,
R., and Zang, C.: Old World megadroughts and pluvials during the Common Era,
Sci. Adv., 1, e1500561, https://doi.org/10.1126/sciadv.1500561, 2015.
Davi, N. K., Pederson, N., Leland, C., Nachin, B., Suran, B., and Jacoby, G.
C.: Is eastern Mongolia drying? A long-term perspective of a multidecadal
trend, Water Resour. Res., 49, 151–158, https://doi.org/10.1029/2012wr011834, 2013.
Dixon, B. C., Tyler, J. J., Lorrey, A. M., Goodwin, I. D., Gergis, J., and Drysdale, R. N.: Low-resolution Australasian palaeoclimate records of the last 2000 years, Clim. Past, 13, 1403–1433, https://doi.org/10.5194/cp-13-1403-2017, 2017.
Dixon, B. C., Tyler, J. T., Henley, B. J., and Drysdale, R.: Regional
patterns of hydroclimate variability in southeastern Australia over the past
1200 years, Earth Space Sci. Open Arc., 32,
https://doi.org/10.1002/essoar.10501482.10501481, 2019.
England Jr, J. F., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas Jr,
W. O., Veilleux, A. G., Kiang, J. E., and Mason, J. R. R.: Guidelines for
determining flood flow frequency – Bulletin 17C. available at: https://pubs.er.usgs.gov/publication/tm4B5 (last access: 12 October 2020), Reston, VA, Report 4-B5, 168,
2019.
Feng, S., Hu, Q., Wu, Q., and Mann, M. E.: A Gridded Reconstruction of Warm
Season Precipitation for Asia Spanning the Past Half Millennium, J. Climate, 26, 2192–2204, https://doi.org/10.1175/JCLI-D-12-00099.1, 2013.
Fernández, A., Muñoz, A., González-Reyes, Á., Aguilera-Betti, I., Toledo, I., Puchi, P., Sauchyn, D., Crespo, S., Frene, C., Mundo, I., González, M., and Vignola, R.: Dendrohydrology and water resources management in south-central Chile: lessons from the Río Imperial streamflow reconstruction, Hydrol. Earth Syst. Sci., 22, 2921–2935, https://doi.org/10.5194/hess-22-2921-2018, 2018.
Gallant, A. J. E. and Gergis, J.: An experimental streamflow reconstruction
for the River Murray, Australia, 1783–1988, Water Resour. Res., 47,
https://doi.org/10.1029/2010wr009832, 2011.
Gallant, A. J. E., Phipps, S. J., Karoly, D. J., Mullan, A. B., and Lorrey,
A. M.: Nonstationary Australasian Teleconnections and Implications for
Paleoclimate Reconstructions, J. Climate, 26, 8827–8849,
https://doi.org/10.1175/jcli-d-12-00338.1, 2013.
Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L.,
Kyselý, J., and Kumar, R.: Revisiting the recent European droughts from
a long-term perspective, Sci. Rep., 8, 9499,
https://doi.org/10.1038/s41598-018-27464-4, 2018.
Heinrich, I., Weidner, K., Helle, G., Vos, H., Lindesay, J., and Banks, J.
C. G.: Interdecadal modulation of the relationship between ENSO, IPO and
precipitation: insights from tree rings in Australia, Clim. Dynam., 33,
63–73, https://doi.org/10.1007/s00382-009-0544-5, 2009.
Hendy, E. J., Gagan, M. K., and Lough, J. M.: Chronological control of coral
records using luminescent lines and evidence for non-stationary ENSO
teleconnections in northeast Australia, The Holocene, 13, 187–199,
https://doi.org/10.1191/0959683603hl606rp, 2003.
Ho, M., Verdon-Kidd, D. C., Kiem, A. S., and Drysdale, R. N.: Broadening the
spatial applicability of paleoclimate information – a case-study for the
Murray-Darling Basin, Australia, J. Climate, 27, 2477–2495, 2014.
Ho, M., Kiem, A. S. and Verdon-Kidd, D. C.: A paleoclimate rainfall
reconstruction in the Murray-Darling Basin (MDB), Australia: 1. Evaluation
of different paleoclimate archives, rainfall networks and reconstruction
techniques, Water Resour. Res., 51, https://doi.org/10.1002/2015WR017058, 2015a.
