Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2235-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-2235-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Optimal design of hydrometric station networks based on complex network analysis
Ankit Agarwal
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Section 4.4: Hydrology,
Telegrafenberg, Potsdam, 14473 Germany
Institute for Environmental Sciences and Geography, University of
Potsdam, Potsdam, 14476 Germany
Complexity Science research department, Potsdam Institute for Climate
Impact Research, Member of the Leibniz Association, Telegrafenberg, Potsdam,
14473 Germany
Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee,
247667, India
Norbert Marwan
Complexity Science research department, Potsdam Institute for Climate
Impact Research, Member of the Leibniz Association, Telegrafenberg, Potsdam,
14473 Germany
Rathinasamy Maheswaran
Department of Civil Engineering, MVGR College of Engineering,
Vizianagaram, 535005, India
Ugur Ozturk
Institute for Environmental Sciences and Geography, University of
Potsdam, Potsdam, 14476 Germany
Jürgen Kurths
Institute for Environmental Sciences and Geography, University of
Potsdam, Potsdam, 14476 Germany
Complexity Science research department, Potsdam Institute for Climate
Impact Research, Member of the Leibniz Association, Telegrafenberg, Potsdam,
14473 Germany
Bruno Merz
GFZ German Research Centre for Geosciences, Section 4.4: Hydrology,
Telegrafenberg, Potsdam, 14473 Germany
Institute for Environmental Sciences and Geography, University of
Potsdam, Potsdam, 14476 Germany
Related authors
Wolfgang Schwanghart, Ankit Agarwal, Kristen Cook, Ugur Ozturk, Roopam Shukla, and Sven Fuchs
Nat. Hazards Earth Syst. Sci., 24, 3291–3297, https://doi.org/10.5194/nhess-24-3291-2024, https://doi.org/10.5194/nhess-24-3291-2024, 2024
Short summary
Short summary
The Himalayan landscape is particularly susceptible to extreme events, which interfere with increasing populations and the expansion of settlements and infrastructure. This preface introduces and summarizes the nine papers that are part of the special issue,
Estimating and predicting natural hazards and vulnerabilities in the Himalayan region.
Marina Batalini de Macedo, Nikunj K. Mangukiya, Maria Clara Fava, Ashutosh Sharma, Roberto Fray da Silva, Ankit Agarwal, Maria Tereza Razzolini, Eduardo Mario Mendiondo, Narendra K. Goel, Mathew Kurian, and Adelaide Cássia Nardocci
Proc. IAHS, 386, 41–46, https://doi.org/10.5194/piahs-386-41-2024, https://doi.org/10.5194/piahs-386-41-2024, 2024
Short summary
Short summary
More and more extreme rainfall causes flooding problems in cities and communities, affecting the health and well-being of the population, as well as causing damage to the economy. To help design actions aiming at reducing the impacts of these floods, computational models can be used to simulate their extent. However, there are different types of models currently available. In this study, we evaluated three different models, for a city in Brazil and a region in India, to guide the best use of it.
Abhishek Kashyap, Mukunda Dev Behera, Anand Kumar Pandey, and Ankit Agarwal
EGUsphere, https://doi.org/10.5194/egusphere-2022-533, https://doi.org/10.5194/egusphere-2022-533, 2022
Preprint archived
Short summary
Short summary
Bedrock landslides are currently spatially dispersed over a process of landscape evolution in the NW Himalayan river catchments. Our analysis indicates that the zones with slope range between 24–32°, topographic relief ranges between 800–1200 m, and elevation range between 1200–2400 m, are compatible with precipitation intensity ranges between 1500–3000 mm/year in the NW Himalayan river catchments, have the highest probability of frequently occurring landslides.
Pankaj R. Dhote, Joshal K. Bansal, Vaibhav Garg, Praveen K. Thakur, and Ankit Agarwal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-101, https://doi.org/10.5194/nhess-2022-101, 2022
Preprint withdrawn
Short summary
Short summary
In the present paper, we have developed framework to establish virtual stage-discharge gauging network in sparsely gauged basin using hydrodynamic modelling and satellite altimetry data. The publication of the work will provide more insights to hydraulic community dealing with flood hazard in sparsely gauged basins, on how to monitor extreme river flow events using remote sensing data at ungauged locations.
Jürgen Kurths, Ankit Agarwal, Roopam Shukla, Norbert Marwan, Maheswaran Rathinasamy, Levke Caesar, Raghavan Krishnan, and Bruno Merz
Nonlin. Processes Geophys., 26, 251–266, https://doi.org/10.5194/npg-26-251-2019, https://doi.org/10.5194/npg-26-251-2019, 2019
Short summary
Short summary
We examined the spatial diversity of Indian rainfall teleconnection at different timescales, first by identifying homogeneous communities and later by computing non-linear linkages between the identified communities (spatial regions) and dominant climatic patterns, represented by climatic indices such as El Nino–Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024, https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
Short summary
We present a novel stochastic weather generator conditioned on circulation patterns and regional temperature, accounting for dynamic and thermodynamic atmospheric changes. We extensively evaluate the model for the central European region. It statistically downscales precipitation for future periods, generating long, spatially and temporally consistent series. Results suggest an increase in extreme precipitation over the region, offering key benefits for hydrological impact studies.
Irewola Aaron Oludehinwa, Andrei Velichko, Olasunkanmi Isaac Olusola, Olawale Segun Bolaji, Norbert Marwan, Babaola O. Ogunsua, Abdullahi Ndzi Njah, and Timothy O. Ologun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3554, https://doi.org/10.5194/egusphere-2024-3554, 2024
Short summary
Short summary
The contributing influence of SSW to regional ionosphere through chaos theory is examined. We found that ionospheric chaos is more pronounced in the European sector compared to Africa sector during SSW. Evidence of orderliness behavior in regional ionosphere of African sector was observed. Finally, we noticed that after the peak phase of SSW, ionospheric chaos is found to be more pronounced.
Adarsh Jojo Thomas, Jürgen Kurths, and Daniel Schertzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2793, https://doi.org/10.5194/egusphere-2024-2793, 2024
Short summary
Short summary
We have developed a systematic approach to study the climate system at multiple scales using climate networks, which have been previously used to study correlations between time series in space at only a single scale. This new approach is used here to upscale precipitation climate networks to study the Indian Monsoon and analyse strong dependencies between spatial regions, which change with changing scale.
Wolfgang Schwanghart, Ankit Agarwal, Kristen Cook, Ugur Ozturk, Roopam Shukla, and Sven Fuchs
Nat. Hazards Earth Syst. Sci., 24, 3291–3297, https://doi.org/10.5194/nhess-24-3291-2024, https://doi.org/10.5194/nhess-24-3291-2024, 2024
Short summary
Short summary
The Himalayan landscape is particularly susceptible to extreme events, which interfere with increasing populations and the expansion of settlements and infrastructure. This preface introduces and summarizes the nine papers that are part of the special issue,
Estimating and predicting natural hazards and vulnerabilities in the Himalayan region.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Xiaoxiang Guan, Dung Viet Nguyen, Paul Voit, Bruno Merz, Maik Heistermann, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-143, https://doi.org/10.5194/nhess-2024-143, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
We evaluated a multi-site stochastic regional weather generator (nsRWG) for its ability to capture the cross-scale extremity of high precipitation events (HPEs) in Germany. We generated 100 realizations of 72 years of daily synthetic precipitation data. The performance was assessed using WEI and xWEI indices, which measure event extremity across spatio-temporal scales. Results show nsRWG simulates well the extremity patterns of HPEs, though it overestimates short-duration, small-extent events.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-181, https://doi.org/10.5194/hess-2024-181, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small compared to large catchments, and that spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show an effect. The results can improve estimations of occurrence probabilities of extreme floods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-97, https://doi.org/10.5194/nhess-2024-97, 2024
Preprint under review for NHESS
Short summary
Short summary
The July 2021 flood in Central Europe was one of the deadliest floods in Europe in the past decades and the most expensive flood in Germany. In this paper we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory was only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps better prepare for future extreme floods.
