

Supplement of

A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH_4 and CO_2 dissolved in water

Shangbin Xiao et al.

Correspondence to: Liu Liu (liu.liu@igb-berlin.de) and Hans-Peter Grossart (hgrossart@igb-berlin.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

21 S1. Details of parts, gas analyzers and costs

22 To make the FaRAGE field deployable, parts were tightly packed into an aluminum box with a built-in power supply. The electric parts were separated from other parts containing 23 water in the box by using a plastic board. Ports were well labelled on the right-handed side so 24 25 that even somebody new to the system can work with it. To help interested readers rebuild the device, the two key components (gas-water mixing unit and gas-water separation unit) were 26 shown in the detailed technical drawings (Fig. S1). The suppliers and costs for these parts 27 28 were listed in Table S1. A total of 3,560 € was calculated for building the complete device excluding the costs for the power supply. As the expensive RBR temperature logger is not a 29 necessity since we happen to have it in storage, a cheaper temperature logger can always be 30 used. For example, a fast HOBO temperature logger (HOBO U12 with a Temperature probe 31 TMC1-HD) is available for $< 200 \in$. The total cost can be cut down significantly to $< 3,000 \in$. 32

The FaRAGE is capable of coupling with different greenhouse gas analyzers, depending 33 on the research question and instrument availability. Three most widely used field-deployable 34 gas analyzers were compared in Table S2 to provide a reference for readers when choosing a 35 gas analyzer. They are GasScouter G4301 (Picarro, USA), Ultraportable Greenhouse Gas 36 37 Analyzer (Model 915-0011, LosGatos Research, USA) and Picarro G2132-i isotope analyzer (Picarro, USA). We noticed Picarro 2201-i has been more often used, but our Picarro G2132-i 38 39 is an equivalent instrument except that the module for isotopic CO₂ is not installed. The former two instruments measure CH₄, CO₂ and H₂O and the last one additionally measures 40 stable isotopic CH₄. As shown in Table 2, clearly GasScouter G4301 is most suitable for field 41 42 measurement of dissolved CH₄ concentrations due to its extremely high mobility. The built-in 43 battery pack can support 8 h continuous measurements and the ability to amount GPS antenna 44 offers the advantage in doing spatially-resolved measurements. The Picarro G2132-i isotope analyzer is most immobile because of it is heavy and relative high power consumption in 45

addition to its particularly long time to warm up (30 min). However, Picarro G2132-i
measures stable isotopic CH₄, while the other two instruments cannot. Care must be taken and
a proper boat with stable power supply is needed in order to use Picarro G2132-i as a coupling
unit for the FaRAGE.

S3

50

Fig. S1 Technical drawings of FaRAGE key components. (a) Gas-water mixing unit and (b)
gas-water separation unit. Note: ID and OD are the abbreviations of inner diameter and
outside diameter, respectively.

Items	Dimensions	Model specifications	Producer/Supplier	Quantity	Cost
Diving tank	10 L	Pressure up to 230 bar	Atlantis Berlin	1	199€
Pressure regulator		200 bar / 0 - 10 bar, HERCULES CK1401	Gase Dopp	1	59.98€
Mass flow controller (for air)		SIERRA Model C50L SMART-TRAK	SCHWING Verfahrenstechnik GmbH	1	995€
Flow meter (for water)		0.082-0.82 L min-1, 1355GAF3CBXN1AAA	Brooks Instrument GmbH	1	943.91 €
Peristaltic pump	9 x 11 x 16 cm	0-500 mL min-1, 24V/1A DC power	Purchased from Taobao, China	2	200€
Temperature logger		Precision 0.001 °C, maximum 6 Hz measurement frequency, TR-1050	RBR, Canada	1	1,000€
Tygon tube	3.2/6.4 mm in./out. Ø	Saint-Gobain Schlauch Tygon S3 E-3603 2.5bar	RS Components GmbH	15 m	68.78€
Plastic syringe for mixing unit	10 mL	Cut to 9 mL, sealed with a rubber stopper	BD plastipak	1	1€
Plastic syringe separation unit	30 mL	Sealed with a rubber stopper	BD plastipak	1	1€
Plastic syringe for desiccant	50 mL	Filled with drierite, sealed with a rubber stopper	BD plastipak	1	1€
Rain pipe			Toom	1	10€
Bubble diffusor	12 mm Ø, 16 mm length	Pawfly 0.6 Inch Air Stone, UL266	Ebay	1	1€
Teflon membrane filter	25 mm Ø	PTFE 0.2 μm	Lab Logistics Group GmbH	2	2€
Tube connector	for 3.2-4.2 mm	LL male, barbed hose connection: PP, 10 pcs/pack 2- 1882	neoLab Migge GmbH	10	12€
Aluminium box	38.3 x 57 x 37.5 cm	65 L, Stier aluminium box	Amazon	1	64.95€
Total					3,560€

