Articles | Volume 24, issue 10
https://doi.org/10.5194/hess-24-4903-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-4903-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unraveling intractable water conflicts: the entanglement of science and politics in decision-making on large hydraulic infrastructure
Jonatan Godinez-Madrigal
CORRESPONDING AUTHOR
Department of Land and Water Management, IHE Delft, Delft, the Netherlands
Water Management Department, TU Delft, Delft, the Netherlands
Nora Van Cauwenbergh
Department of Land and Water Management, IHE Delft, Delft, the Netherlands
Pieter van der Zaag
Department of Land and Water Management, IHE Delft, Delft, the Netherlands
Water Management Department, TU Delft, Delft, the Netherlands
Related authors
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024, https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary
Short summary
The exact power of models often remains hidden, especially when neutrality is claimed. Our review of 61 scientific articles shows that in the scientific literature little attention is given to the power of water models to influence development processes and outcomes. However, there is a lot to learn from those who are openly reflexive. Based on lessons from the review, we call for power-sensitive modelling, which means that people are critical about how models are made and with what effects.
Jonatan Godinez Madrigal, Nora Van Cauwenbergh, Jaime Hoogesteger, Pamela Claure Gutierrez, and Pieter van der
Zaag
Hydrol. Earth Syst. Sci., 26, 885–902, https://doi.org/10.5194/hess-26-885-2022, https://doi.org/10.5194/hess-26-885-2022, 2022
Short summary
Short summary
Urban water systems are facing an increasing pressure on their water resources to guarantee safe and sufficient water access. Water managers often use tried and tested strategies like large supply augmentation infrastructure to address water problems. However, these projects do not address key problems and cause water conflicts. We conducted transdisciplinary research to show how water conflicts can change the development pathway of urban water systems by implementing alternative solutions.
Jonatan Godinez Madrigal, Pieter van der Zaag, and Nora van Cauwenbergh
Proc. IAHS, 376, 57–62, https://doi.org/10.5194/piahs-376-57-2018, https://doi.org/10.5194/piahs-376-57-2018, 2018
Short summary
Short summary
A part of the population of Mexico is undergoing severe water crises vis-a-vis with the quantity and quality of water. The water authority's strategy dwells solely in infrastructure development to tackle the symptoms, not the causes. The paper summarizes how the causes of crises lie not in the lack of infrastructure but in a deficient management and governance. I did the research because I'd to influence on policy, and I did it through fieldwork and critical literature review.
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024, https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary
Short summary
The exact power of models often remains hidden, especially when neutrality is claimed. Our review of 61 scientific articles shows that in the scientific literature little attention is given to the power of water models to influence development processes and outcomes. However, there is a lot to learn from those who are openly reflexive. Based on lessons from the review, we call for power-sensitive modelling, which means that people are critical about how models are made and with what effects.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024, https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Short summary
For the first time, we analyse the economic and ecological performance of existing multiple big reservoirs on a daily timescale for a major river basin (upper Cauvery) in India, where pre-intervention data were not available but where there are increasing calls for such assessments. Results show that smaller reservoirs on smaller streams that maximize the economic value of stored water are better for the basin economy and the environment. The approach can help to prioritize dam removals.
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023, https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Short summary
The construction of two dams in the Lower Volta River, Ghana, adversely affected downstream riverine ecosystems and communities. In contrast, Ghana has enjoyed vast economic benefits from the dams. Herein lies the challenge; there exists a trade-off between water for river ecosystems and water for anthropogenic water demands such hydropower. In this study, we quantify these trade-offs and show that there is room for providing environmental flows under current and future climatic conditions.
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-10, https://doi.org/10.5194/hess-2023-10, 2023
Manuscript not accepted for further review
Short summary
Short summary
The present study offers a hydro-economic method for evaluating the effects of multiple of dams on river ecosystem services under various scenarios of spatially placed reservoirs. Tradeoff analysis between agricultural production and fish species richness is used to examine the economic and environmental feasibility of multiple dams at basin scale. Smaller reservoirs on basin tributaries maximize the value of stored water while benefiting both the economy and the environment.
Abebe D. Chukalla, Marloes L. Mul, Pieter van der Zaag, Gerardo van Halsema, Evaristo Mubaya, Esperança Muchanga, Nadja den Besten, and Poolad Karimi
Hydrol. Earth Syst. Sci., 26, 2759–2778, https://doi.org/10.5194/hess-26-2759-2022, https://doi.org/10.5194/hess-26-2759-2022, 2022
Short summary
Short summary
New techniques to monitor the performance of irrigation schemes are vital to improve land and water productivity. We developed a framework and applied the remotely sensed FAO WaPOR dataset to assess uniformity, equity, adequacy, and land and water productivity at the Xinavane sugarcane estate, segmented by three irrigation methods. The developed performance assessment framework and the Python script in Jupyter Notebooks can aid in such irrigation performance analysis in other regions.
Jonatan Godinez Madrigal, Nora Van Cauwenbergh, Jaime Hoogesteger, Pamela Claure Gutierrez, and Pieter van der
Zaag
Hydrol. Earth Syst. Sci., 26, 885–902, https://doi.org/10.5194/hess-26-885-2022, https://doi.org/10.5194/hess-26-885-2022, 2022
Short summary
Short summary
Urban water systems are facing an increasing pressure on their water resources to guarantee safe and sufficient water access. Water managers often use tried and tested strategies like large supply augmentation infrastructure to address water problems. However, these projects do not address key problems and cause water conflicts. We conducted transdisciplinary research to show how water conflicts can change the development pathway of urban water systems by implementing alternative solutions.
Jonatan Godinez Madrigal, Pieter van der Zaag, and Nora van Cauwenbergh
Proc. IAHS, 376, 57–62, https://doi.org/10.5194/piahs-376-57-2018, https://doi.org/10.5194/piahs-376-57-2018, 2018
Short summary
Short summary
A part of the population of Mexico is undergoing severe water crises vis-a-vis with the quantity and quality of water. The water authority's strategy dwells solely in infrastructure development to tackle the symptoms, not the causes. The paper summarizes how the causes of crises lie not in the lack of infrastructure but in a deficient management and governance. I did the research because I'd to influence on policy, and I did it through fieldwork and critical literature review.
Tesfay G. Gebremicael, Yasir A. Mohamed, Pieter van der Zaag, Amdom G. Berhe, Gebremedhin G. Haile, Eyasu Y. Hagos, and Mulubrhan K. Hagos
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-504, https://doi.org/10.5194/hess-2017-504, 2017
Manuscript not accepted for further review
Short summary
Short summary
Eight satellite-based rainfall products were evaluated using a comprehensive approach against rain gauge networks over the complex topography of the upper Tekeze-Atbara tributary of the Nile basin. Results showed that CHIRPS, TRMM, and RFEv2 performed well and were able to capture the ground rainfall compared to the remaining five products. Unlike in temporal scale, the performance of the products did not show a uniform pattern with respect to spatial scale.
Tesfay G. Gebremicael, Yasir A. Mohamed, Pieter v. Zaag, and Eyasu Y. Hagos
Hydrol. Earth Syst. Sci., 21, 2127–2142, https://doi.org/10.5194/hess-21-2127-2017, https://doi.org/10.5194/hess-21-2127-2017, 2017
Short summary
Short summary
This study was conducted to understand the spatio-temporal variations of streamflow in the Tekezē basin. Results showed rainfall over the basin did not significantly change. However, streamflow experienced high variabilities at seasonal and annual scales. Further studies are needed to verify hydrological changes by identifying the physical mechanisms behind those changes. Findings are useful as prerequisite for studying the effects of catchment management dynamics on the hydrological processes.
A. M. L. Saraiva Okello, I. Masih, S. Uhlenbrook, G. P. W. Jewitt, P. van der Zaag, and E. Riddell
Hydrol. Earth Syst. Sci., 19, 657–673, https://doi.org/10.5194/hess-19-657-2015, https://doi.org/10.5194/hess-19-657-2015, 2015
Short summary
Short summary
We studied long-term daily records of rainfall and streamflow of the Incomati River basin in southern Africa. We used statistical analysis and the Indicators of Hydrologic Alteration tool to describe the spatial and temporal variability flow regime. We found significant declining trends in October flows, and low flow indicators; however, no significant trend was found in rainfall. Land use and flow regulation are larger drivers of temporal changes in streamflow than climatic forces in the basin.
