Articles | Volume 24, issue 7
https://doi.org/10.5194/hess-24-3871-2020
https://doi.org/10.5194/hess-24-3871-2020
Technical note
 | 
30 Jul 2020
Technical note |  | 30 Jul 2020

A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water

Shangbin Xiao, Liu Liu, Wei Wang, Andreas Lorke, Jason Woodhouse, and Hans-Peter Grossart

Related authors

Unravelling Disparities in Eulerian and Lagrangian Moisture Tracking Models in Monsoon- and Westerlies-dominated Basins Around the Tibetan Plateau
Ying Li, Chenghao Wang, Qiuhong Tang, Shibo Yao, Bo Sun, Hui Peng, and Shangbin Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-14,https://doi.org/10.5194/egusphere-2024-14, 2024
Short summary
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022,https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Contribution of moisture sources to precipitation changes in the Three Gorges Reservoir Region
Ying Li, Chenghao Wang, Hui Peng, Shangbin Xiao, and Denghua Yan
Hydrol. Earth Syst. Sci., 25, 4759–4772, https://doi.org/10.5194/hess-25-4759-2021,https://doi.org/10.5194/hess-25-4759-2021, 2021
Short summary
Diel and seasonal variability of methane emissions from a shallow and eutrophic pond
Wenli Zhang, Shangbin Xiao, Heng Xie, Jia Liu, Dan Lei, and Andreas Lorke
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-178,https://doi.org/10.5194/bg-2020-178, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Instruments and observation techniques
Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 27, 2173–2188, https://doi.org/10.5194/hess-27-2173-2023,https://doi.org/10.5194/hess-27-2173-2023, 2023
Short summary
Influence of vegetation maintenance on flow and mixing: case study comparing fully cut with high-coverage conditions
Monika Barbara Kalinowska, Kaisa Västilä, Michael Nones, Adam Kiczko, Emilia Karamuz, Andrzej Brandyk, Adam Kozioł, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 27, 953–968, https://doi.org/10.5194/hess-27-953-2023,https://doi.org/10.5194/hess-27-953-2023, 2023
Short summary
Assessing the influence of lake and watershed attributes on snowmelt bypass at thermokarst lakes
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022,https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022,https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022,https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary

Cited articles

Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cy., 18, GB4009, https://doi.org/10.1029/2004GB002238, 2004. 
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon sink, Science, 331, 50, https://doi.org/10.1126/science.1196808, 2011. 
Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y., Günthel, M., Muro-Pastor, A. M., Eckert, W., Urich, T., Keppler, F., and Grossart, H.-P.: Aquatic and terrestrial cyanobacteria produce methane, Sci. Adv., 6, eaax5343, https://doi.org/10.1126/sciadv.aax5343, 2020. 
Boulart, C., Connelly, D., and Mowlem, M.: Sensors and technologies for in situ dissolved methane measurements and their evaluation using Technology Readiness Levels, Trends Anal. Chem., 29, 186–195, https://doi.org/10.1016/j.trac.2009.12.001, 2010. 
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., and Middelburg, J. J.: Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget, Ecosystems, 10, 172–185, https://doi.org/10.1007/s10021-006-9013-8, 2007. 
Download
Short summary
To better understand the fate of methane (CH4) and carbon dioxide (CO2) in freshwaters, dissolved CH4 and CO2 need to be measured with a high temporal resolution. We developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved gases in water. FaRAGE can achieve a short response time (CH4: t95 % = 12 s; CO2: t95 % = 10 s) while retaining a high equilibration ratio and accuracy.