Marina Batalini de Macedo, Nikunj K. Mangukiya, Maria Clara Fava, Ashutosh Sharma, Roberto Fray da Silva, Ankit Agarwal, Maria Tereza Razzolini, Eduardo Mario Mendiondo, Narendra K. Goel, Mathew Kurian, and Adelaide Cássia Nardocci
Proc. IAHS, 386, 41–46, https://doi.org/10.5194/piahs-386-41-2024, https://doi.org/10.5194/piahs-386-41-2024, 2024
Short summary
Short summary
More and more extreme rainfall causes flooding problems in cities and communities, affecting the health and well-being of the population, as well as causing damage to the economy. To help design actions aiming at reducing the impacts of these floods, computational models can be used to simulate their extent. However, there are different types of models currently available. In this study, we evaluated three different models, for a city in Brazil and a region in India, to guide the best use of it.
Seth Bryant, Heidi Kreibich, and Bruno Merz
Proc. IAHS, 386, 181–187, https://doi.org/10.5194/piahs-386-181-2024, https://doi.org/10.5194/piahs-386-181-2024, 2024
Short summary
Short summary
Our study found that simplifying data in flood risk models can introduce errors. We tested 344 damage functions and found errors up to 40 % of the total asset value. This means large-scale flood risk assessments may have significant errors due to the modelling approach. Our research highlights the need for more attention to data aggregation in flood risk models.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023, https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Short summary
Employing event synchronization and complex networks analysis, we reveal a cascade of heavy rainfall events, related to intense atmospheric rivers (ARs): heavy precipitation events (HPEs) in western North America (NA) that occur in the aftermath of land-falling ARs are synchronized with HPEs in central and eastern Canada with a delay of up to 12 d. Understanding the effects of ARs in the rainfall over NA will lead to better anticipating the evolution of the climate dynamics in the region.
Domenico Giaquinto, Warner Marzocchi, and Jürgen Kurths
Nonlin. Processes Geophys., 30, 167–181, https://doi.org/10.5194/npg-30-167-2023, https://doi.org/10.5194/npg-30-167-2023, 2023
Short summary
Short summary
Despite being among the most severe climate extremes, it is still challenging to assess droughts’ features for specific regions. In this paper we study meteorological droughts in Europe using concepts derived from climate network theory. By exploring the synchronization in droughts occurrences across the continent we unveil regional clusters which are individually examined to identify droughts’ geographical propagation and source–sink systems, which could potentially support droughts’ forecast.
Renee van Dongen, Dirk Scherler, Dadiyorto Wendi, Eric Deal, Luca Mao, Norbert Marwan, and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2022-1234, https://doi.org/10.5194/egusphere-2022-1234, 2022
Preprint archived
Short summary
Short summary
El Niño Southern Oscillation (ENSO) is a climatic phenomenon that causes abnormal climatic conditions in Chile. We investigated how ENSO affects catchment hydrology and found strong seasonal and spatial differences in the hydrological response to ENSO which was caused by different hydrological processes in catchments that are dominated by snowmelt-generated runoff or rainfall-generated runoff. These results are relevant for water resources management and ENSO mitigation in Chile.
Kamal Rana, Nishant Malik, and Ugur Ozturk
Nat. Hazards Earth Syst. Sci., 22, 3751–3764, https://doi.org/10.5194/nhess-22-3751-2022, https://doi.org/10.5194/nhess-22-3751-2022, 2022
Short summary
Short summary
The landslide hazard models assist in mitigating losses due to landslides. However, these models depend on landslide databases, which often have missing triggering information, rendering these databases unusable for landslide hazard models. In this work, we developed a Python library, Landsifier, consisting of three different methods to identify the triggers of landslides. These methods can classify landslide triggers with high accuracy using only a landslide polygon shapefile as an input.
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022, https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Short summary
The paper presents a fast 2D hydraulic simulation model for flood propagation that enables operational forecasts of spatially distributed inundation depths, flood extent, flow velocities, and other flood impacts. The detailed spatial forecast of floods and flood impacts is a large step forward from the currently operational forecasts of discharges at selected gauges, thus enabling a more targeted flood management and early warning.
Abhishek Kashyap, Mukunda Dev Behera, Anand Kumar Pandey, and Ankit Agarwal
EGUsphere, https://doi.org/10.5194/egusphere-2022-533, https://doi.org/10.5194/egusphere-2022-533, 2022
Preprint archived
Short summary
Short summary
Bedrock landslides are currently spatially dispersed over a process of landscape evolution in the NW Himalayan river catchments. Our analysis indicates that the zones with slope range between 24–32°, topographic relief ranges between 800–1200 m, and elevation range between 1200–2400 m, are compatible with precipitation intensity ranges between 1500–3000 mm/year in the NW Himalayan river catchments, have the highest probability of frequently occurring landslides.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Pankaj R. Dhote, Joshal K. Bansal, Vaibhav Garg, Praveen K. Thakur, and Ankit Agarwal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-101, https://doi.org/10.5194/nhess-2022-101, 2022
Preprint withdrawn
Short summary
Short summary
In the present paper, we have developed framework to establish virtual stage-discharge gauging network in sparsely gauged basin using hydrodynamic modelling and satellite altimetry data. The publication of the work will provide more insights to hydraulic community dealing with flood hazard in sparsely gauged basins, on how to monitor extreme river flow events using remote sensing data at ungauged locations.
Cinthya Esther Nava Fernandez, Tobias Braun, Bethany Fox, Adam Hartland, Ola Kwiecien, Chelsea Pederson, Sebastian Hoepker, Stefano Bernasconi, Madalina Jaggi, John Hellstrom, Fernando Gázquez, Amanda French, Norbert Marwan, Adrian Immenhauser, and Sebastian Franz Martin Breitenbach
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-172, https://doi.org/10.5194/cp-2021-172, 2022
Manuscript not accepted for further review
Short summary
Short summary
We provide a ca. 1000 year long (6.4–5.4 ka BP) stalagmite-based reconstruction of mid-Holocene rainfall variability in the tropical western Pacific. The annually laminated multi-proxy (δ13C, δ18O, X/Ca, gray values) record comes from Niue island and informs on El Nino-Southern Oscillation and South Pacific Convergence Zone dynamics. Our data suggest that ENSO was active and influenced rainfall seasonality over the covered time interval. Rainfall seasonality was subdued during active ENSO phases
Nico Wunderling, Jonathan F. Donges, Jürgen Kurths, and Ricarda Winkelmann
Earth Syst. Dynam., 12, 601–619, https://doi.org/10.5194/esd-12-601-2021, https://doi.org/10.5194/esd-12-601-2021, 2021
Short summary
Short summary
In the Earth system, climate tipping elements exist that can undergo qualitative changes in response to environmental perturbations. If triggered, this would result in severe consequences for the biosphere and human societies. We quantify the risk of tipping cascades using a conceptual but fully dynamic network approach. We uncover that the risk of tipping cascades under global warming scenarios is enormous and find that the continental ice sheets are most likely to initiate these failures.