F. F. Worku, M. Werner, N. Wright, P. van der Zaag, and S. S. Demissie
Hydrol. Earth Syst. Sci., 18, 3837–3853, https://doi.org/10.5194/hess-18-3837-2014, https://doi.org/10.5194/hess-18-3837-2014, 2014
J. K. Kiptala, M. L. Mul, Y. A. Mohamed, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 2287–2303, https://doi.org/10.5194/hess-18-2287-2014, https://doi.org/10.5194/hess-18-2287-2014, 2014
H. H. G. Savenije, A. Y. Hoekstra, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 319–332, https://doi.org/10.5194/hess-18-319-2014, https://doi.org/10.5194/hess-18-319-2014, 2014
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Theory development
Guiding community discussions on human–water challenges by serious gaming in the upper Ewaso Ngiro River basin, Kenya
Levee system transformation in coevolution between humans and water systems along the Kiso River, Japan
Reframing water demand management: a new co-governance framework coupling supply-side and demand-side solutions toward sustainability
HESS Opinions: The unsustainable use of groundwater conceals a “Day Zero”
Water productivity is in the eye of the beholder: benchmarking the multiple values produced by water use in the Phoenix metropolitan area
HESS Opinions: Drought impacts as failed prospects
Drought intensity–duration–frequency curves based on deficit in precipitation and streamflow for water resources management
Uncertainty in three dimensions: the challenges of communicating probabilistic flood forecast maps
To which extent are socio-hydrology studies truly integrative? The case of natural hazards and disaster research
Power and empowerment in transdisciplinary research: a negotiated approach for peri-urban groundwater problems in the Ganges Delta
A socio-hydrological framework for understanding conflict and cooperation with respect to transboundary rivers
A review of the applicability of the motivations and abilities (MOTA) framework for assessing the implementation success of water resources management plans and policies
Social dilemmas and poor water quality in household water systems
The limits to large-scale supply augmentation: exploring the crossroads of conflicting urban water system development pathways
Structural gaps of water resources knowledge in global river basins
Water sharing policies conditioned on hydrologic variability to inform reservoir operations
Characteristics of droughts in Argentina's core crop region
Quantifying the impacts of compound extremes on agriculture
Comparison of published palaeoclimate records suitable for reconstructing annual to sub-decadal hydroclimatic variability in eastern Australia: implications for water resource management and planning
A Water-Energy-Food Nexus approach for conducting trade-off analysis: Morocco's phosphate industry in the Khouribga region
A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada
Role-play simulations as an aid to achieve complex learning outcomes in hydrological science
Using a coupled agent-based modeling approach to analyze the role of risk perception in water management decisions
Geostatistical interpolation by quantile kriging
Flooded by jargon: how the interpretation of water-related terms differs between hydrology experts and the general audience
Challenges to implementing bottom-up flood risk decision analysis frameworks: how strong are social networks of flooding professionals?
Socio-hydrological spaces in the Jamuna River floodplain in Bangladesh
An improved method for calculating the regional crop water footprint based on a hydrological process analysis
How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers
An alternative approach for socio-hydrology: case study research
HESS Opinions: A conceptual framework for assessing socio-hydrological resilience under change
Socio-hydrological perspectives of the co-evolution of humans and groundwater in Cangzhou, North China Plain
Towards systematic planning of small-scale hydrological intervention-based research
Geoscience on television: a review of science communication literature in the context of geosciences
A "mental models" approach to the communication of subsurface hydrology and hazards
Review and classification of indicators of green water availability and scarcity
Socio-hydrological water balance for water allocation between human and environmental purposes in catchments
Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields
Complex network theory, streamflow, and hydrometric monitoring system design
Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts
Linked hydrologic and social systems that support resilience of traditional irrigation communities
Assessing blue and green water utilisation in wheat production of China from the perspectives of water footprint and total water use
A new framework for resolving conflicts over transboundary rivers using bankruptcy methods
Quantifying the human impact on water resources: a critical review of the water footprint concept
Endogenous change: on cooperation and water availability in two ancient societies
Socio-hydrology and the science–policy interface: a case study of the Saskatchewan River basin
Relationships between environmental governance and water quality in a growing metropolitan area of the Pacific Northwest, USA
A journey of a thousand miles begins with one small step – human agency, hydrological processes and time in socio-hydrology
Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji–Tire model
Acting, predicting and intervening in a socio-hydrological world
Charles Nduhiu Wamucii, Pieter R. van Oel, Adriaan J. Teuling, Arend Ligtenberg, John Mwangi Gathenya, Gert Jan Hofstede, Meine van Noordwijk, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3495–3518, https://doi.org/10.5194/hess-28-3495-2024, https://doi.org/10.5194/hess-28-3495-2024, 2024
Short summary
Short summary
The study explored the role of serious gaming in strengthening stakeholder engagement in addressing human–water challenges. The gaming approach guided community discussions toward implementable decisions. The results showed increased active participation, knowledge gain, and use of plural pronouns. We observed decreased individual interests and conflicts among game participants. The study presents important implications for creating a collective basis for water resources management.
Shinichiro Nakamura, Fuko Nakai, Yuichiro Ito, Ginga Okada, and Taikan Oki
Hydrol. Earth Syst. Sci., 28, 2329–2342, https://doi.org/10.5194/hess-28-2329-2024, https://doi.org/10.5194/hess-28-2329-2024, 2024
Short summary
Short summary
The formation of levee systems is an important factor in determining whether a society fights or adapts to floods. This study presents the levee system transformation process over the past century, from the indigenous levee system to modern continuous levees, and its impacts on human–flood coevolution in the Kiso River basin, Japan, and reveals the interactions between levee systems and human–water systems involving different scales and water phenomena.
Yueyi Liu, Hang Zheng, and Jianshi Zhao
Hydrol. Earth Syst. Sci., 28, 2223–2238, https://doi.org/10.5194/hess-28-2223-2024, https://doi.org/10.5194/hess-28-2223-2024, 2024
Short summary
Short summary
Global climate change is causing some previously arid regions to become more humid. Economic downturns in these areas are leading to a decrease in water demand. These factors are further leading to a certain level of under-utilization of existing water supply projects in the area. This study finds that actively releasing ecological water increases the sustainability of these water supply projects. The cost of ecological water supply can be recovered by investment in water-related businesses.
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Javier González, Roberto Rondanelli, Eugenia Gayó, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 28, 1605–1616, https://doi.org/10.5194/hess-28-1605-2024, https://doi.org/10.5194/hess-28-1605-2024, 2024
Short summary
Short summary
This opinion paper reflects on the risks of overusing groundwater savings to supply permanent water use requirements. Using novel data recently developed for Chile, we reveal how groundwater is being overused, causing ecological and socioeconomic impacts and concealing a Day Zero
scenario. Our argument underscores the need for reformed water allocation rules and sustainable management, shifting from a perception of groundwater as an unlimited source to a finite and vital one.
Benjamin L. Ruddell and Richard Rushforth
Hydrol. Earth Syst. Sci., 28, 1089–1106, https://doi.org/10.5194/hess-28-1089-2024, https://doi.org/10.5194/hess-28-1089-2024, 2024
Short summary
Short summary
This study finds that bedroom cities show higher water productivity based on the standard efficiency benchmark of gallons per capita, but core cities that host large businesses show higher water productivity using a basket of economic values like taxes, payroll, and business revenues. Using a broader basket of water productivity benchmarks that consider more of the community’s socio-economic values and goals could inform more balanced and equitable water allocation decisions by policymakers.
Germano G. Ribeiro Neto, Sarra Kchouk, Lieke A. Melsen, Louise Cavalcante, David W. Walker, Art Dewulf, Alexandre C. Costa, Eduardo S. P. R. Martins, and Pieter R. van Oel
Hydrol. Earth Syst. Sci., 27, 4217–4225, https://doi.org/10.5194/hess-27-4217-2023, https://doi.org/10.5194/hess-27-4217-2023, 2023
Short summary
Short summary
People induce and modify droughts. However, we do not know exactly how relevant human and natural processes interact nor how to evaluate the co-evolution of people and water. Prospect theory can help us to explain the emergence of drought impacts leading to failed welfare expectations (“prospects”) due to water shortage. Our approach helps to explain socio-hydrological phenomena, such as reservoir effects, and can contribute to integrated drought management considering the local context.
Yonca Cavus, Kerstin Stahl, and Hafzullah Aksoy
Hydrol. Earth Syst. Sci., 27, 3427–3445, https://doi.org/10.5194/hess-27-3427-2023, https://doi.org/10.5194/hess-27-3427-2023, 2023
Short summary
Short summary
With intensified extremes under climate change, water demand increases. Every drop of water is more valuable than before when drought is experienced particularly. We developed drought intensity–duration–frequency curves using physical indicators, the deficit in precipitation and streamflow, for a more straightforward interpretation. Tests with the observed major droughts in two climatologically different catchments confirmed the practical applicability of the curves under drought conditions.