Ho, M., Kiem, A. S. and Verdon-Kidd, D. C.: A paleoclimate rainfall
reconstruction in the Murray-Darling Basin (MDB), Australia: 2. Assessing
hydroclimatic risk using preinstrumental information on wet and dry epochs,
Water Resour. Res., 51, https://doi.org/10.1002/2015WR017059, 2015b.
Holland, G. J., Lynch, A. H., and Leslie, L. M.: Australian East-Coast
Cyclones, Part I: Synoptic Overview and Case Study, Mon. Weather Rev.,
115, 3024–3036, https://doi.org/10.1175/1520-0493(1987)115<3024:Aeccpi>2.0.Co;2, 1987.
Johnson, F., White, C. J., van Dijk, A., Ekstrom, M., Evans, J. P., Jakob,
D., Kiem, A. S., Leonard, M., Rouillard, A., and Westra, S.: Natural hazards
in Australia: floods, Clim. Change, 139, 21–35,
https://doi.org/10.1007/s10584-10016-11689-y, 2016.
Jones, D. A., Wang, W., and Fawcett, R.: High-quality spatial climate
data-sets for Australia, Australian Meteorological and Oceanographic
Journal, 58, 233–248, https://doi.org/10.22499/2.5804.003, 2009.
Kiem, A. S. and Franks, S. W.: Multi-decadal variability of drought risk –
Eastern Australia, Hydrol. Proc., 18, 2039–2050, 2004.
Kiem, A. S., Franks, S. W., and Verdon, D. C.: Climate variability in the
land of fire and flooding rain, Australian Journal of Emergency Management,
21, 52–56, 2006.
Kiem, A. S.: Drought and water policy in Australia: challenges for the
future illustrated by the issues associated with water trading and climate
change adaptation in the Murray-Darling Basin, Glob. Environ. Change,
23, 1615–1626, 2013.
Kiem, A. S. and Austin, E. K.: Drought and the future of rural communities:
opportunities and challenges for climate change adaptation in regional
Victoria, Australia, Glob. Environ. Change, 23, 1307–1316,
https://doi.org/10.1016/j.gloenvcha.2013.1306.1003, 2013.
Kiem, A. S., Johnson, F., Westra, S., van Dijk, A., Evans, J. P., O'Donnell,
A., Rouillard, A., Barr, C., Tyler, J., Thyer, M., Jakob, D., Woldemeskel,
F., Sivakumar, B., and Mehrotra, R.: Natural hazards in Australia: droughts,
Climatic Change, 139, 37–54, https://doi.org/10.1007/s10584-016-1798-7, 2016.
Kiem, A. S., Vance, T. R., Tozer, C. R., Roberts, J. L., Dalla Pozza, R.,
Vitkovsky, J., Smolders, K., and Curran, M. A. J.: Learning from the past –
Using palaeoclimate data to better understand and manage drought in South
East Queensland (SEQ), Australia, J. Hydrol.,
29, 100686, https://doi.org/10.1016/j.ejrh.2020.100686, 2020.
King, A. D., Alexander, L. V., and Donat, M. G.: The efficacy of using
gridded data to examine extreme rainfall characteristics: a case study for
Australia, Int. J. Clim., 33, 2376–2387,
https://doi.org/10.1002/joc.3588, 2013.
Lara, A., Villalba, R., and Urrutia, R.: A 400-year tree-ring record of the
Puelo River summer–fall streamflow in the Valdivian Rainforest eco-region,
Chile, Clim. Change, 86, 331–356, https://doi.org/10.1007/s10584-007-9287-7, 2008.
Littell, J. S., Pederson, G. T., Gray, S. T., Tjoelker, M., Hamlet, A. F.,
and Woodhouse, C. A.: Reconstructions of Columbia River streamflow from
tree-ring chronologies in the Pacific Northwest, USA, J. Am Water. Resour. As., 52, 1121–1141,
https://doi.org/10.1111/1752-1688.12442, 2016.
Lough, J. M.: Great Barrier Reef coral luminescence reveals rainfall
variability over northeastern Australia since the 17th century,
Paleoceanography, 26, https://doi.org/10.1029/2010pa002050, 2011.