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021, https://doi.org/10.5194/npg-28-213-2021, 2021
Miriam Bertola, Alberto Viglione, Sergiy Vorogushyn, David Lun, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021, https://doi.org/10.5194/hess-25-1347-2021, 2021
Short summary
Short summary
We estimate the contribution of extreme precipitation, antecedent soil moisture and snowmelt to changes in small and large floods across Europe.
In northwestern and eastern Europe, changes in small and large floods are driven mainly by one single driver (i.e. extreme precipitation and snowmelt, respectively). In southern Europe both antecedent soil moisture and extreme precipitation significantly contribute to flood changes, and their relative importance depends on flood magnitude.
Frederik Wolf, Ugur Ozturk, Kevin Cheung, and Reik V. Donner
Earth Syst. Dynam., 12, 295–312, https://doi.org/10.5194/esd-12-295-2021, https://doi.org/10.5194/esd-12-295-2021, 2021
Short summary
Short summary
Motivated by a lacking onset prediction scheme, we examine the temporal evolution of synchronous heavy rainfall associated with the East Asian Monsoon System employing a network approach. We find, that the evolution of the Baiu front is associated with the formation of a spatially separated double band of synchronous rainfall. Furthermore, we identify the South Asian Anticyclone and the North Pacific Subtropical High as the main drivers, which have been assumed to be independent previously.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Daniel Tesfay, Larissa Serdukova, Yayun Zheng, Pingyuan Wei, Jinqiao Duan, and Jürgen Kurths
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2020-31, https://doi.org/10.5194/npg-2020-31, 2020
Publication in NPG not foreseen
Short summary
Short summary
For more than a decade, the climate has attracted stochastic dynamists with its unpredictable and complex phenomena. Our attention was attracted by the results of studies on the possibility of oceanic thermohaline circulation failure. We set the task to analyze the stability of the circulation current on-state and to predetermine what extreme events can unbalance it leading to attenuation. We also suggested possible scenarios for the resuscitation of the circulation in the event of its fading.
Cinthya Nava-Fernandez, Adam Hartland, Fernando Gázquez, Ola Kwiecien, Norbert Marwan, Bethany Fox, John Hellstrom, Andrew Pearson, Brittany Ward, Amanda French, David A. Hodell, Adrian Immenhauser, and Sebastian F. M. Breitenbach
Hydrol. Earth Syst. Sci., 24, 3361–3380, https://doi.org/10.5194/hess-24-3361-2020, https://doi.org/10.5194/hess-24-3361-2020, 2020
Short summary
Short summary
Speleothems are powerful archives of past climate for understanding modern local hydrology and its relation to regional circulation patterns. We use a 3-year monitoring dataset to test the sensitivity of Waipuna Cave to seasonal changes and El Niño–Southern Oscillation (ENSO) dynamics. Drip water data suggest a fast response to rainfall events; its elemental composition reflects a seasonal cycle and ENSO variability. Waipuna Cave speleothems have a high potential for past ENSO reconstructions.
Zhihua He, Katy Unger-Shayesteh, Sergiy Vorogushyn, Stephan M. Weise, Doris Duethmann, Olga Kalashnikova, Abror Gafurov, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 3289–3309, https://doi.org/10.5194/hess-24-3289-2020, https://doi.org/10.5194/hess-24-3289-2020, 2020
Short summary
Short summary
Quantifying the seasonal contributions of the runoff components, including groundwater, snowmelt, glacier melt, and rainfall, to streamflow is highly necessary for understanding the dynamics of water resources in glacierized basins given the vulnerability of snow- and glacier-dominated environments to the current climate warming. Our study provides the first comparison of two end-member mixing approaches for hydrograph separation in glacierized basins.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Sergiy Vorogushyn, Björn Guse, Heidi Kreibich, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, https://doi.org/10.5194/nhess-20-967-2020, 2020
Short summary
Short summary
For effective risk management, flood risk should be properly assessed. Traditionally, risk is assessed by making the assumption of invariant flow or loss probabilities (the chance that a given discharge or loss is exceeded) within the river catchment during a single flood event. However, in reality, flooding is more severe in some regions than others. This study indicates the importance of representing the spatial dependence of flood peaks and damage for risk assessments.
Björn Guse, Bruno Merz, Luzie Wietzke, Sophie Ullrich, Alberto Viglione, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 24, 1633–1648, https://doi.org/10.5194/hess-24-1633-2020, https://doi.org/10.5194/hess-24-1633-2020, 2020
Short summary
Short summary
Floods are influenced by river network processes, among others. Flood characteristics of tributaries may affect flood severity downstream of confluences. The impact of flood wave superposition is investigated with regard to magnitude and temporal matching of flood peaks. Our study in Germany and Austria shows that flood wave superposition is not the major driver of flood severity. However, there is the potential for large floods at some confluences in cases of temporal matching of flood peaks.
Markus Drüke, Matthias Forkel, Werner von Bloh, Boris Sakschewski, Manoel Cardoso, Mercedes Bustamante, Jürgen Kurths, and Kirsten Thonicke
Geosci. Model Dev., 12, 5029–5054, https://doi.org/10.5194/gmd-12-5029-2019, https://doi.org/10.5194/gmd-12-5029-2019, 2019
Short summary
Short summary
This work shows the successful application of a systematic model–data integration setup, as well as the implementation of a new fire danger formulation, in order to optimize a process-based fire-enabled dynamic global vegetation model. We have demonstrated a major improvement in the fire representation within LPJmL4-SPITFIRE in terms of the spatial pattern and the interannual variability of burned area in South America as well as in the modelling of biomass and the distribution of plant types.
Jürgen Kurths, Ankit Agarwal, Roopam Shukla, Norbert Marwan, Maheswaran Rathinasamy, Levke Caesar, Raghavan Krishnan, and Bruno Merz
Nonlin. Processes Geophys., 26, 251–266, https://doi.org/10.5194/npg-26-251-2019, https://doi.org/10.5194/npg-26-251-2019, 2019
Short summary
Short summary
We examined the spatial diversity of Indian rainfall teleconnection at different timescales, first by identifying homogeneous communities and later by computing non-linear linkages between the identified communities (spatial regions) and dominant climatic patterns, represented by climatic indices such as El Nino–Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation.