54 **Table S1.** List of materials for parts of the FaRAGE prototype. Details on dimensions, model, producer/supplier and cost are provided.

Analyzer	Gases	Gas flow rate	Cavity pressure	Measurement frequency	Concentration range	Precision	Response time	Dimensions	Weight	Power consumption	GPS Kit	Mobility
GasScouter G4301	CH_4 CO_2 H_2O	1 L min ⁻¹	> 700 Torr	1 Hz	CH₄: 0-800 ppm CO₂: 0-3% H₂O: < 3%	CH ₄ : 3 ppb CO ₂ : 0.4 ppm	5 s	35.6 × 17.7 × 46.4 cm	10.4 kg	25 W, built-in Li-ion battery	Yes	Very high
Ultraportable Greenhouse Gas Analyzer 915–0011	CH_4 CO_2 H_2O	0.5 L min ⁻¹	140 Torr	1 Hz	CH ₄ : 0.01-100 ppm CO ₂ : 1-2% H ₂ O: < 7%	CH₄: 2 ppb CO₂: 0.6 ppm	~10 s	17.8 x 47 × 35.6 cm	17 kg	70 W, on battery/AC power	No	High
Picarro G2132-i	CH_4 $\delta^{13}C-$ CH_4 CO_2 H_2O	25 mL min ⁻¹	148 Torr	0.5 Hz	CH ₄ : 1.8-10 ppm high- performance mode; 10-1000 high-range mode CO ₂ : 200 - 2000 ppm guaranteed range H ₂ O: <2.4 % guaranteed range	CH_4 : 5 ppb + 0.05 % of reading (12C); 1 ppb + 0.05 % of reading (13C) CO_2 : 1 ppm + 0.25 % of reading (12C)	~30 s	43.2 x 17.8 x 44.6 cm	27.4 kg	205 W, AC power	No	Fair
Note: 1) GasSo above	couter C /below	64301 the rec	does not u commende	use a vacuum j ed value.	pump to maintain a stab	le cavity pressu	re and the	gas flow rat	e should	be stable but	sligh	tly
2) All ga	is analy	zers ar	e sensitiv	e to liquid-pha	ase water, therefore a hy	drophobic filter	r is normal	ly placed be	fore the	gas intake to	prote	ct
instru: 3) Accor	ment fro	om bei Picarr	ng floode o, interfe	d. rence can occu	r for concentrations of	H2O and CO2 w	vell above 1	normal ambi	ent leve	ls, as well as	other	

Table S2. Summary of technical details for the three greenhouse gas analyzers tested in this study.

organics, ammonia, ethane, ethylene, or sulfur containing compounds.

62 S2. Re-evaluation of response time of gas analyzers

While response time for each gas analyzer has been provided by its manufacturer (Table S2), a large difference was found when they were re-evaluated (Fig. S2). Picarro GasScouter has the fastest response to concentration increase, in comparison to four-fold and eight-fold slower response for portable Los Gatos and Picarro G2132-i, respectively. All three gas analyzers were seen longer response time when concentration changed from high to low. The Picarro GasScouter still has the best performance compared to the other two.

69

Fig. S2 Response times of gas analyzers. Triplicated measurements were performed. Low-tohigh and high-to-low concentration changes were investigated. The response time was determined by taking the time when 95% of final concentration was reached. For δ^{13} C-CH₄, 30 s moving average data was used.