Valérie Jean, Marie-Amélie Boucher, Anissa Frini, and Dominic Roussel
Hydrol. Earth Syst. Sci., 27, 3351–3373, https://doi.org/10.5194/hess-27-3351-2023, https://doi.org/10.5194/hess-27-3351-2023, 2023
Short summary
Short summary
Flood forecasts are only useful if they are understood correctly. They are also uncertain, and it is difficult to present all of the information about the forecast and its uncertainty on a map, as it is three dimensional (water depth and extent, in all directions). To overcome this, we interviewed 139 people to understand their preferences in terms of forecast visualization. We propose simple and effective ways of presenting flood forecast maps so that they can be understood and useful.
Franciele Maria Vanelli, Masato Kobiyama, and Mariana Madruga de Brito
Hydrol. Earth Syst. Sci., 26, 2301–2317, https://doi.org/10.5194/hess-26-2301-2022, https://doi.org/10.5194/hess-26-2301-2022, 2022
Short summary
Short summary
We conducted a systematic literature review of socio-hydrological studies applied to natural hazards and disaster research. Results indicate that there is a wide range of understanding of what
socialmeans in socio-hydrology, and monodisciplinary studies prevail. We expect to encourage socio-hydrologists to investigate different disasters using a more integrative approach that combines natural and social sciences tools by involving stakeholders and broadening the use of mixed methods.
Leon M. Hermans, Vishal Narain, Remi Kempers, Sharlene L. Gomes, Poulomi Banerjee, Rezaul Hasan, Mashfiqus Salehin, Shah Alam Khan, A. T. M. Zakir Hossain, Kazi Faisal Islam, Sheikh Nazmul Huda, Partha Sarathi Banerjee, Binoy Majumder, Soma Majumder, and Wil A. H. Thissen
Hydrol. Earth Syst. Sci., 26, 2201–2219, https://doi.org/10.5194/hess-26-2201-2022, https://doi.org/10.5194/hess-26-2201-2022, 2022
Short summary
Short summary
Transdisciplinary water research involves the co-creation of knowledge between various stakeholders to advance science and resolve complex societal problems. In this paper, we describe challenges and responses to address power and politics as part of transdisciplinary research. This is done based on a project that combined known principles for transdisciplinary research with a negotiated approach to support groundwater management in peri-urban villages in India and Bangladesh.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
John Conallin, Nathan Ning, Jennifer Bond, Nicholas Pawsey, Lee J. Baumgartner, Dwi Atminarso, Hannah McPherson, Wayne Robinson, and Garry Thorncraft
Hydrol. Earth Syst. Sci., 26, 1357–1370, https://doi.org/10.5194/hess-26-1357-2022, https://doi.org/10.5194/hess-26-1357-2022, 2022
Short summary
Short summary
Implementation failure is well known to be a major barrier to the success of water resource plans and policies. The motivations and abilities (MOTA) approach attempts to address this barrier, by providing a multi-stakeholder, multilevel tool to assess triggers, motivations and abilities supporting the implementation feasibility of plans. We review existing MOTA applications in various water management contexts and propose several complementary add-in applications to complement the approach.
Gopal Penny, Diogo Bolster, and Marc F. Müller
Hydrol. Earth Syst. Sci., 26, 1187–1202, https://doi.org/10.5194/hess-26-1187-2022, https://doi.org/10.5194/hess-26-1187-2022, 2022
Short summary
Short summary
In residential areas with a high housing density, septic contamination of private wells raises multiple health concerns. Often, few regulations exist to ensure good water quality in such systems, and water quality is often left to the homeowner. To address the potential obstacles to effective management, we identify situations where misplaced economic incentives hinder effective policy to support water quality in such systems.
Jonatan Godinez Madrigal, Nora Van Cauwenbergh, Jaime Hoogesteger, Pamela Claure Gutierrez, and Pieter van der
Zaag
Hydrol. Earth Syst. Sci., 26, 885–902, https://doi.org/10.5194/hess-26-885-2022, https://doi.org/10.5194/hess-26-885-2022, 2022
Short summary
Short summary
Urban water systems are facing an increasing pressure on their water resources to guarantee safe and sufficient water access. Water managers often use tried and tested strategies like large supply augmentation infrastructure to address water problems. However, these projects do not address key problems and cause water conflicts. We conducted transdisciplinary research to show how water conflicts can change the development pathway of urban water systems by implementing alternative solutions.
Shuanglei Wu, Yongping Wei, and Xuemei Wang
Hydrol. Earth Syst. Sci., 25, 5381–5398, https://doi.org/10.5194/hess-25-5381-2021, https://doi.org/10.5194/hess-25-5381-2021, 2021
Short summary
Short summary
Using publications indexed in the Web of Science, we investigated water resources knowledge development at the river basin scale since 1900 and found that legacy-driven knowledge structures, increasingly homogenized management issues, and largely static cross-disciplinary collaborations dominated highly researched river basins. A structural shift of water resources knowledge development to cope with the rapidly changing hydrological systems and associated management issues is urgently needed.
Guang Yang and Paul Block
Hydrol. Earth Syst. Sci., 25, 3617–3634, https://doi.org/10.5194/hess-25-3617-2021, https://doi.org/10.5194/hess-25-3617-2021, 2021
Short summary
Short summary
There is a clear trade-off between reservoir hydropower generation and the variability in reservoir water release, which can be used to derive water-sharing policies and provide critical insights during riparian negotiations regarding downstream flows supplementing during drought conditions. This type of water-sharing policy can effectively mitigate the water use conflicts between upstream and downstream countries, especially during drought periods.
Leandro Carlos Sgroi, Miguel Angel Lovino, Ernesto Hugo Berbery, and Gabriela Viviana Müller
Hydrol. Earth Syst. Sci., 25, 2475–2490, https://doi.org/10.5194/hess-25-2475-2021, https://doi.org/10.5194/hess-25-2475-2021, 2021
Short summary
Short summary
This study advances the understanding and impacts of drought on wheat, corn, and soybean yields over Argentina's main crop region, where crop production is more intense and represents the main contribution to the country's gross domestic product. Our analysis focuses on drought properties, including the magnitude, frequency at different timescales, duration, and severity. This new approach can be helpful for regional decision-making and planning by water managers and in agricultural contexts.
Iman Haqiqi, Danielle S. Grogan, Thomas W. Hertel, and Wolfram Schlenker
Hydrol. Earth Syst. Sci., 25, 551–564, https://doi.org/10.5194/hess-25-551-2021, https://doi.org/10.5194/hess-25-551-2021, 2021
Short summary
Short summary
This study combines a fine-scale weather product with outputs of a hydrological model to construct functional metrics of individual and compound hydroclimatic extremes for agriculture. Then, a yield response function is estimated with individual and compound metrics focusing on corn in the United States during the 1981–2015 period. The findings suggest that metrics of compound hydroclimatic extremes are better predictors of corn yield variations than metrics of individual extremes.
Anna L. Flack, Anthony S. Kiem, Tessa R. Vance, Carly R. Tozer, and Jason L. Roberts
Hydrol. Earth Syst. Sci., 24, 5699–5712, https://doi.org/10.5194/hess-24-5699-2020, https://doi.org/10.5194/hess-24-5699-2020, 2020
Short summary
Short summary
Palaeoclimate information was analysed for eastern Australia to determine when (and where) there was agreement about the timing of wet and dry epochs in the pre-instrumental period (1000–1899). The results show that instrumental records (~1900–present) underestimate the full range of rainfall variability that has occurred. When coupled with projected impacts of climate change and growing demands, these results highlight major challenges for water resource management and infrastructure.
Sang-Hyun Lee, Amjad T. Assi, Bassel Daher, Fatima E. Mengoub, and Rabi H. Mohtar
Hydrol. Earth Syst. Sci., 24, 4727–4741, https://doi.org/10.5194/hess-24-4727-2020, https://doi.org/10.5194/hess-24-4727-2020, 2020
Short summary
Short summary
Proper water availability for the right place and time in a changing climate requires analysis of complex scientific, technical, socioeconomic, regulatory, and political issues. A Water-Energy-Food Nexus Phosphate (WEF-P) Tool, based on integrating supply chain processes, transportation, and water–energy footprints could assess the various scenarios to offer an effective means of ensuring sustainable management of limited resources to both agricultural areas and the phosphate industry.