Sebastian von Specht, Ugur Ozturk, Georg Veh, Fabrice Cotton, and Oliver Korup
Solid Earth, 10, 463–486, https://doi.org/10.5194/se-10-463-2019, https://doi.org/10.5194/se-10-463-2019, 2019
Short summary
Short summary
We show the landslide response to the 2016 Kumamoto earthquake (Mw 7.1) in central Kyushu (Japan). Landslides are concentrated to the northeast of the rupture, coinciding with the propagation direction of the earthquake. This azimuthal variation in the landslide concentration is linked to the seismic rupture process itself and not to classical landslide susceptibility factors. We propose a new ground-motion model that links the seismic radiation pattern with the landslide distribution.
Eva Steirou, Lars Gerlitz, Heiko Apel, Xun Sun, and Bruno Merz
Hydrol. Earth Syst. Sci., 23, 1305–1322, https://doi.org/10.5194/hess-23-1305-2019, https://doi.org/10.5194/hess-23-1305-2019, 2019
Short summary
Short summary
We investigate whether flood probabilities in Europe vary for different large-scale atmospheric circulation conditions. Maximum seasonal river flows from 600 gauges in Europe and five synchronous atmospheric circulation indices are analyzed. We find that a high percentage of stations is influenced by at least one of the climate indices, especially during winter. These results can be useful for preparedness and damage planning by (re-)insurance companies.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Björn Guse, Heiko Apel, Heidi Kreibich, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 18, 3089–3108, https://doi.org/10.5194/nhess-18-3089-2018, https://doi.org/10.5194/nhess-18-3089-2018, 2018
Short summary
Short summary
We present a comprehensive sensitivity analysis considering changes along the complete flood risk chain to understand how changes in different drivers affect flood risk. Results show that changes in dike systems or in vulnerability may outweigh changes in often investigated components, such as climate change. Although the specific results are conditional on the case study and assumptions, they highlight the need for a broader consideration of potential drivers of change in a comprehensive way.
Nguyen Van Khanh Triet, Nguyen Viet Dung, Bruno Merz, and Heiko Apel
Nat. Hazards Earth Syst. Sci., 18, 2859–2876, https://doi.org/10.5194/nhess-18-2859-2018, https://doi.org/10.5194/nhess-18-2859-2018, 2018
Short summary
Short summary
In this study we provide an estimation of flood damages and risks to rice cultivation in the Mekong Delta. The derived modelling concept explicitly takes plant phenomenology and timing of floods in a probabilistic modelling framework into account. This results in spatially explicit flood risk maps to rice cultivation, quantified as expected annual damage. Furthermore, the changes in flood risk of two land-use scenarios were estimated and discussed.
Marlies Holkje Barendrecht, Alberto Viglione, Heidi Kreibich, Sergiy Vorogushyn, Bruno Merz, and Günter Blöschl
Proc. IAHS, 379, 193–198, https://doi.org/10.5194/piahs-379-193-2018, https://doi.org/10.5194/piahs-379-193-2018, 2018
Short summary
Short summary
The aim of this paper is to assess whether a Socio-Hydrological model can be calibrated to data artificially generated from it. This is not trivial because the model is highly nonlinear and it is not clear what amount of data would be needed for calibration. We demonstrate that, using Bayesian inference, the parameters of the model can be estimated quite accurately from relatively few data, which could be available in real case studies.
Nguyen Le Duy, Ingo Heidbüchel, Hanno Meyer, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 22, 1239–1262, https://doi.org/10.5194/hess-22-1239-2018, https://doi.org/10.5194/hess-22-1239-2018, 2018
Short summary
Short summary
This study analyzes the influence of local and regional meteorological factors on the isotopic composition of precipitation. The impact of the different factors on the isotopic condition was quantified by multiple linear regression of all factor combinations combined with relative importance analysis. The proposed approach might open a pathway for the improved reconstruction of paleoclimates based on isotopic records.
Tim Kittel, Catrin Ciemer, Nastaran Lotfi, Thomas Peron, Francisco Rodrigues, Jürgen Kurths, and Reik V. Donner
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-69, https://doi.org/10.5194/npg-2017-69, 2017
Revised manuscript not accepted
Ankit Agarwal, Norbert Marwan, Maheswaran Rathinasamy, Bruno Merz, and Jürgen Kurths
Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, https://doi.org/10.5194/npg-24-599-2017, 2017
Short summary
Short summary
Extreme events such as floods and droughts result from synchronization of different natural processes working at multiple timescales. Investigation on an observation timescale will not reveal the inherent underlying dynamics triggering these events. This paper develops a new method based on wavelets and event synchronization to unravel the hidden dynamics responsible for such sudden events. This method is tested with synthetic and real-world cases and the results are promising.
Nguyen Van Khanh Triet, Nguyen Viet Dung, Hideto Fujii, Matti Kummu, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, https://doi.org/10.5194/hess-21-3991-2017, 2017
Short summary
Short summary
In this study we provide a numerical quantification of changes in flood hazard in the Vietnamese Mekong Delta as a result of dyke development. Other important drivers to the alteration of delta flood hazard are also investigated, e.g. tidal level. The findings of our study are substantial valuable for the decision makers in Vietnam to develop holistic and harmonized floods and flood-related issues management plan for the whole delta.
Mathias Seibert, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 1611–1629, https://doi.org/10.5194/hess-21-1611-2017, https://doi.org/10.5194/hess-21-1611-2017, 2017
Short summary
Short summary
Seasonal early warning is vital for drought management in arid regions like the Limpopo Basin in southern Africa. This study shows that skilled seasonal forecasts can be achieved with statistical methods built upon driving factors for drought occurrence. These are the hydrological factors for current streamflow and meteorological drivers represented by anomalies in sea surface temperatures of the surrounding oceans, which combine to form unique combinations in the drought forecast models.
Finn Müller-Hansen, Manoel F. Cardoso, Eloi L. Dalla-Nora, Jonathan F. Donges, Jobst Heitzig, Jürgen Kurths, and Kirsten Thonicke
Nonlin. Processes Geophys., 24, 113–123, https://doi.org/10.5194/npg-24-113-2017, https://doi.org/10.5194/npg-24-113-2017, 2017
Short summary
Short summary
Deforestation and subsequent land uses in the Brazilian Amazon have huge impacts on greenhouse gas emissions, local climate and biodiversity. To better understand these land-cover changes, we apply complex systems methods uncovering spatial patterns in regional transition probabilities between land-cover types, which we estimate using maps derived from satellite imagery. The results show clusters of similar land-cover dynamics and thus complement studies at the local scale.
Lars Gerlitz, Sergiy Vorogushyn, Heiko Apel, Abror Gafurov, Katy Unger-Shayesteh, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4605–4623, https://doi.org/10.5194/hess-20-4605-2016, https://doi.org/10.5194/hess-20-4605-2016, 2016
Short summary
Short summary
Most statistically based seasonal precipitation forecast models utilize a small set of well-known climate indices as potential predictor variables. However, for many target regions, these indices do not lead to sufficient results and customized predictors are required for an accurate prediction.
This study presents a statistically based routine, which automatically identifies suitable predictors from globally gridded SST and climate variables by means of an extensive data mining procedure.
Aline Murawski, Gerd Bürger, Sergiy Vorogushyn, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4283–4306, https://doi.org/10.5194/hess-20-4283-2016, https://doi.org/10.5194/hess-20-4283-2016, 2016
Short summary
Short summary
To understand past flood changes in the Rhine catchment and the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. Here the link between patterns and local climate is tested, and the skill of GCMs in reproducing these patterns is evaluated.