74 S3. Theoretical background

With the present design of the **Fast-Response Automated Gas Equilibrator (FaRAGE)**, a continuous dynamic gas-water mixing occurs and the carrier gas is partially equilibrating with the CH₄ dissolved in water sample. The gas composition reaching the gas analyzer depends on equilibration time and flow rates. The equilibration between the carrier gas and the water sample during flowing through the FaRAGE depends on the concentration difference between the gas stream (*C* in μ mol L⁻¹) and the dissolved (aqueous) concentration in the sample water (*C_a*):

82
$$\frac{dC}{dt} = k \times \left(\frac{1}{HRT}C_a - C\right) \tag{1}$$

83 Where *H* is the temperature-dependent Henry constant (mol L⁻¹ atm⁻¹), *R* the universal 84 gas constant (8.31 J mol⁻¹ K⁻¹), *T* is temperature (K) and *k* (s⁻¹) is an exchange coefficient. The 85 equilibrium gaseous concentration $C_{eq} = \frac{1}{HRT}C_a$ corresponds to the headspace concentration 86 of a fully equilibrated water sample. *k* is expected to depend on the relative flow rates of gas 87 and water as well as on the flow regime and mixing of both phases in the FaRAGE. For an 88 initial concentration of CH₄ in the carrier gas *C_{ini}*, the time-dependent concentration during the 89 passage through the equilibrator is:

90
$$C(t) = (C_{ini} - C_{eq})e^{-kt} + C_{eq}$$
 (2)

91 After a device-specific partial equilibration time t_e , the CH₄ concentration in the carrier 92 gas has changed to C_{pe} , which is measured by the gas analyzer

93
$$C_{pe} = C(t_e) = K(C_{ini} - C_{eq}) + C_{eq}$$
 (3)

With $K = e^{-kt_e}$ being a device-specific coefficient, which can be obtained by calibrating the FaRAGE with at least one water sample of known dissolved concentration (C_{eq}) through:

96
$$K = \frac{C_{pe} - C_{eq}}{C_{ini} - C_{eq}}$$
(4)

97 The equilibrium headspace concentration of CH₄ in the water sample and the 98 corresponding dissolved concentration can be estimated from the initial and final carrier gas 99 concentration as:

100
$$C_{eq} = \frac{1}{HRT} C_a = (KC_{ini} - C_{pe})/(K-1)$$
 (5)

For a high flow rate of the carrier gas, the response time of the system to changing dissolved concentrations at the sample intake is predominantly determined by the gas venting rate, i.e. by the total volume of carrier gas that is in contact with the water sample, divided by the volumetric gas flow rate (cf. level two model of Johnson (1999)), as well as by the response time of the gas analyzer.

Table S3. Response times when adapting to different gas analyzers. Tests were performed
with a water/gas mixing ratio of 0.5. Triplicates were made and mean values are shown here.

	Treatment	t _{95%} response time (s)			
Gas analyzer		CH₄	CO2	¹³ ∂C-CH4	
Cas Secutor C4201	Low-to-high	13	6	-	
Gas Scouler G4301	High-to-low	13	6	-	
Ultraportable	Low-to-high	34	32.3	-	
Greenhouse Gas Analyzer 915-0011	High-to-low	37	30	-	
	Low-to-high	53	53	53	
	High-to-low	65.3	60.7	65.3	

108 Note: Response time for Picarro G2132-i was determined without using a desiccant. A 109 desiccant should be used to keep the moisture content in gas samples < 1%. Drierite and 110 magnesium perchlorate (Mg(ClO₄)₂) are recommended for such a purpose due to their high 111 performance. It was shown by Webb et al. (2016) that both types of dryer had no effect on 112 CH₄ and CO₂, except for a 1.5 min delay in response time for CO₂ when using Drierite.

Table S4. Comparison of response times for simultaneous measurement of dissolved CH₄ and δ^{13} C-CH₄ in water from previous studies using different devices (after Webb et al., 2016, Hartman et al., 2018) compared with response times in this study. Response time was unified here to *t*95% to allow for meaningful comparison. The *t*95% values were taken from literature by applying *t*95% = 3 τ and the mean were used.