Jared D. Wolfe, Kevin R. Shook, Chris Spence, and Colin J. Whitfield
Hydrol. Earth Syst. Sci., 23, 3945–3967, https://doi.org/10.5194/hess-23-3945-2019, https://doi.org/10.5194/hess-23-3945-2019, 2019
Short summary
Short summary
Watershed classification can identify regions expected to respond similarly to disturbance. Methods should extend beyond hydrology to include other environmental questions, such as ecology and water quality. We developed a classification for the Canadian Prairie and identified seven classes defined by watershed characteristics, including elevation, climate, wetland density, and surficial geology. Results provide a basis for evaluating watershed response to land management and climate condition.
Arvid Bring and Steve W. Lyon
Hydrol. Earth Syst. Sci., 23, 2369–2378, https://doi.org/10.5194/hess-23-2369-2019, https://doi.org/10.5194/hess-23-2369-2019, 2019
Short summary
Short summary
Hydrology education strives to teach students both quantitative ability and complex professional skills. Our research shows that role-play simulations are useful to make students able to integrate various analytical skills in complicated settings while not interfering with traditional teaching that fosters their ability to solve mathematical problems. Despite this there are several potential challenging areas in using role-plays, and we therefore suggest ways around these potential roadblocks.
Jin-Young Hyun, Shih-Yu Huang, Yi-Chen Ethan Yang, Vincent Tidwell, and Jordan Macknick
Hydrol. Earth Syst. Sci., 23, 2261–2278, https://doi.org/10.5194/hess-23-2261-2019, https://doi.org/10.5194/hess-23-2261-2019, 2019
Short summary
Short summary
This study applies a two-way coupled agent-based model (ABM) with a river-reservoir management model (RiverWare) to analyze the role of risk perception in water management decisions using the Bayesian inference mapping joined with the cost–loss model. The calibration results capture the dynamics of historical irrigated area and streamflow changes and suggest that the proposed framework improves the representation of human decision-making processes compared to conventional rule-based ABMs.
Henning Lebrenz and András Bárdossy
Hydrol. Earth Syst. Sci., 23, 1633–1648, https://doi.org/10.5194/hess-23-1633-2019, https://doi.org/10.5194/hess-23-1633-2019, 2019
Short summary
Short summary
Many variables, e.g., in hydrology, geology, and social sciences, are only observed at a few distinct measurement locations, and their actual distribution in the entire space remains unknown. We introduce the new geostatistical interpolation method of
quantile kriging, providing an improved estimator and associated uncertainty. It can also host variables, which would not fulfill the implicit presumptions of the traditional geostatistical interpolation methods.
Gemma J. Venhuizen, Rolf Hut, Casper Albers, Cathelijne R. Stoof, and Ionica Smeets
Hydrol. Earth Syst. Sci., 23, 393–403, https://doi.org/10.5194/hess-23-393-2019, https://doi.org/10.5194/hess-23-393-2019, 2019
Short summary
Short summary
Do experts attach the same meaning as laypeople to terms often used in hydrology such as "river", "flooding" and "downstream"? In this study a survey was completed by 34 experts and 119 laypeople to answer this question. We found that there are some profound differences between experts and laypeople: words like "river" and "river basin" turn out to have a different interpretation between the two groups. However, when using pictures there is much more agreement between the groups.
James O. Knighton, Osamu Tsuda, Rebecca Elliott, and M. Todd Walter
Hydrol. Earth Syst. Sci., 22, 5657–5673, https://doi.org/10.5194/hess-22-5657-2018, https://doi.org/10.5194/hess-22-5657-2018, 2018
Short summary
Short summary
Decision-making for flood risk management is often the collective effort of professionals within government, NGOs, private practice, and advocacy groups. Our research investigates differences among flood experts within Tompkins County, New York (USA). We explore how they differ in their perceptions of flooding risk, desired project outcomes, and knowledge. We observe substantial differences among experts, and recommend formally acknowledging these perceptions when engaging in flood management.
Md Ruknul Ferdous, Anna Wesselink, Luigia Brandimarte, Kymo Slager, Margreet Zwarteveen, and Giuliano Di Baldassarre
Hydrol. Earth Syst. Sci., 22, 5159–5173, https://doi.org/10.5194/hess-22-5159-2018, https://doi.org/10.5194/hess-22-5159-2018, 2018
Short summary
Short summary
Socio-hydrological space (SHS) is a concept that enriches the study of socio-hydrology because it helps understand the detailed human–water interactions in a specific location. The concept suggests that the interactions between society and water are place-bound because of differences in social processes and river dynamics. This would be useful for developing interventions under disaster management, but also other development goals. SHS provides a new way of looking at socio-hydrological systems.
Xiao-Bo Luan, Ya-Li Yin, Pu-Te Wu, Shi-Kun Sun, Yu-Bao Wang, Xue-Rui Gao, and Jing Liu
Hydrol. Earth Syst. Sci., 22, 5111–5123, https://doi.org/10.5194/hess-22-5111-2018, https://doi.org/10.5194/hess-22-5111-2018, 2018
Short summary
Short summary
At present, the water footprint calculated by the quantitative method of crop production water footprint is only a field-scale water footprint, which does not contain all the water consumption of the crop growth process, so its calculated crop production water footprint is incomplete. In this study, the hydrological model SWAT was used to analyze the real water consumption in the course of crop growth, so that the actual water consumption of the crops could be more accurately reflected.
Hafsa Ahmed Munia, Joseph H. A. Guillaume, Naho Mirumachi, Yoshihide Wada, and Matti Kummu
Hydrol. Earth Syst. Sci., 22, 2795–2809, https://doi.org/10.5194/hess-22-2795-2018, https://doi.org/10.5194/hess-22-2795-2018, 2018
Short summary
Short summary
An analytical framework is developed drawing on ideas of regime shifts from resilience literature to understand the transition between cases where water scarcity is or is not experienced depending on whether water from upstream is or is not available. The analysis shows 386 million people dependent on upstream water to avoid possible stress and 306 million people dependent on upstream water to avoid possible shortage. This provides insights into implications for negotiations between sub-basins.
Erik Mostert
Hydrol. Earth Syst. Sci., 22, 317–329, https://doi.org/10.5194/hess-22-317-2018, https://doi.org/10.5194/hess-22-317-2018, 2018
Short summary
Short summary
This paper argues for an alternative approach for socio‒hydrology: detailed case study research. Detailed case study research can increase understanding of how society interacts with hydrology, offers more levers for management than coupled modelling, and facilitates interdisciplinary cooperation. The paper presents a case study of the Dommel Basin in the Netherlands and Belgium and compares this with a published model of the Kissimmee Basin in Florida.
Feng Mao, Julian Clark, Timothy Karpouzoglou, Art Dewulf, Wouter Buytaert, and David Hannah
Hydrol. Earth Syst. Sci., 21, 3655–3670, https://doi.org/10.5194/hess-21-3655-2017, https://doi.org/10.5194/hess-21-3655-2017, 2017
Short summary
Short summary
The paper aims to propose a conceptual framework that supports nuanced understanding and analytical assessment of resilience in socio-hydrological contexts. We identify three framings of resilience for different human–water couplings, which have distinct application fields and are used for different water management challenges. To assess and improve socio-hydrological resilience in each type, we introduce a
resilience canvasas a heuristic tool to design bespoke management strategies.
Songjun Han, Fuqiang Tian, Ye Liu, and Xianhui Duan
Hydrol. Earth Syst. Sci., 21, 3619–3633, https://doi.org/10.5194/hess-21-3619-2017, https://doi.org/10.5194/hess-21-3619-2017, 2017
Short summary
Short summary
The history of the co-evolution of the coupled human–groundwater system in Cangzhou (a region with the most serious depression cone in the North China Plain) is analyzed with a particular focus on how the groundwater crisis unfolded and how people attempted to settle the crisis. The evolution of the system was substantially impacted by two droughts. Further restoration of groundwater environment could be anticipated, but the occurrence of drought still remains an undetermined external forcing.
Kharis Erasta Reza Pramana and Maurits Willem Ertsen
Hydrol. Earth Syst. Sci., 20, 4093–4115, https://doi.org/10.5194/hess-20-4093-2016, https://doi.org/10.5194/hess-20-4093-2016, 2016
Short summary
Short summary
The effects of human actions in small-scale water development initiatives and the associated hydrological research activities are basically unspecified. We argue that more explicit attention helps to design more appropriate answers to the challenges faced in field studies. A more systematic approach is proposed that would be useful when designing field projects: two sets of questions on (1) dealing with surprises and (2) cost–benefits of data gathering.