Heidi Kreibich, Kai Schröter, and Bruno Merz
Proc. IAHS, 373, 179–182, https://doi.org/10.5194/piahs-373-179-2016, https://doi.org/10.5194/piahs-373-179-2016, 2016
Heiko Apel, Oriol Martínez Trepat, Nguyen Nghia Hung, Do Thi Chinh, Bruno Merz, and Nguyen Viet Dung
Nat. Hazards Earth Syst. Sci., 16, 941–961, https://doi.org/10.5194/nhess-16-941-2016, https://doi.org/10.5194/nhess-16-941-2016, 2016
Short summary
Short summary
Many urban areas experience both fluvial and pluvial floods, thus this study aims to analyse fluvial and pluvial flood hazards as well as combined pluvial and fluvial flood hazards. This combined fluvial–pluvial flood hazard analysis is performed in a tropical environment for Can Tho city in the Mekong Delta. The final results are probabilistic hazard maps, showing the maximum inundation caused by floods of different magnitudes along with an uncertainty estimation.
T. Nocke, S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski
Nonlin. Processes Geophys., 22, 545–570, https://doi.org/10.5194/npg-22-545-2015, https://doi.org/10.5194/npg-22-545-2015, 2015
Short summary
Short summary
The paper reviews the available visualisation techniques and tools for the visual analysis of geo-physical climate networks. The results from a questionnaire with experts from non-linear physics are presented, and the paper surveys recent developments from information visualisation and cartography with respect to their applicability for visual climate network analytics. Several case studies based on own solutions illustrate the potentials of state-of-the-art network visualisation technology.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
J. F. Donges, R. V. Donner, N. Marwan, S. F. M. Breitenbach, K. Rehfeld, and J. Kurths
Clim. Past, 11, 709–741, https://doi.org/10.5194/cp-11-709-2015, https://doi.org/10.5194/cp-11-709-2015, 2015
Short summary
Short summary
Paleoclimate records from cave deposits allow the reconstruction of Holocene dynamics of the Asian monsoon system, an important tipping element in Earth's climate. Employing recently developed techniques of nonlinear time series analysis reveals several robust and continental-scale regime shifts in the complexity of monsoonal variability. These regime shifts might have played an important role as drivers of migration, cultural change, and societal collapse during the past 10,000 years.
A. Gafurov, S. Vorogushyn, D. Farinotti, D. Duethmann, A. Merkushkin, and B. Merz
The Cryosphere, 9, 451–463, https://doi.org/10.5194/tc-9-451-2015, https://doi.org/10.5194/tc-9-451-2015, 2015
Short summary
Short summary
Spatially distributed snow-cover data are available only for the recent past from remote sensing. Sometimes we need snow-cover data over a longer period for climate impact analysis for the calibration/validation of hydrological models. In this study we present a methodology to reconstruct snow cover in the past using available long-term in situ data and recently available remote sensing snow-cover data. The results show about 85% accuracy although only a limited number of stations (7) were used.
K. Schröter, M. Kunz, F. Elmer, B. Mühr, and B. Merz
Hydrol. Earth Syst. Sci., 19, 309–327, https://doi.org/10.5194/hess-19-309-2015, https://doi.org/10.5194/hess-19-309-2015, 2015
Short summary
Short summary
Extreme antecedent precipitation, increased initial hydraulic load in the river network and strong but not extraordinary event precipitation were key drivers for the flood in June 2013 in Germany. Our results are based on extreme value statistics and aggregated severity indices which we evaluated for a set of 74 historic large-scale floods. This flood database and the methodological framework enable the rapid assessment of future floods using precipitation and discharge observations.
T. K. D. Peron, C. H. Comin, D. R. Amancio, L. da F. Costa, F. A. Rodrigues, and J. Kurths
Nonlin. Processes Geophys., 21, 1127–1132, https://doi.org/10.5194/npg-21-1127-2014, https://doi.org/10.5194/npg-21-1127-2014, 2014
Short summary
Short summary
In the past few years, complex networks have been extensively applied to climate sciences, yielding
the new field of climate networks. Here, we generalize climate network analysis by investigating the influence of altitudes in network topology. More precisely, we verified that nodes group into different communities corresponding to geographical areas with similar relief properties. This new approach may contribute to obtaining more complete climate network models.
Y. Zou, R. V. Donner, N. Marwan, M. Small, and J. Kurths
Nonlin. Processes Geophys., 21, 1113–1126, https://doi.org/10.5194/npg-21-1113-2014, https://doi.org/10.5194/npg-21-1113-2014, 2014
Short summary
Short summary
We use visibility graphs to characterize asymmetries in the dynamics of sunspot areas in both solar hemispheres. Our analysis provides deep insights into the potential and limitations of this method, revealing a complex interplay between effects due to statistical versus dynamical properties of the observed data. Temporal changes in the hemispheric predominance of the graph connectivity are found to lag those directly associated with the total hemispheric sunspot areas themselves.
D. Eroglu, N. Marwan, S. Prasad, and J. Kurths
Nonlin. Processes Geophys., 21, 1085–1092, https://doi.org/10.5194/npg-21-1085-2014, https://doi.org/10.5194/npg-21-1085-2014, 2014
B. Goswami, J. Heitzig, K. Rehfeld, N. Marwan, A. Anoop, S. Prasad, and J. Kurths
Nonlin. Processes Geophys., 21, 1093–1111, https://doi.org/10.5194/npg-21-1093-2014, https://doi.org/10.5194/npg-21-1093-2014, 2014
Short summary
Short summary
We present a new approach to estimating sedimentary proxy records along with the proxy uncertainty. We provide analytical expressions for the proxy record, while transparently propagating uncertainties from the ages to the proxy record. We represent proxies on an error-free, precise timescale. Our approach provides insight into the interrelations between proxy variability and the various uncertainties. We demonstrate our method with synthetic examples and proxy data from the Lonar lake in India.