Device	t _{95%} response time (s)	Study
Weiss-type (small)	6744	Li et al. (2015)
General oceanics	6123	Webb et al. (2016)
Shower head	4971	Webb et al. (2016)
Weiss-type (large)	3600	Rhee et al. (2009)
Marble	2679	Webb et al. (2016)
Bubble-type	2034	Gülzow et al. (2011)
Liqui-Cel (medium)	1251	Webb et al. (2016)
Liqui-Cel (small)	531	Webb et al. (2016)
Liqui-Cel (large)	351	Webb et al. (2016)
Liqui-Cel (small) in vacuum mode	171	Hartmann et al. (2018)
Combined Weiss-type with bubble-type	53	This study

¹¹⁸

119 S4. The depth profiles of phytoplankton biomass at Lake Arend and Lake Stechlin

As in most freshwater lakes phytoplankton is a large component of suspended solids in water column, the effect of phytoplankton biomass on the performance of the gas equilibrator was evaluated. Fig. S3 shows the presence of high phytoplankton biomass (represented by Chl-a) within the surface 20 m water depth in the both study lakes.

Fig. S3 Depth profiles of Chlorophyll-a (Chl-a) at Lake Arend and Lake Stechlin on June 17
and July 23, 2019 with (b)-(c) dissolved CH₄ and CO₂ profiles. The profiles were measured
using a BBE FluoroProbe (Moldaenke, Germany) simultaneously with dissolved gas profiles.

129

Fig. S4 An example of altered depth profile of water temperature at Lake Stechlin in autumn
2019. (a) Comparison of in situ water temperature (red line) with water temperature measured
in the FaRAGE (black line). (b) The difference between the two temperature measurements
(In FaRAGE - In situ).

135

136 **References**

- 137 Gülzow, W., Rehder, G., Schneider, B., Deimling, J. S. v., and Sadkowiak, B.: A new method
- 138 for continuous measurement of methane and carbon dioxide in surface waters using off-axis
- 139 integrated cavity output spectroscopy (ICOS): An example from the Baltic Sea, Limnol.
- 140 Oceanogr.: Methods, 9, 176-184, https://doi.org/10.4319/lom.2011.9.176, 2011.
- 141 Hartmann, J. F., Gentz, T., Schiller, A., Greule, M., Grossart, H. P., Ionescu, D., Keppler, F.,
- 142 Martinez-Cruz, K., Sepulveda-Jauregui, A., and Isenbeck-Schröter, M.: A fast and sensitive

- 143 method for the continuous in situ determination of dissolved methane and its δ^{13} C-isotope
- 144 ratio in surface waters, Limnol. Oceanogr.: Methods, 16, 273-285,
- 145 https://doi.org/10.1002/lom3.10244, 2018.
- 146 Johnson, J. E.: Evaluation of a seawater equilibrator for shipboard analysis of dissolved
- 147 oceanic trace gases, Anal. Chim. Acta, 395, 119-132, https://doi.org/10.1016/S0003-
- 148 2670(99)00361-X, 1999.
- 149 Li, Y., Zhan, L., Zhang, J., and Chen, L.: Equilibrator-based measurements of dissolved
- 150 methane in the surface ocean using an integrated cavity output laser absorption spectrometer,
- 151 Acta Oceanol. Sin., 34, 34-41, https://doi.org/10.1007/s13131-015-0685-9, 2015.
- 152 Rhee, T., Kettle, A., and Andreae, M.: Methane and nitrous oxide emissions from the ocean:
- 153 A reassessment using basin-wide observations in the Atlantic, J. Geophys. Res.: Atmospheres,
- 154 114, https://doi.org/10.1029/2008JD011662, 2009.
- 155 Webb, J. R., Maher, D. T., and Santos, I. R.: Automated, in situ measurements of dissolved
- 156 CO₂, CH₄, and δ^{13} C values using cavity enhanced laser absorption spectrometry: Comparing
- response times of air-water equilibrators, Limnol. Oceanogr.: Methods, 14, 323-337,
- 158 https://doi.org/10.1002/lom3.10092, 2016.