Research article
23 Apr 2020
Research article | 23 Apr 2020
Revisiting extreme precipitation amounts over southern South America and implications for the Patagonian Icefields
Tobias Sauter
Related authors
Snowdrift modelling for the Vestfonna ice cap, north-eastern Svalbard
T. Sauter, M. Möller, R. Finkelnburg, M. Grabiec, D. Scherer, and C. Schneider
The Cryosphere, 7, 1287–1301, https://doi.org/10.5194/tc-7-1287-2013,https://doi.org/10.5194/tc-7-1287-2013, 2013
Snowdrift modelling for the Vestfonna ice cap, north-eastern Svalbard
T. Sauter, M. Möller, R. Finkelnburg, M. Grabiec, D. Scherer, and C. Schneider
The Cryosphere, 7, 1287–1301, https://doi.org/10.5194/tc-7-1287-2013,https://doi.org/10.5194/tc-7-1287-2013, 2013
Related subject area
Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020,https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Technical note: Precipitation-phase partitioning at landscape scales to regional scales
Elissa Lynn, Aaron Cuthbertson, Minxue He, Jordi P. Vasquez, Michael L. Anderson, Peter Coombe, John T. Abatzoglou, and Benjamin J. Hatchett
Hydrol. Earth Syst. Sci., 24, 5317–5328, https://doi.org/10.5194/hess-24-5317-2020,https://doi.org/10.5194/hess-24-5317-2020, 2020
Short summary
Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces
Clément Albergel, Yongjun Zheng, Bertrand Bonan, Emanuel Dutra, Nemesio Rodríguez-Fernández, Simon Munier, Clara Draper, Patricia de Rosnay, Joaquin Muñoz-Sabater, Gianpaolo Balsamo, David Fairbairn, Catherine Meurey, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 4291–4316, https://doi.org/10.5194/hess-24-4291-2020,https://doi.org/10.5194/hess-24-4291-2020, 2020
Short summary
A coupled atmospheric–hydrologic modeling system with variable grid sizes for rainfall–runoff simulation in semi-humid and semi-arid watersheds: how does the coupling scale affects the results?
Jiyang Tian, Jia Liu, Yang Wang, Wei Wang, Chuanzhe Li, and Chunqi Hu
Hydrol. Earth Syst. Sci., 24, 3933–3949, https://doi.org/10.5194/hess-24-3933-2020,https://doi.org/10.5194/hess-24-3933-2020, 2020
Short summary
Developing a hydrological monitoring and sub-seasonal to seasonal forecasting system for South and Southeast Asian river basins
Yifan Zhou, Benjamin F. Zaitchik, Sujay V. Kumar, Kristi R. Arsenault, Mir A. Matin, Faisal M. Qamer, Ryan A. Zamora, and Kiran Shakya
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-362,https://doi.org/10.5194/hess-2020-362, 2020
Revised manuscript accepted for HESS
Short summary
A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy
Rossella Ferretti, Annalina Lombardi, Barbara Tomassetti, Lorenzo Sangelantoni, Valentina Colaiuda, Vincenzo Mazzarella, Ida Maiello, Marco Verdecchia, and Gianluca Redaelli
Hydrol. Earth Syst. Sci., 24, 3135–3156, https://doi.org/10.5194/hess-24-3135-2020,https://doi.org/10.5194/hess-24-3135-2020, 2020
Short summary
Bias in dynamically downscaled rainfall characteristics for hydroclimatic projections
Nicholas J. Potter, Francis H. S. Chiew, Stephen P. Charles, Guobin Fu, Hongxing Zheng, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2963–2979, https://doi.org/10.5194/hess-24-2963-2020,https://doi.org/10.5194/hess-24-2963-2020, 2020
Short summary
Impact of downscaled rainfall biases on projected runoff changes
Stephen P. Charles, Francis H. S. Chiew, Nicholas J. Potter, Hongxing Zheng, Guobin Fu, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2981–2997, https://doi.org/10.5194/hess-24-2981-2020,https://doi.org/10.5194/hess-24-2981-2020, 2020