Rolf Hut, Anne M. Land-Zandstra, Ionica Smeets, and Cathelijne R. Stoof
Hydrol. Earth Syst. Sci., 20, 2507–2518, https://doi.org/10.5194/hess-20-2507-2016, https://doi.org/10.5194/hess-20-2507-2016, 2016
Short summary
Short summary
To help geo-scientists prepare for TV appearances, we review the scientific literature on effective science communication related to TV. We identify six main themes: scientist motivation, target audience, narratives and storytelling, jargon and information transfer, relationship between scientists and journalists, and stereotypes of scientists on TV. We provide a detailed case study as illustration for each theme.
Hazel Gibson, Iain S. Stewart, Sabine Pahl, and Alison Stokes
Hydrol. Earth Syst. Sci., 20, 1737–1749, https://doi.org/10.5194/hess-20-1737-2016, https://doi.org/10.5194/hess-20-1737-2016, 2016
Short summary
Short summary
This paper provides empirical evidence for the value of using a psychology-based approach to communication of hydrology and hazards. It demonstrates the use of the "mental models" approach to risk assessment used in a regional geoscience context to explore the conceptions of the geological subsurface between experts and non-experts, and how that impacts on communication.
J. F. Schyns, A. Y. Hoekstra, and M. J. Booij
Hydrol. Earth Syst. Sci., 19, 4581–4608, https://doi.org/10.5194/hess-19-4581-2015, https://doi.org/10.5194/hess-19-4581-2015, 2015
Short summary
Short summary
The paper draws attention to the fact that green water (soil moisture returning to the atmosphere through evaporation) is a scarce resource, because its availability is limited and there are competing demands for green water. Around 80 indicators of green water availability and scarcity are reviewed and classified based on their scope and purpose of measurement. This is useful in order to properly include limitations in green water availability in water scarcity assessments.
S. Zhou, Y. Huang, Y. Wei, and G. Wang
Hydrol. Earth Syst. Sci., 19, 3715–3726, https://doi.org/10.5194/hess-19-3715-2015, https://doi.org/10.5194/hess-19-3715-2015, 2015
V. Ernstsen, P. Olsen, and A. E. Rosenbom
Hydrol. Earth Syst. Sci., 19, 3475–3488, https://doi.org/10.5194/hess-19-3475-2015, https://doi.org/10.5194/hess-19-3475-2015, 2015
M. J. Halverson and S. W. Fleming
Hydrol. Earth Syst. Sci., 19, 3301–3318, https://doi.org/10.5194/hess-19-3301-2015, https://doi.org/10.5194/hess-19-3301-2015, 2015
A. F. Van Loon, S. W. Ploum, J. Parajka, A. K. Fleig, E. Garnier, G. Laaha, and H. A. J. Van Lanen
Hydrol. Earth Syst. Sci., 19, 1993–2016, https://doi.org/10.5194/hess-19-1993-2015, https://doi.org/10.5194/hess-19-1993-2015, 2015
Short summary
Short summary
Hydrological drought types in cold climates have complex causing factors and impacts. In Austria and Norway, a lack of snowmelt is mainly related to below-normal winter precipitation, and a lack of glaciermelt is mainly related to below-normal summer temperature. These and other hydrological drought types impacted hydropower production, water supply, and agriculture in Europe and the US in the recent and far past. For selected drought events in Norway impacts could be coupled to causing factors.
A. Fernald, S. Guldan, K. Boykin, A. Cibils, M. Gonzales, B. Hurd, S. Lopez, C. Ochoa, M. Ortiz, J. Rivera, S. Rodriguez, and C. Steele
Hydrol. Earth Syst. Sci., 19, 293–307, https://doi.org/10.5194/hess-19-293-2015, https://doi.org/10.5194/hess-19-293-2015, 2015
X. C. Cao, P. T. Wu, Y. B. Wang, and X. N. Zhao
Hydrol. Earth Syst. Sci., 18, 3165–3178, https://doi.org/10.5194/hess-18-3165-2014, https://doi.org/10.5194/hess-18-3165-2014, 2014
K. Madani, M. Zarezadeh, and S. Morid
Hydrol. Earth Syst. Sci., 18, 3055–3068, https://doi.org/10.5194/hess-18-3055-2014, https://doi.org/10.5194/hess-18-3055-2014, 2014
J. Chenoweth, M. Hadjikakou, and C. Zoumides
Hydrol. Earth Syst. Sci., 18, 2325–2342, https://doi.org/10.5194/hess-18-2325-2014, https://doi.org/10.5194/hess-18-2325-2014, 2014
S. Pande and M. Ertsen
Hydrol. Earth Syst. Sci., 18, 1745–1760, https://doi.org/10.5194/hess-18-1745-2014, https://doi.org/10.5194/hess-18-1745-2014, 2014
P. Gober and H. S. Wheater
Hydrol. Earth Syst. Sci., 18, 1413–1422, https://doi.org/10.5194/hess-18-1413-2014, https://doi.org/10.5194/hess-18-1413-2014, 2014
H. Chang, P. Thiers, N. R. Netusil, J. A. Yeakley, G. Rollwagen-Bollens, S. M. Bollens, and S. Singh
Hydrol. Earth Syst. Sci., 18, 1383–1395, https://doi.org/10.5194/hess-18-1383-2014, https://doi.org/10.5194/hess-18-1383-2014, 2014
M. W. Ertsen, J. T. Murphy, L. E. Purdue, and T. Zhu
Hydrol. Earth Syst. Sci., 18, 1369–1382, https://doi.org/10.5194/hess-18-1369-2014, https://doi.org/10.5194/hess-18-1369-2014, 2014
Y. Liu, F. Tian, H. Hu, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 1289–1303, https://doi.org/10.5194/hess-18-1289-2014, https://doi.org/10.5194/hess-18-1289-2014, 2014
S. N. Lane
Hydrol. Earth Syst. Sci., 18, 927–952, https://doi.org/10.5194/hess-18-927-2014, https://doi.org/10.5194/hess-18-927-2014, 2014
Cited articles
Ágora: El problema del agua en los Altos de Jalisco, México, available at: https://www.facebook.com/agoraelperiodicodesanjuan/videos/2172646786102206/
(last acess: 15 May 2019), 2018.
Armitage, D., de Loë, R. C., Morris, M., Edwards, T. W. D., Gerlak, A.
K., Hall, R. I., Huitema, D., Ison, R., Livingstone, D., MacDonald, G.,
Mirumachi, N., Plummer, R., and Wolfe, B. B.: Science-policy processes for
transboundary water governance, Ambio, 44, 353–366, https://doi.org/10.1007/s13280-015-0644-x, 2015.
Barraqué, B. and Zandaryaa, S.: Urban Water Conflicts: Brackground and
Conceptual Framework, in: Urban Water Conflicts, Edn.: UNESCO-IHP Urban Water Series, edited by: Barraqué, B., CRC Press, 2011.
Basco-Carrera, L., van Beek, E., Jonoski, A., Benítez-Ávila, C., and
PJ Guntoro, F.: Collaborative Modelling for Informed Decision Making and
Inclusive Water Development, Water Resour. Manag., 2611–2625,
https://doi.org/10.1007/s11269-017-1647-0, 2017.
Berkoff, J.: China: The South-North Water Transfer Project – Is it
justified?, Water Policy, 5, 1–28, 2003.
Blomquist, W. and Schlager, E.: Political pitfalls of integrated watershed
management, Society and Natural Resources, 18, 101–117, 2005.
Blöschl, G., Viglione, A., and Montanari, A.: Emerging approaches to
hydrological risk management in a changing world, in:
Climate Vulnerability: Understanding and Addressing Threats to Essential Resources, edited by: Hossain F., Elsevier Inc. Academic Press, 3–10, https://doi.org/10.1016/B978-0-12-384703-4.00505-0 2013.
Boelens, R., Shah, E., and Bruins, B.: Contested Knowledges: Large Dams and
Mega-Hydraulic Development, Water, 11, 1–27, https://doi.org/10.3390/w11030417, 2019.
Brugnach, M. and Ingram, H.: Ambiguity: the challenge of knowing and
deciding together, Environmental Science & Policy, 15, 60–71, 2012.
Brugnach, M. and Pahl-Wostl, C.: A broadened view on the role for models in natural resource management: implications for model development, in: Adaptive and Integrated Water Management, Springer, Berlin, Heidelberg, 187–203, 2008.
Brugnach, M., Dewulf, A., Pahl-Wostl, C., and Taillieu, T.: Toward a
relational concept of uncertainty: about knowing too little, knowing too
differently, and accepting not to know, Ecol. Soc., 13, 30, http://www.ecologyandsociety.org/vol13/iss2/art30/, 2008.