V. Stolbova, P. Martin, B. Bookhagen, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 901–917, https://doi.org/10.5194/npg-21-901-2014, https://doi.org/10.5194/npg-21-901-2014, 2014
N. V. Manh, N. V. Dung, N. N. Hung, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 18, 3033–3053, https://doi.org/10.5194/hess-18-3033-2014, https://doi.org/10.5194/hess-18-3033-2014, 2014
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
K. Rehfeld, N. Molkenthin, and J. Kurths
Nonlin. Processes Geophys., 21, 691–703, https://doi.org/10.5194/npg-21-691-2014, https://doi.org/10.5194/npg-21-691-2014, 2014
L. Tupikina, K. Rehfeld, N. Molkenthin, V. Stolbova, N. Marwan, and J. Kurths
Nonlin. Processes Geophys., 21, 705–711, https://doi.org/10.5194/npg-21-705-2014, https://doi.org/10.5194/npg-21-705-2014, 2014
J. M. Delgado, B. Merz, and H. Apel
Nat. Hazards Earth Syst. Sci., 14, 1579–1589, https://doi.org/10.5194/nhess-14-1579-2014, https://doi.org/10.5194/nhess-14-1579-2014, 2014
N. Molkenthin, K. Rehfeld, V. Stolbova, L. Tupikina, and J. Kurths
Nonlin. Processes Geophys., 21, 651–657, https://doi.org/10.5194/npg-21-651-2014, https://doi.org/10.5194/npg-21-651-2014, 2014
J. Hlinka, D. Hartman, N. Jajcay, M. Vejmelka, R. Donner, N. Marwan, J. Kurths, and M. Paluš
Nonlin. Processes Geophys., 21, 451–462, https://doi.org/10.5194/npg-21-451-2014, https://doi.org/10.5194/npg-21-451-2014, 2014
S. Uhlemann, A. H. Thieken, and B. Merz
Nat. Hazards Earth Syst. Sci., 14, 189–208, https://doi.org/10.5194/nhess-14-189-2014, https://doi.org/10.5194/nhess-14-189-2014, 2014
K. Rehfeld and J. Kurths
Clim. Past, 10, 107–122, https://doi.org/10.5194/cp-10-107-2014, https://doi.org/10.5194/cp-10-107-2014, 2014
S. Vorogushyn and B. Merz
Hydrol. Earth Syst. Sci., 17, 3871–3884, https://doi.org/10.5194/hess-17-3871-2013, https://doi.org/10.5194/hess-17-3871-2013, 2013
A. Domeneghetti, S. Vorogushyn, A. Castellarin, B. Merz, and A. Brath
Hydrol. Earth Syst. Sci., 17, 3127–3140, https://doi.org/10.5194/hess-17-3127-2013, https://doi.org/10.5194/hess-17-3127-2013, 2013
N. V. Manh, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 17, 3039–3057, https://doi.org/10.5194/hess-17-3039-2013, https://doi.org/10.5194/hess-17-3039-2013, 2013
N. Itoh and N. Marwan
Nonlin. Processes Geophys., 20, 467–481, https://doi.org/10.5194/npg-20-467-2013, https://doi.org/10.5194/npg-20-467-2013, 2013
D. Duethmann, J. Zimmer, A. Gafurov, A. Güntner, D. Kriegel, B. Merz, and S. Vorogushyn
Hydrol. Earth Syst. Sci., 17, 2415–2434, https://doi.org/10.5194/hess-17-2415-2013, https://doi.org/10.5194/hess-17-2415-2013, 2013
M. Nied, Y. Hundecha, and B. Merz
Hydrol. Earth Syst. Sci., 17, 1401–1414, https://doi.org/10.5194/hess-17-1401-2013, https://doi.org/10.5194/hess-17-1401-2013, 2013
S. Uhlemann, R. Bertelmann, and B. Merz
Hydrol. Earth Syst. Sci., 17, 895–911, https://doi.org/10.5194/hess-17-895-2013, https://doi.org/10.5194/hess-17-895-2013, 2013
N. V. Dung, B. Merz, A. Bárdossy, and H. Apel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-275-2013, https://doi.org/10.5194/nhessd-1-275-2013, 2013
Revised manuscript not accepted
B. Merz, H. Kreibich, and U. Lall
Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, https://doi.org/10.5194/nhess-13-53-2013, 2013
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Mathematical applications
Enhancing the usability of weather radar data for the statistical analysis of extreme precipitation events
Socio-hydrological data assimilation: analyzing human–flood interactions by model–data integration
Flood trends along the Rhine: the role of river training
Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates
A decision tree model to estimate the value of information provided by a groundwater quality monitoring network
Gradually varied open-channel flow profiles normalized by critical depth and analytically solved by using Gaussian hypergeometric functions
Effects of disregarding seasonality on the distribution of hydrological extremes
Multi-objective automatic calibration of hydrodynamic models utilizing inundation maps and gauge data
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology
Exploiting the information content of hydrological ''outliers'' for goodness-of-fit testing
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 5069–5084, https://doi.org/10.5194/hess-26-5069-2022, https://doi.org/10.5194/hess-26-5069-2022, 2022
Short summary
Short summary
Spatially explicit quantification of design storms is essential for flood risk assessment and planning. However, available datasets are mainly based on spatially interpolated station-based design storms. Since the spatial interpolation of the data inherits a large potential for uncertainty, we develop an approach to be able to derive spatially explicit design storms on the basis of weather radar data. We find that our approach leads to an improved spatial representation of design storms.
Yohei Sawada and Risa Hanazaki
Hydrol. Earth Syst. Sci., 24, 4777–4791, https://doi.org/10.5194/hess-24-4777-2020, https://doi.org/10.5194/hess-24-4777-2020, 2020
Short summary
Short summary
In socio-hydrology, human–water interactions are investigated. Researchers have two major methodologies in socio-hydrology, namely mathematical modeling and empirical data analysis. Here we propose a new method for bringing the synergic effect of models and data to socio-hydrology. We apply sequential data assimilation, which has been widely used in geoscience, to a flood risk model to analyze the human–flood interactions by model–data integration.
S. Vorogushyn and B. Merz
Hydrol. Earth Syst. Sci., 17, 3871–3884, https://doi.org/10.5194/hess-17-3871-2013, https://doi.org/10.5194/hess-17-3871-2013, 2013
J. López and F. Francés
Hydrol. Earth Syst. Sci., 17, 3189–3203, https://doi.org/10.5194/hess-17-3189-2013, https://doi.org/10.5194/hess-17-3189-2013, 2013
A. I. Khader, D. E. Rosenberg, and M. McKee
Hydrol. Earth Syst. Sci., 17, 1797–1807, https://doi.org/10.5194/hess-17-1797-2013, https://doi.org/10.5194/hess-17-1797-2013, 2013
C.-D. Jan and C.-L. Chen
Hydrol. Earth Syst. Sci., 17, 973–987, https://doi.org/10.5194/hess-17-973-2013, https://doi.org/10.5194/hess-17-973-2013, 2013
P. Allamano, F. Laio, and P. Claps
Hydrol. Earth Syst. Sci., 15, 3207–3215, https://doi.org/10.5194/hess-15-3207-2011, https://doi.org/10.5194/hess-15-3207-2011, 2011
N. V. Dung, B. Merz, A. Bárdossy, T. D. Thang, and H. Apel
Hydrol. Earth Syst. Sci., 15, 1339–1354, https://doi.org/10.5194/hess-15-1339-2011, https://doi.org/10.5194/hess-15-1339-2011, 2011
A. Elshorbagy, G. Corzo, S. Srinivasulu, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 14, 1931–1941, https://doi.org/10.5194/hess-14-1931-2010, https://doi.org/10.5194/hess-14-1931-2010, 2010
F. Laio, P. Allamano, and P. Claps
Hydrol. Earth Syst. Sci., 14, 1909–1917, https://doi.org/10.5194/hess-14-1909-2010, https://doi.org/10.5194/hess-14-1909-2010, 2010
Cited articles
Adhikary, S. K., Yilmaz, A. G., and Muttil, N.: Optimal design of rain gauge
network in the Middle Yarra River catchment, Australia, Hydrol. Process.,
29, 2582–2599, https://doi.org/10.1002/hyp.10389, 2015.
Agarwal, A.: Unraveling spatio-temporal climatic patterns via multi-scale
complex networks, Universität Potsdam, Potsdam, 2019.