Martin, J. T., Pederson, G. T., Woodhouse, C. A., Cook, E. R., McCabe, G.
J., Wise, E. K., Erger, P., Dolan, L., McGuire, M., Gangopadhyay, S., Chase,
K., Littell, J. S., Gray, S. T., George, S. S., Friedman, J., Sauchyn, D.,
Jacques, J. S., and King, J.: 1200 years of Upper Missouri River streamflow
reconstructed from tree rings, Quat. Sci. Rev., 224, 105971,
https://doi.org/10.1016/j.quascirev.2019.105971, 2019.
McDonald, J., Drysdale, R., Hill, D., Chisari, R., and Wong, H.: The
hydrochemical response of cave drip waters to sub-annual and inter-annual
climate variability, Wombeyan Caves, SE Australia, Chem. Geol., 244,
605–623, https://doi.org/10.1016/j.chemgeo.2007.07.007, 2007.
McGowan, H. A., Marx, S. K., Denholm, J., Soderholm, J., and Kamber, B. S.:
Reconstructing annual inflows to the headwater catchments of the Murray
River, Australia, using the Pacific Decadal Oscillation, Geophys. Res. Lett., 36, https://doi.org/10.1029/2008gl037049, 2009.
McMahon, G. M. and Kiem, A. S.: Large floods in South East Queensland,
Australia: is it valid to assume they occur randomly?, Australian Journal
of Water Resources, 22, 4–14, https://doi.org/10.1080/13241583.13242018.11446677, 2018.
Natural Resources Canada: Federal hydrologic and hydraulic procedures for
floodplain delineation; Natural Resources Canada; Public Safety Canada,
Natural Resources Canada, General Information Product 113e, (ed. version
1.0), (Open
Access), https://doi.org/10.4095/299808, 61 pp., 2019.
Neukom, R., Gergis, J., Karoly, D. J., Wanner, H., Curran, M., Elbert, J.,
González-Rouco, F., Linsley, B. K., Moy, A. D., Mundo, I., Raible, C.
C., Steig, E. J., van Ommen, T., Vance, T., Villalba, R., Zinke, J., and
Frank, D.: Inter-hemispheric temperature variability over the past
millennium, Nat. Clim. Change, 4, 362–367, https://doi.org/10.1038/nclimate2174, 2014.
Nguyen, H. T. T. and Galelli, S.: A Linear Dynamical Systems Approach to
Streamflow Reconstruction Reveals History of Regime Shifts in Northern
Thailand, Water Resour. Res., 54, 2057–2077, https://doi.org/10.1002/2017wr022114,
2018.
Palmer, J. G., Cook, E. R., Turney, C. S. M., Allen, K., Fenwick, P., Cook,
B. I., O'Donnell, A., Lough, J., Grierson, P., and Baker, P.: Drought
variability in the eastern Australia and New Zealand summer drought atlas
(ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation,
Environ. Res. Lett., 10, 124002, https://doi.org/10.1088/1748-9326/10/12/124002,
2015.
Pederson, N., Hessl, A. E., Baatarbileg, N., Anchukaitis, K. J., and Di
Cosmo, N.: Pluvials, droughts, the Mongol Empire, and modern Mongolia,
P. Natl. Acad. Sci. USA, 111, 4375,
https://doi.org/10.1073/pnas.1318677111, 2014.
Perşoiu, A., Onac, B. P., Wynn, J. G., Blaauw, M., Ionita, M., and Hansson,
M.: Holocene winter climate variability in Central and Eastern Europe,
Sci. Rep., 7, 1196, https://doi.org/10.1038/s41598-017-01397-w, 2017.
Pui, A., Lal, A., and Sharma, A.: How does the Interdecadal Pacific
Oscillation affect design floods in Australia?, Water Resour. Res.,
47, https://doi.org/10.1029/2010wr009420, 2011.