Brugnach, M., Dewulf, A. R. P. J., Henriksen, H. J., and Van der Keur, P.:
More is not always better: coping with ambiguity in natural resources
management, J. Environ. Manage., 92, 78–84, 2011.
Brummans, B. H., Putnam, L. L., Gray, B., Hanke, R., Lewicki, R. J., and Wiethoff, C.: Making sense of intractable multiparty conflict: A study of framing in four environmental disputes, Commun. Monogr., 75, 25–51, 2008.
Budds, J.: Contested H2O: Science, policy and politics in water resources management in Chile, Geoforum, 40, 418–430, https://doi.org/10.1016/j.geoforum.2008.12.008, 2009.
Cabello, V., Kovacic, Z., and Van Cauwenbergh, N.: Unravelling narratives of
water management: Reflections on epistemic uncertainty in the first cycle of
implementation of the Water Framework Directive in southern Spain,
Environmental Science and Policy, 85, 19–27, https://doi.org/10.1016/j.envsci.2018.03.019, 2018.
CACEGIAEJ – Comité Académico de la Comisión Especial para la
Gestión Integral del Agua en el Estado de Jalisco: Los problemas de la
gestión integral del agua y la Presa El Zapotillo, available at:
http://almeida.org.mx/documentos/LibroDelAgua.pdf (last access: 12 October 2020), 2018.
Callon, M.: An essay on framing and overflowing: economics externalities
revised by sociology, Sociol. Rev., 46, 244–269, https://doi.org/10.1111/j.1467-954X.1998.tb03477.x, 1998.
Castellazzi, P., Longuevergne, L., Martel, R., Rivera, A., Brouard, C., and
Chaussard, E.: Quantitative mapping of groundwater depletion at the
water management scale using a combined GRACE/InSAR approach, Remote Sens. Environ., 205, 408–418, 2018.
CEA Jalisco: Disponibilidad Media Anual De Aguas Subterráneas En
Acuíferos Del Estado De Jalisco De Acuerdo Con Lo Publicado En El
Diario Oficial De La Federación (DOF) El Día 4 De enero De 2018,
available at: https://www.ceajalisco.gob.mx/contenido/acuiferos/, last access: 28 May 2018.
Cervantes-Escoto, F., Santoyo-Cortés, H., and Álvarez-Macías,
A.: Gestión de la calidad y desarrollo desigual en la cadena de
lácteos en Los Altos de Jalisco, Problemas del Desarrollo, Revista
Latinoamericana de Economía, 163–187, https://doi.org/10.22201/iiec.20078951e.2001.127.7418, 2001.
Conagua: S.G.P.A./DGIRA.DDT.-1310/06, available at: http://sinat.semarnat.gob.mx/dgiraDocs/documentos/jal/resolutivos/2006/14JA2006H0005.pdf (last access: 12 October 2020), 2006.
Conagua: Manifestación de Impacto Ambiental, modalidad regional del
Proyecto: Presa El Zapotillo, para Abastecimiento de Agua Potable a Los
Altos de Jalisco y a la Ciudad de León, Gto, available at: http://sinat.semarnat.gob.mx/dgiraDocs/documentos/jal/estudios/2006/14JA2006H0005.pdf (last access: 7 September 2019),
2008.
Conagua: Sistema Nacional de Información del Agua, available at: http://sina.conagua.gob.mx/sina/tema.php?tema=cuencas (last access: 19 March 2020), 2018.
Conagua-Semarnat: Análisis espacial de las regiones más vulnerables
ante las sequías en México, available at: http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/sequiasB.pdf (last access: 18 August 2019), 2012.
Consejo Consultivo del Agua: La Gestión del Agua en las Ciudades de
México: Indicadores de Desempeño de Organismos Operadores, Consejo
Consultivo del Agua, A.C., p. 34, available at: http://www.aguas.org.mx/sitio/index.php/de-interes/publicaciones (last access: 1 November 2019), 2010.
Cortés, S. A., Lozano, G. A., Pérez, J.: Study of Water Quality Through Hydro-Chemical Signature in León, Guanajuato, Mexico, in: Water Stress in Biological, Chemical, Pharmaceutical and Food Systems, edited by: Gutiérrez-López, G., Alamilla-Beltrán, L., del Pilar Buera, M., Welti-Chanes, J., Parada-Arias, E., Barbosa-Cánovas, G., Food Engineering Series, Springer, New York, NY, https://doi.org/10.1007/978-1-4939-2578-0_51, 2015.
Crow-Miller, B., Webber, M., Molle, F.: The (Re) turn to Infrastructure for Water Management?, Water Altern., 10, 195–207, 2017.
Del Castillo, A.: León puede recuperar hasta 360 millones de m3 de sus
cuencas, Milenio, available at: http://www.milenio.com/politica/comunidad/leon-recuperar-360-millones-m3-cuencas (last access: 12 October 2020), 2018.
Delli Priscoli, J. and Wolf, A. T.: Managing and transforming water
conflicts, Cambridge University Press, Cambridge, UK, 2009.
DFID: Research uptake: A guide for DFID-funded research programmes,
available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/514977/Research_uptake_guidance.pdf (last access: 12 October 2020), 2013.
Di Baldassarre, G., Brandimarte, L., and Beven, K.: The seventh facet of
uncertainty: wrong assumptions, unknowns and surprises in the dynamics of
human-water systems, Hydrolog. Sci. J., 61, 1748–1758, 2016.
DOF – Diario Oficial de la Federación: SENTENCIA dictada por la Segunda
Sala de este Alto Tribunal en la Controversia Constitucional 93/2012,
promovida por el Poder Legislativo del Estado de Jalisco, available at: http://www.diputados.gob.mx/LeyesBiblio/compila/controv/166controv_11oct13.doc (last access: 8 January 2020), 2013.
DOF – Diario Oficial de la Federación: DECRETO por el que se suprimen
las vedas existentes en las cuencas hidrológicas Río Tlaltenango, Río San
Pedro, Presa Calles, Presa El Niágara, Presa Ajojucar, Río Encarnacioìn,
Río Aguascalientes, Presa El Chique y Río Juchipila 1, Río Santiago 1, available at: http://www.dof.gob.mx/nota_detalle_popup.php?codigo=5525352 (last access: 8 January 2020, 2018.
Dunn, G., Brown, R. R., Bos, J. J., and Bakker, K.: The role of
science-policy interface in sustainable urban water transitions: Lessons
from Rotterdam, Environmental Science and Policy, 73, 71–79, https://doi.org/10.1016/j.envsci.2017.04.013, 2017.
Durand, J. and Arias, P.: Escenarios locales del colapso migratorio,
Papeles de Población, 20, 9–23, 2014.
Esri: Ocean Basemap, available at: https://www.arcgis.com/home/item.html?id=6348e67824504fc9a62976434bf0d8d5
(last access: 12 February 2020), 2019.
Esteller, M. V., Rodríguez, R., Cardona, A., and Padilla-Sánchez,
L.: Evaluation of hydrochemical changes due to intensive aquifer
exploitation: case studies from Mexico, Environ. Monit. Assess., 184, 5725–5741, 2012.
Feldman, D. L. and Ingram, H. M.: Making Science Useful to Decision Makers:
Climate Forecasts, Water Management, and Knowledge Networks, Weather Clim. Soc., 1, 9–21, https://doi.org/10.1175/2009wcas1007.1, 2009.
Fernandez, S.: Much ado about minimum flows… Unpacking indicators
to reveal water politics, Geoforum, 57, 258–271, 2014.
Fisher, S., Abdi, D. I., Ludin, J., Smith, R., Williams, S., and Williams,
S.: Working with conflict: skills and strategies for action, Zed
books, New York, USA, 2000.
Fitch Ratings: Fitch Ratifica en “A-(mex)” al Sistema Intermunicipal
de los Servicios de Agua Potable y Alcantarillado, p. 3., available at: http://www.bmv.com.mx/docs-pub/eventoca/eventoca_633934_2.pdf (last acces: 28 March 2019), 2015.
Flores-Berrones, R. F.: Acueducto Chapala-Guadalajara, Ingeniería
Hidráulica En México, Enero–Abril, p. 17–28, 1987.
Flyvbjerg, B.: Survival of the unfittest: why the worst infrastructure gets
built – and what we can do about it, Oxford Rev. Econ. Pol., 25, 344–367, 2009.
Frey, F. W.: The political context of conflict and cooperation over
international river basins, Water Int., 18, 54–68, 1993.