Agarwal, A., Marwan, N., Rathinasamy, M., Merz, B., and Kurths, J.: Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach, Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, 2017.
Agarwal, A., Marwan, N., Maheswaran, R., Merz, B., and Kurths, J.:
Quantifying the roles of single stations within homogeneous regions using
complex network analysis, J. Hydrol., 563, 802–810, https://doi.org/10.1016/j.jhydrol.2018.06.050,
2018a.
Agarwal, A., Maheswaran, R., Marwan, N., Caesar, L., and Kurths, J.:
Wavelet-based multiscale similarity measure for complex networks, Eur. Phys.
J. B, 91, 296, https://doi.org/10.1140/epjb/e2018-90460-6, 2018b.
Agarwal, A., Caesar, L., Marwan, N., Maheswaran, R., Merz, B., and Kurths,
J.: Network-based identification and characterization of teleconnections on
different scales, Sci. Rep.-UK, 9, 8808, https://doi.org/10.1038/s41598-019-45423-5, 2019.
Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C.:
Synchronization in complex networks, Phys. Rep., 469, 93–153,
https://doi.org/10.1016/j.physrep.2008.09.002, 2008.
Boers, N., Rheinwalt, A., Bookhagen, B., Barbosa, H. M. J., Marwan, N.,
Marengo, J., and Kurths, J.: The South American rainfall dipole: A complex
network analysis of extreme events: BOERS ET AL., Geophys. Res. Lett.,
41, 7397–7405, https://doi.org/10.1002/2014GL061829, 2014.
Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., and
Kurths, J.: Complex networks reveal global pattern of extreme-rainfall
teleconnections, Nature, 566, 373–377, https://doi.org/10.1038/s41586-018-0872-x, 2019.
Bullmore, E. and Sporns, O.: The economy of brain network organization, Nat.
Rev. Neurosci., 13, 336–349, https://doi.org/10.1038/nrn3214, 2012.
Chacon-Hurtado, J. C., Alfonso, L., and Solomatine, D. P.: Rainfall and streamflow sensor network design: a review of applications, classification, and a proposed framework, Hydrol. Earth Syst. Sci., 21, 3071–3091, https://doi.org/10.5194/hess-21-3071-2017, 2017.
Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C., and Zhou, T.: Identifying
influential nodes in complex networks, Phys. Stat. Mech. Its Appl., 391,
1777–1787, https://doi.org/10.1016/j.physa.2011.09.017, 2012.
Conradt, T., Koch, H., Hattermann, F. F., and Wechsung, F.: Precipitation or
evapotranspiration? Bayesian analysis of potential error sources in the
simulation of sub-basin discharges in the Czech Elbe River basin, Reg.
Environ. Change, 12, 649–661, https://doi.org/10.1007/s10113-012-0280-y, 2012.
Conticello, F., Cioffi, F., Merz, B., and Lall, U.: An event synchronization
method to link heavy rainfall events and large-scale atmospheric circulation
features, Int. J. Climatol., 38, 1421–1437, https://doi.org/10.1002/joc.5255, 2018.
Donges, J. F., Zou, Y., Marwan, N., and Kurths, J.: Complex networks in
climate dynamics: Comparing linear and nonlinear network construction
methods, Eur. Phys. J. Spec. Top., 174, 157–179,
https://doi.org/10.1140/epjst/e2009-01098-2, 2009.
Donges, J. F., Petrova, I., Loew, A., Marwan, N., and Kurths, J.: How complex
climate networks complement eigen techniques for the statistical analysis of
climatological data, Clim. Dynam., 45, 2407–2424,
https://doi.org/10.1007/s00382-015-2479-3, 2015.
Ekhtiari, N., Agarwal, A., Marwan, N., and Donner, R. V.: Disentangling the
multi-scale effects of sea-surface temperatures on global precipitation: A
coupled networks approach, Chaos Interdiscip. J. Nonlinear Sci., 29,
063116, https://doi.org/10.1063/1.5095565, 2019.
Fang, K., Sivakumar, B., and Woldemeskel, F. M.: Complex networks, community
structure, and catchment classification in a large-scale river basin, J.
Hydrol., 545, 478–493, https://doi.org/10.1016/j.jhydrol.2016.11.056, 2017.
Ferster, B., Subrahmanyam, B., and Macdonald, A.: Confirmation of
ENSO-Southern Ocean Teleconnections Using Satellite-Derived SST, Remote
Sens., 10, 331, https://doi.org/10.3390/rs10020331, 2018.
Gao, C., Wei, D., Hu, Y., Mahadevan, S., and Deng, Y.: A modified evidential
methodology of identifying influential nodes in weighted networks, Phys.
Stat. Mech. Its Appl., 392, 5490–5500, https://doi.org/10.1016/j.physa.2013.06.059,
2013.
Halverson, M. J. and Fleming, S. W.: Complex network theory, streamflow, and hydrometric monitoring system design, Hydrol. Earth Syst. Sci., 19, 3301–3318, https://doi.org/10.5194/hess-19-3301-2015, 2015.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006, J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Hohn, M. E.: An Introduction to Applied Geostatistics, Comput. Geosci.,
17, 471–473, https://doi.org/10.1016/0098-3004(91)90055-I, 1991.
Hou, B., Yao, Y., and Liao, D.: Identifying all-around nodes for spreading
dynamics in complex networks, Phys. Stat. Mech. Its Appl., 391,
4012–4017, https://doi.org/10.1016/j.physa.2012.02.033, 2012.
Jensen, P., Morini, M., Karsai, M., Venturini, T., Vespignani, A., Jacomy,
M., Cointet, J.-P., Mercklé, P., and Fleury, E.: Detecting global bridges
in networks, J. Complex Netw., 4, 319–329, https://doi.org/10.1093/comnet/cnv022,
2016.
Jha, S. K., Zhao, H., Woldemeskel, F. M., and Sivakumar, B.: Network theory
and spatial rainfall connections: An interpretation, J. Hydrol., 527,
13–19, https://doi.org/10.1016/j.jhydrol.2015.04.035, 2015.
Johnston, K., VerHoef, J. M., Krivoruchko, K., and Lucas, N.: Using ArcGISGeostatistical Analyst, ArcGIS Manual by ESRI, Redlands, CA, USA, 2001.
Keum, J., Kornelsen, K., Leach, J., and Coulibaly, P.: Entropy Applications
to Water Monitoring Network Design: A Review, Entropy, 19, 613,
https://doi.org/10.3390/e19110613, 2017.
Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley,
H. E., and Makse, H. A.: Identification of influential spreaders in complex
networks, Nat. Phys., 6, 888–893, https://doi.org/10.1038/nphys1746, 2010.
Konapala, G. and Mishra, A.: Review of complex networks application in
hydroclimatic extremes with an implementation to characterize
spatio-temporal drought propagation in continental USA, J. Hydrol., 555,
600–620, https://doi.org/10.1016/j.jhydrol.2017.10.033, 2017.
Kurths, J., Agarwal, A., Shukla, R., Marwan, N., Rathinasamy, M., Caesar, L., Krishnan, R., and Merz, B.: Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach, Nonlin. Processes Geophys., 26, 251–266, https://doi.org/10.5194/npg-26-251-2019, 2019.