Rao, M. P., Cook, E. R., Cook, B. I., Palmer, J. G., Uriarte, M., Devineni,
N., Lall, U., D'Arrigo, R. D., Woodhouse, C. A., Ahmed, M., Zafar, M. U.,
Khan, N., Khan, A., and Wahab, M.: Six Centuries of Upper Indus Basin
Streamflow Variability and Its Climatic Drivers, Water Resour. Res.,
54, 5687–5701, https://doi.org/10.1029/2018wr023080, 2018.
Robeson, S. M., Maxwell, J. T., and Ficklin, D. L.: Bias Correction of
Paleoclimatic Reconstructions: A New Look at 1,200+ Years of Upper
Colorado River Flow, Geophys. Res. Lett., 47, e2019GL086689,
https://doi.org/10.1029/2019gl086689, 2020.
Tozer, C. R., Kiem, A. S., and Verdon-Kidd, D. C.: On the uncertainties associated with using gridded rainfall data as a proxy for observed, Hydrol. Earth Syst. Sci., 16, 1481–1499, https://doi.org/10.5194/hess-16-1481-2012, 2012.
Tozer, C. R., Vance, T. R., Roberts, J. L., Kiem, A. S., Curran, M. A. J., and Moy, A. D.: An ice core derived 1013-year catchment-scale annual rainfall reconstruction in subtropical eastern Australia, Hydrol. Earth Syst. Sci., 20, 1703–1717, https://doi.org/10.5194/hess-20-1703-2016, 2016.
Tozer, C. R., Kiem, A. S., Vance, T. R., Roberts, J. L., Curran, M. A. J.,
and Moy, A. D.: Reconstructing pre-instrumental streamflow in Eastern
Australia using a water balance approach, J. Hydrol., 558,
632–646, 2018.
Urrutia, R. B., Lara, A., Villalba, R., Christie, D. A., Le Quesne, C., and
Cuq, A.: Multicentury tree ring reconstruction of annual streamflow for the
Maule River watershed in south central Chile, Water Resour. Res., 47,
https://doi.org/10.1029/2010wr009562, 2011.
Van den Honert, R. C. and McAneney, J.: The 2011 Brisbane Floods: Causes,
Impacts and Implications, Water, 3, 1149–1173,
https://doi.org/10.3390/w3041149, 2011.
Vance, T. R., Ommen, T. D. V., Curran, M. A. J., Plummer, C. T., and Moy, A.
D.: A Millennial Proxy Record of ENSO and Eastern Australian Rainfall from
the Law Dome Ice Core, East Antarctica, J. Climate, 26, 710–725,
https://doi.org/10.1175/jcli-d-12-00003.1, 2013.
Vance, T. R., Roberts, J. L., Plummer, C. T., Kiem, A. S., and van Ommen, T.
D.: Interdecadal Pacific variability and eastern Australian mega-droughts
over the last millennium, Geophys. Res. Lett., 41,
https://doi.org/10.1002/2014GL062447, 2015.
Verdon-Kidd, D. C., and Kiem, A. S.: Nature and causes of protracted
droughts in Southeast Australia – Comparison between the Federation, WWII
and Big Dry droughts, Geophys. Res. Lett., 36, L22707,
https://doi.org/10.1029/2009GL041067, 2009.
Wang, J. K., Johnson, K. R., Borsato, A., Amaya, D. J., Griffiths, M. L.,
Henderson, G. M., Frisia, S., and Mason, A.: Hydroclimatic variability in
Southeast Asia over the past two millennia, Earth Planet. Sci. Lett., 525, 115737,
https://doi.org/10.1016/j.epsl.2019.115737, 2019.
Zhang, L., Kuczera, G., Kiem, A. S., and Willgoose, G.: Using paleoclimate reconstructions to analyse hydrological epochs associated with Pacific decadal variability, Hydrol. Earth Syst. Sci., 22, 6399–6414, https://doi.org/10.5194/hess-22-6399-2018, 2018.
Short summary
Palaeoclimate information was analysed for eastern Australia to determine when (and where) there was agreement about the timing of wet and dry epochs in the pre-instrumental period (1000–1899). The results show that instrumental records (~1900–present) underestimate the full range of rainfall variability that has occurred. When coupled with projected impacts of climate change and growing demands, these results highlight major challenges for water resource management and infrastructure.
Palaeoclimate information was analysed for eastern Australia to determine when (and where) there...