Funtowicz, S. O. and Ravetz, J. R.: The worth of a songbird:
ecological economics as a post-normal science, Ecol. Econ., 10, 197–207, https://doi.org/10.1016/0921-8009(94)90108-2, 1994.
Gleason Espíndola, J. A., Cordova, F., and Casiano Flores, C.: The importance of urban rainwater harvesting in circular economy: the case of Guadalajara city, Management Research Review, 41, 533–553, https://doi.org/10.1108/MRR-02-2018-0064, 2018.
Godinez Madrigal, J.: Water resources model of the Verde River basin, Mexico, under different scenarios of climate change and future water demand, available at: https://github.com/jongmadrigal/Verde-River-Basin (last access: 12 October 2020), 2019.
Godinez-Madrigal, J., Van Cauwenbergh, N., and van der Zaag, P.: Production of competing water knowledge in the face of water crises: Revisiting the IWRM success story of the Lerma-Chapala Basin, Mexico, Geoforum, 103, 3–15, https://doi.org/10.1016/j.geoforum.2019.02.002, 2019.
Gómez-Jauregui-Abdo, J. P.: Sustainable development of domestic water
supply in emerging megacities: the case of the city of Guadalajara, Mexico, available at: https://opus4.kobv.de/opus4-btu/files/3607/Gomez_Jauregui_Abdo.pdf (last access: 13 February 2019), 2015.
Gray, B.: Framing of environmental disputes, in: Making sense of intractable environmental conflicts: concepts and cases, edited by: Lewicki, R. J., Gray, B., and Elliott, M., Island Press, Washington D.C., USA, 11–34, 2003.
Gupta, J. and van der Zaag, P.: Interbasin water transfers and integrated
water resources management: Where engineering, science and politics
interlock, Phys. Chem. Earth, 33, 28–40, https://doi.org/10.1016/j.pce.2007.04.003, 2008.
Hernández-Antonio, A., Mahlknecht, J., Tamez-Meléndez, C., Ramos-Leal, J., Ramírez-Orozco, A., Parra, R., Ornelas-Soto, N., and Eastoe, C. J.: Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico), Hydrol. Earth Syst. Sci., 19, 3937–3950, https://doi.org/10.5194/hess-19-3937-2015, 2015.
Hoekstra, A. Y., Buurman, J., and van Ginkel, K. C. H.: Urban water security:
A review, Environ. Res. Lett., 13, 053002, https://doi.org/10.1088/1748-9326/aaba52, 2018.
Hommes, L. and Boelens, R.: Urbanizing rural waters: Rural-urban water
transfers and the reconfiguration of hydrosocial territories in Lima,
Polit. Geogr., 57, 71–80, https://doi.org/10.1016/j.polgeo.2016.12.002, 2017.
Hommes, L., Boelens, R., and Maat, H.: Contested hydrosocial territories and disputed water governance: Struggles and competing claims over the Ilisu Dam
development in southeastern Turkey, Geoforum, 71, 9–20, 2016.
Hoogesteger, J. and Wester, P.: Regulating groundwater use: The challenges of
policy implementation in Guanajuato, Central Mexico, Environmental Science
Policy, 77, 107–13, 2017.
Hurtado-Jiménez, R. and Gardea-Torresdey, J.: Evaluación de la
exposición a fluoruros en Los Altos de Jalisco, México, Salud
Publica Mex, 47, 58–63, 2005.
Hurtado-Jiménez, R. and Gardea-Torresdey, J.: Arsenic in drinking water
in the Los Altos de Jalisco region of Mexico, Revista panamericana de salud
pública, 20, 236–247, https://doi.org/10.1590/S1020-49892006000900004, 2006.
Hurtado-Jiménez, R. and Gardea-Torresdey, J.: Evaluación de la
exposición a selenio en Los Altos de Jalisco, México, Salud Publica
Mex, 49, 312–315, 2007.
IMDEC: ?`Para quién gobierna Alfaro en Jalisco, para el pueblo o para
los empresarios, IMDEC, available at: http://www.imdec.net/boletinprensaparaquiengobiernaalfaro (last access: 5 February 2020), 2019.
IMTA: Estudio Hidrológico Complementario Sobre el Aprovechamiento y
Crecientes Para el Diseño de la Presa de Almacenamiento El Zapotillo,
Río Verde, Jalisco, available at: http://201.131.6.193:8001/JaliscoSostenible/documentacion/# (last access: 12 October 2020), 2005.
IMTA: Evaluación de la disponibilidad conforme a la norma
NOM-011-CNA-2000 para el abastecimiento de la ZCG, Informe final, Guadalajara, 2015.
Islam, S. and Susskind, L.: Using complexity science and negotiation
theory to resolve boundary-crossing water issues, J. Hydrol., 562,
589–598, 2018.
Karl, H. A., Susskind, L. E., and Wallace, K. H.: A dialogue not a diatribe
effective integration of science and policy through join fact finding,
Environment: Science and Policy for Sustainable Development, 49, 20–34, 2007.
Krueger, T., Maynard, C., Carr, G., Bruns, A., Mueller, E. N., and Lane,
S.: A transdisciplinary account of water research, Wiley Interdisciplinary
Reviews: Water, 3, 369–389, 2016.
Lane, S. N., Odoni, N., Landström, C., Whatmore, S. J., Ward, N., and Bradley, S.: Doing flood risk science differently: an experiment in
radical scientific method, Transactions Institute British Geographic, 36,
15–26, https://doi.org/10.1111/j.1475-5661.2010.00410.x, 2011.
Larsen, T. A., Hoffmann, S., Lüthi, C., Truffer, B., and Maurer, M.:
Emerging solutions to the water challenges of an urbanizing world, Science,
352, 928–933, https://doi.org/10.1126/science.aad8641, 2016.
Latour, B.: Why Has Critique Run out of Steam? From Matters of Fact to
Matters of Concern, Crit. Inquiry, 30, 225–248, https://doi.org/10.2307/1344358, 2004.
Lejano, R. P. and Ingram, H.: Collaborative networks and new ways of
knowing, Environmental Science and Policy, 12, 653–662, https://doi.org/10.1016/j.envsci.2008.09.005, 2009.
López-Ramírez, M. E. and Ochoa-García, H.: Geopolítica
del agua en la zona metropolitana de Guadalajara, Gobernanza y gestión
del agua en el Occidente de México, Tlaquepaque, Mexico, 33–72, 2012.
Loucks, D. P. and Gladwell, J. S.: Sustainability Criteria for Water
Resource Systems, in: UNESCO International Hydrology Series, Cambridge University Press, Cambridge, UK, 1999.
Madani, K.: Game theory and water resources, J. Hydrol., 381,
225–238, 2010.
Mahlknecht, J., Hernández-Antonio, A., Eastoe, C. J.,
Tamez-Meléndez, C., Ledesma-Ruiz, R., Ramos-Leal, J. A., and
Ornelas-Soto, N.: Understanding the dynamics and contamination of an urban
aquifer system using groundwater age (14C, 3H, CFCs) and chemistry,
Hydrol. Process., 31, 2365–2380, https://doi.org/10.1002/hyp.11182, 2017.
Martínez, M. M., Sesma, J. S., Ojeda, W., and González, R. P.: Determinación de periodos de sequía y lluvia intensa en diferentes
regiones de México ante escenarios de cambio climático, Secretaria
de Medio Ambiente y Recursos Naturales (SEMARNAT), Mexico City, Mexico, 2007.
McDonald, R. I., Weber, K., Padowski, J., Flörke, M., Schneider, C., Green, P. A., Gleeson, T., Eckman, S., Lehner, B., Balk, D., and Boucher, T.: Water on an
urban planet: Urbanization and the reach of urban water infrastructure,
Global Environ. Chang., 27, 96–105, 2014.
Melsen, L., Vos, J., and Boelens, R.: What is the role of the model in
socio-hydrology? Discussion of “Prediction in a socio-hydrological world”, Hydrolog. Sci. J., 63, 1435–1443, https://doi.org/10.1080/02626667.2018.1499025, 2018.
Milman, A. and Ray, I.: Interpreting the unknown: uncertainty and the
management of transboundary groundwater, Water Int., 36,
631–645, 2011.
Molle, F. and Floch, P.: Megaprojects and social and environmental changes:
The case of the Thai “Water Grid”, Ambio, 37, 199–204, 2008.
Moore, M., Shaw, K., and Castleden, H.: “We need more data!” The politics
of scientific information for water governance in the context of hydraulic
fracturing, Water Altern., 11, 142–162, 2018.