Liu, J., Xiong, Q., Shi, W., Shi, X., and Wang, K.: Evaluating the importance
of nodes in complex networks, Phys. Stat. Mech. Its Appl., 452, 209–219,
https://doi.org/10.1016/j.physa.2016.02.049, 2016.
Mishra, A. K. and Coulibaly, P.: Developments in hydrometric network design:
A review, Rev. Geophys., 47, RG2001, https://doi.org/10.1029/2007RG000243, 2009.
Molkenthin, N., Rehfeld, K., Marwan, N., and Kurths, J.: Networks from Flows
– From Dynamics to Topology, Sci. Rep.-UK, 4, 4119, https://doi.org/10.1038/srep04119, 2015.
Oesterle, H.: Reconstruction of daily global radiation for past years for
use in agricultural models, Phys. Chem. Earth Pt. B, 26, 253–256, https://doi.org/10.1016/S1464-1909(00)00248-3, 2001.
Okamoto, K., Chen, W., and Li, X.-Y.: Ranking of Closeness Centrality for
Large-Scale Social Networks, in Frontiers in Algorithmics, vol. 5059, edited
by: Preparata, F. P., Wu, X., and Yin, J., Springer Berlin
Heidelberg, Berlin, Heidelberg, 186–195, 2008.
Österle, H., Werner, P., and Gerstengarbe, F.: Qualitätsprüfung,
Ergänzung und Homogenisierung der täglichen Datenreihen in
Deutschland, 1951–2003: ein neuer Datensatz, 7. Deutsche Klimatagung, Klimatrends: Vergangenheit und Zukunft, 9–11 Oktober 2006, München, 2006.
Ozturk, U., Marwan, N., Korup, O., Saito, H., Agarwal, A., Grossman, M. J.,
Zaiki, M., and Kurths, J.: Complex networks for tracking extreme rainfall
during typhoons, Chaos Interdiscip. J. Nonlinear Sci., 28, 075301,
https://doi.org/10.1063/1.5004480, 2018.
Paluš, M.: Linked by Dynamics: Wavelet-Based Mutual Information Rate as
a Connectivity Measure and Scale-Specific Networks, in Advances in Nonlinear
Geosciences, edited by: Tsonis, A. A., Springer International
Publishing, Cham, 427–463, 2018.
Putthividhya, A. and Tanaka, K.: Optimal Rain Gauge Network Design and
Spatial Precipitation Mapping based on Geostatistical Analysis from
Colocated Elevation and Humidity Data, Int. J. Environ. Sci. Dev., 3, 124–129,
https://doi.org/10.7763/IJESD.2012.V3.201, 2012.
Quiroga, R. Q., Kraskov, A., Kreuz, T., and Grassberger, P.: Performance of
different synchronization measures in real data: A case study on
electroencephalographic signals, Phys. Rev. E, 65, 041903,
https://doi.org/10.1103/PhysRevE.65.041903, 2002.
Rheinwalt, A., Goswami, B., Boers, N., Heitzig, J., Marwan, N., Krishnan, R.,
and Kurths, J.: Teleconnections in Climate Networks: A Network-of-Networks
Approach to Investigate the Influence of Sea Surface Temperature Variability
on Monsoon Systems, in Machine Learning and Data Mining Approaches to
Climate Science, edited by: Lakshmanan, V., Gilleland, E., McGovern, A., and
Tingley, M., Springer International Publishing, Cham, 23–33, 2015.
Rheinwalt, A., Boers, N., Marwan, N., Kurths, J., Hoffmann, P.,
Gerstengarbe, F.-W., and Werner, P.: Non-linear time series analysis of
precipitation events using regional climate networks for Germany, Clim.
Dynam., 46, 1065–1074, https://doi.org/10.1007/s00382-015-2632-z, 2016.
Rossi, M., Kirschbaum, D., Valigi, D., Mondini, A., and Guzzetti, F.:
Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in
Italy, and Impact on Landslide Modeling, Climate, 5, 90,
https://doi.org/10.3390/cli5040090, 2017.
Saxena, A., Malik, V., and Iyengar, S. R. S.: Estimating the degree centrality ranking, 8th International Conference on Communication Systems and Networks (COMSNETS), 5–10 January 2016, IEEE, Bangalore, 2016, 1–2, https://doi.org/10.1109/COMSNETS.2016.7440022, 2016.
Sivakumar, B. and Woldemeskel, F. M.: Complex networks for streamflow dynamics, Hydrol. Earth Syst. Sci., 18, 4565–4578, https://doi.org/10.5194/hess-18-4565-2014, 2014.
Stosic, T., Stosic, B., and Singh, V. P.: Optimizing streamflow monitoring
networks using joint permutation entropy, J. Hydrol., 552, 306–312,
https://doi.org/10.1016/j.jhydrol.2017.07.003, 2017.
Tobler, W. R.: A Computer Movie Simulating Urban Growth in the Detroit
Region, Econ. Geogr., 46, 234–240, https://doi.org/10.2307/143141, 1970.
Tupikina, L., Molkenthin, N., López, C., Hernández-García, E.,
Marwan, N., and Kurths, J.: Correlation Networks from Flows. The Case of
Forced and Time-Dependent Advection-Diffusion Dynamics, edited by: Gao, Z.-K., PLOS ONE, 11, e0153703, https://doi.org/10.1371/journal.pone.0153703, 2016.
Wadoux, A. M. J.-C., Brus, D. J., Rico-Ramirez, M. A., and Heuvelink, G. B.
M.: Sampling design optimisation for rainfall prediction using a
non-stationary geostatistical model, Adv. Water Resour., 107, 126–138,
https://doi.org/10.1016/j.advwatres.2017.06.005, 2017.
Webster, R. and Oliver, M. A.: Geostatistics for Environmental Scientists,
John Wiley & Sons, Ltd, Chichester, UK, 2007.
Xu, P., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wang, L., Zou, X., Liu,
J., Zou, Y., and He, R.: A kriging and entropy-based approach to raingauge
network design, Environ. Res., 161, 61–75,
https://doi.org/10.1016/j.envres.2017.10.038, 2018.
Yeh, H.-C., Chen, Y.-C., Chang, C.-H., Ho, C.-H., and Wei, C.: Rainfall
Network Optimization Using Radar and Entropy, Entropy, 19, 553,
https://doi.org/10.3390/e19100553, 2017.
Zhang, X., Zhu, J., Wang, Q., and Zhao, H.: Identifying influential nodes in
complex networks with community structure, Knowl.-Based Syst., 42, 74–84,
https://doi.org/10.1016/j.knosys.2013.01.017, 2013.
Zlatić, V., Božičević, M., Štefančić, H., and
Domazet, M.: Wikipedias: Collaborative web-based encyclopedias as complex
networks, Phys. Rev. E, 74, 016115, https://doi.org/10.1103/PhysRevE.74.016115, 2006.
Short summary
In the climate/hydrology network, each node represents a geographical location of climatological data, and links between nodes are set up based on their interaction or similar variability. Here, using network theory, we first generate a node-ranking measure and then prioritize the rain gauges to identify influential and expandable stations across Germany. To show the applicability of the proposed approach, we also compared the results with existing traditional and contemporary network measures.
In the climate/hydrology network, each node represents a geographical location of climatological...