Morán-Ramírez, J., Ledesma-Ruiz, R., Mahlknecht, J., and Ramos-Leal,
J. A.: Rock-water interactions and pollution processes in the volcanic
aquifer system of Guadalajara, Mexico, using inverse geochemical modeling,
Appl. Geochem., 68, 79–94, https://doi.org/10.1016/j.apgeochem.2016.03.008,
2016.
Muller, M., Biswas, A., Martin-Hurtado, R., and Tortajada, C.: Built
infrastructure is essential, Science, 349, 585–586, 2015.
Newig, J.: Does public participation in environmental decisions lead to
improved environmental quality?: towards an analytical framework,
International Journal of Sustainability Communication, 1, 51–71,
2007.
Norström, A. V., Cvitanovic, C., Löf, M. F., West, S., Wyborn, C., Balvanera, P., Bednarek, A. T., Bennett, E. M., Biggs, R., de Bremond, A. and Campbell, B. M.,: Principles for knowledge
co-production in sustainability research, Nature Sustainability, 3, 182–190, https://doi.org/10.1038/s41893-019-0448-2, 2020.
Ochoa-García, H., Arrojo, P., Godinez-Madrigal, J., López-Villegas,
P., López-Aguayo, A., and Quiroz-Hernández, M.: Agua para el
desarrollo regional en los Altos de Jalisco, Gestión del agua e impacto
social del proyecto El Zapotillo, ITESO, Tlaquepaque, 2014.
Pacheco-Vega, R.: Conflictos intratables por el agua en México: el caso
de la disputa por la presa El Zapotillo entre Guanajuato y Jalisco,
Argumentos, Estudios críticos de la sociedad, 74, 221–260,
2014.
Pielke, R. A.: The honest broker: making sense of science in policy and
politics, Cambridge University Press, Cambridge, UK, 2007.
Putnam, L. L. and Wondolleck, K. M.: Intractability: Definitions,
Dimensions, and Distinctions, in: Making Sense of Intractable Environmental Conflicts: Concepts and Cases, edited by: Lewicki, R. J., Gray, B., and Elliot, M., Island Press, Washington, 2003.
Radio UdeG Guadalajara: Observatorio Ciudadano del Agua presentará queja
ante la ONU tras resultados de la UNOPS, available at: http://udgtv.com/noticias/jalisco/guadalajara-jalisco-noticias/observatorio-ciudadano-del-agua-presentara-queja-ante-la-onu (last access: 19 April 2020), 2017.
Reed, B. G., Ortega, R. M., and Garvin, C.: Small-group theory and
social work: Promoting diversity and social justice or recreating
inequities?, in: Human Behavior Theory and Social Work Practice: A Diversity Framework, edited by: Greene, R. and Kropf, N., AldineTransaction, New Jersey, USA, 201–230, 2009.
Roa-García, M. C.: Equity, efficiency and sustainability in water
allocation in the Andes: Trade-offs in a full world, Water Altern.,
7, 298–319, 2014.
Sanz, D., Vos, J., Rambags, F., Hoogesteger, J., Cassiraga, E., and
Gómez-Alday, J. J.: The social construction and consequences of
groundwater modelling: insight from the Mancha Oriental aquifer, Spain,
Int. J. Water Resour. D., 1–22, https://doi.org/10.1080/07900627.2018.1495619, 2019.
Sapal: Agua Potable, available at: http://www.sapal.gob.mx/servicios/aguapotable, last access: 5 February 2020.
Schneider, A. L. and Ingram, H. M.: Policy design for democracy,
University Press of Kansas, Kansas City, USA, 1997.
Siapa: Informe de Actividades Anual 2017, available at: http://www.siapa.gob.mx/sites/default/files/doctrans/informe_de_actividades_-_anual_2017.pdf (last access: 23 July 2019), 2017.
Srinivasan, V., Sanderson, M., Garcia, M., Konar, M., Blöschl, G., and Sivapalan, M.: Moving socio-hydrologic modelling forward: unpacking hidden assumptions, values and model structure by engaging with stakeholders: reply to “What is
the role of the model in socio-hydrology?”, Hydrolog. Sci. J.,
63, 1444–1446, 2018.
Tagle-Zamora, D., Azamar-Alonso, A., and Caldera-Ortega, A.: Cosecha de agua
de lluvia como alternativa para la resiliencia hídrica en León,
Guanajuato: una reflexión desde la nueva cultura del agua, Expresión
Económica, 40, 5–24, 2018.
UNOPS: 1. Descripción general de la cuenca del Río Verde, available
at: http://201.131.6.193:8001/JaliscoSostenible/informe/ (last access: 12 July 2020), 2017a.
UNOPS: 14. Análisis de Escenarios de Modelación, available at: http://201.131.6.193:8001/JaliscoSostenible/informe/ (last access: 12 July 2020), 2017b.
UNOPS: 12. Análisis de las demandas hídricas en la cuenca, available at: http://201.131.6.193:8001/JaliscoSostenible/informe/ (last access: 12 July 2020), 2017c.
UNOPS: 10. Análisis de datos hidrometeorológicos, available at: http://201.131.6.193:8001/JaliscoSostenible/informe/ (last access: 12 July 2020), 2017d.
Van Cauwenbergh, N: Expert and local knowledge in decision support for
natural resources management: analysis of capture and use, PhD thesis,
Department of environmental sciences and land use planning, Universite
Catholique de Louvain, Belgium, 207 pp., 2008.
Van Cauwenbergh, N., Ballester Ciuró, A., and Ahlers, R.: Participatory
processes and support tools for planning in complex dynamic environments: A
case study on web-GIS based participatory water resources planning in
Almeria, Spain, Ecol. Soc., 23, 2, https://doi.org/10.5751/ES-09987-230202, 2018.
van der Molen, F.: How knowledge enables governance: The coproduction of
environmental governance capacity, Environmental Science and Policy, 87, 18–25, https://doi.org/10.1016/j.envsci.2018.05.016, 2018.
Villalobos-Aragón, A., Ellis, A. S., Armienta, M. A., Morton-Bermea, O.,
and Johnson, T. M.: Geochemistry and Cr stable isotopes of Cr-contaminated
groundwater in León valley, Guanajuato, México', Appl.
Geochem., 27, 1783–1794. https://doi.org/10.1016/j.apgeochem.2012.02.013,
2012.
Vishwakarma, B. D., Devaraju, B., and Sneeuw, N.: What Is the Spatial Resolution of grace Satellite Products for Hydrology?, Remote Sensing, 10, 852, https://doi.org/10.3390/rs10060852, 2018.
Voinov, A. and Gaddis, E. J. B.: Lessons for successful participatory
watershed modeling: A perspective from modeling practitioners, Ecol.
Model., 216, 197–207, https://doi.org/10.1016/j.ecolmodel.2008.03.010, 2008.
Von Bertrab, E.: Guadalajara's water crisis and the fate of Lake Chapala: A
reflection of poor water management in Mexico, Environ. Urban., 15, 127–140, 2003.
WATTAgNet: Who are the world's largest egg producers,
available at: https://www.wattagnet.com/articles/20682-who-are-the-world-s-largest-egg-producers
(last access: 4 June 2018), 2015.
Wesselink, A., Buchanan, K. S., Georgiadou, Y., and Turnhout, E.: Technical
knowledge, discursive spaces and politics at the science-policy interface,
Environmental Science and Policy, 30, 1–9, https://doi.org/10.1016/j.envsci.2012.12.008, 2013.
Whatmore, S. J.: Mapping knowledge controversies: Science, democracy and the
redistribution of expertise', Prog. Hum. Geog., 33, 587–598, https://doi.org/10.1177/0309132509339841, 2009.
Zevenbergen, C., Veerbeek, W., Gersonius, B., and Van Herk, S.: Challenges in urban flood management: travelling across spatial and temporal scales, J. Flood Risk Manag., 1, 81–88, 2008.
Zimmerer, K. S.: Spatial-geographic models of water scarcity and supply in
irrigation engineering and management: Bolivia, 1952–2009, in: Knowing Nature: Conversations at the Intersection of Political Ecology and Science Studies, edited by: Goldman, M. J., Nadasdy, P., and Turner, M. D., The University of Chicago Press, Chicago, IL, 167–185, 2008.
Short summary
Our research studies whether science depoliticizes water conflicts or instead conflicts politicize science–policy processes. We analyze a water conflict due to the development of large infrastructure. We interviewed key actors in the conflict and replicated the results of water resources models developed to solve the conflict. We found that knowledge produced in isolation has no positive effect in transforming the conflict; instead, its potential could be enhanced if produced collaboratively.
Our research studies whether science depoliticizes water conflicts or instead conflicts...