Short summary
Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs
Yuting Yang, Shulei Zhang, Michael L. Roderick, Tim R. McVicar, Dawen Yang, Wenbin Liu, and Xiaoyan Li
Hydrol. Earth Syst. Sci., 24, 2921–2930, https://doi.org/10.5194/hess-24-2921-2020,https://doi.org/10.5194/hess-24-2921-2020, 2020
Short summary
High-resolution fully coupled atmospheric–hydrological modeling: a cross-compartment regional water and energy cycle evaluation
Benjamin Fersch, Alfonso Senatore, Bianca Adler, Joël Arnault, Matthias Mauder, Katrin Schneider, Ingo Völksch, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020,https://doi.org/10.5194/hess-24-2457-2020, 2020
Assessing the factors governing the ability to predict late-spring flooding in cold-region mountain basins
Vincent Vionnet, Vincent Fortin, Etienne Gaborit, Guy Roy, Maria Abrahamowicz, Nicolas Gasset, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 2141–2165, https://doi.org/10.5194/hess-24-2141-2020,https://doi.org/10.5194/hess-24-2141-2020, 2020
Short summary
Multimodel simulation of vertical gas transfer in a temperate lake
Sofya Guseva, Tobias Bleninger, Klaus Jöhnk, Bruna Arcie Polli, Zeli Tan, Wim Thiery, Qianlai Zhuang, James Anthony Rusak, Huaxia Yao, Andreas Lorke, and Victor Stepanenko
Hydrol. Earth Syst. Sci., 24, 697–715, https://doi.org/10.5194/hess-24-697-2020,https://doi.org/10.5194/hess-24-697-2020, 2020
Short summary
The AquiFR hydrometeorological modelling platform as a tool for improving groundwater resource monitoring over France: evaluation over a 60-year period
Jean-Pierre Vergnes, Nicolas Roux, Florence Habets, Philippe Ackerer, Nadia Amraoui, François Besson, Yvan Caballero, Quentin Courtois, Jean-Raynald de Dreuzy, Pierre Etchevers, Nicolas Gallois, Delphine J. Leroux, Laurent Longuevergne, Patrick Le Moigne, Thierry Morel, Simon Munier, Fabienne Regimbeau, Dominique Thiéry, and Pascal Viennot
Hydrol. Earth Syst. Sci., 24, 633–654, https://doi.org/10.5194/hess-24-633-2020,https://doi.org/10.5194/hess-24-633-2020, 2020
Short summary
An ensemble square root filter for the joint assimilation of surface soil moisture and leaf area index within the Land Data Assimilation System LDAS-Monde: application over the Euro-Mediterranean region
Bertrand Bonan, Clément Albergel, Yongjun Zheng, Alina Lavinia Barbu, David Fairbairn, Simon Munier, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 24, 325–347, https://doi.org/10.5194/hess-24-325-2020,https://doi.org/10.5194/hess-24-325-2020, 2020
Short summary
High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach
Yanping Li, Zhenhua Li, Zhe Zhang, Liang Chen, Sopan Kurkute, Lucia Scaff, and Xicai Pan
Hydrol. Earth Syst. Sci., 23, 4635–4659, https://doi.org/10.5194/hess-23-4635-2019,https://doi.org/10.5194/hess-23-4635-2019, 2019
Short summary
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 1: Projected climate and meteorology
Ronald E. Stewart, Kit K. Szeto, Barrie R. Bonsal, John M. Hanesiak, Bohdan Kochtubajda, Yanping Li, Julie M. Thériault, Chris M. DeBeer, Benita Y. Tam, Zhenhua Li, Zhuo Liu, Jennifer A. Bruneau, Patrick Duplessis, Sébastien Marinier, and Dominic Matte
Hydrol. Earth Syst. Sci., 23, 3437–3455, https://doi.org/10.5194/hess-23-3437-2019,https://doi.org/10.5194/hess-23-3437-2019, 2019
Short summary
Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin
Jamie Towner, Hannah L. Cloke, Ervin Zsoter, Zachary Flamig, Jannis M. Hoch, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019,https://doi.org/10.5194/hess-23-3057-2019, 2019
Short summary
Precipitation projections using a spatiotemporally distributed method: a case study in the Poyang Lake watershed based on the MRI-CGCM3
Ling Zhang, Xiaoling Chen, Jianzhong Lu, Xiaokang Fu, Yufang Zhang, Dong Liang, and Qiangqiang Xu
Hydrol. Earth Syst. Sci., 23, 1649–1666, https://doi.org/10.5194/hess-23-1649-2019,https://doi.org/10.5194/hess-23-1649-2019, 2019
Short summary
Projected decrease in wintertime bearing capacity on different forest and soil types in Finland under a warming climate
Ilari Lehtonen, Ari Venäläinen, Matti Kämäräinen, Antti Asikainen, Juha Laitila, Perttu Anttila, and Heli Peltola
Hydrol. Earth Syst. Sci., 23, 1611–1631, https://doi.org/10.5194/hess-23-1611-2019,https://doi.org/10.5194/hess-23-1611-2019, 2019
Short summary
Cited articles
Aguirre, F., Carrasco, J., Sauter, T., Schneider, C., Gaete, K. R., Garin,
E., Adaros, R., Jaña, R. A., and Casassa, G.: Snow cover change as a
climate indicator in Brunswick Peninsula, Patagonia, Front. Earth Sci., 6,
130,
https://doi.org/10.3389/feart.2018.00130,
2018.
Aracena, C., Lange, C. B., Iriarte, J. L., Rebolledo, L., and Pantoja, S.:
Latitudinal patterns of export production recorded in surface sediments of
the Chilean Patagonian fjords (41–55
∘ S) as a response to water column
productivity, Cont. Shelf Res., 31, 340–355, 2011.
Aravena, J. C. and Luckman, B. H.: Spatio-temporal rainfall patterns in
Southern South America, Int. J. Climatol., 29, 2106–2120, https://doi.org/10.1002/joc.1761,
2009.
Barrett, B. S., Garreaud, R., and Falvey, M.: Effect of the Andes Cordillera
on Precipitation from a Midlatitude Cold Front, Mon. Weather Rev., 137,
3092–3109, https://doi.org/10.1175/2009MWR2881.1, 2009.
Barstad, I. and Smith, R. B.: Evaluation of an orographic precipitation
model, J. Hydrometeorol., 6, 85–99, https://doi.org/10.1175/JHM-404.1, 2005.
Bown, F., Rivera, A., Pętlicki, M., Bravo, C., Oberreuter, J., and
Moffat, C.: Recent ice dynamics and mass balance of Jorge Montt Glacier,
Southern Patagonia Icefield, J. Glaciol., 65, 732–744,
https://doi.org/10.1017/jog.2019.47, 2019.
Braun, M. H., Malz, P., Sommer, C., Farías-Barahona, D., Sauter, T.,
Casassa, G., Soruco, A., Skvarca, P., and Seehaus, T. C.: Constraining
glacier elevation and mass changes in South America, Nat. Clim. Chang.,
9, 130–136, https://doi.org/10.1038/s41558-018-0375-7, 2019.
Bravo, C., Bozkurt, D., Gonzalez-Reyes, Á., Quincey, D. J., Ross, A. N.,
Farías-Barahona, D., and Rojas, M.: Assessing Snow Accumulation Patterns
and Changes on the Patagonian Icefields, Front. Environ. Sci., 7, 30,
https://doi.org/10.3389/fenvs.2019.00030, 2019.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: Configuration
and performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Durre, I., Vose, R. S., and Wuertz, D. B.: Overview of the integrated global
radiosonde archive, J. Climate, 19, 53–68, https://doi.org/10.1175/JCLI3594.1, 2006.
Escobar, F.: Water balance in the Patagonia Icefield, Glaciol. Res. Patagon.,
1990, 109–119, 1992.
Falvey, M. and Garreaud, R.: Wintertime Precipitation Episodes in Central
Chile: Associated Meteorological Conditions and Orographic Influences, J.
Hydrometeorol., 8, 171–193, https://doi.org/10.1175/JHM562.1, 2007.
Foresta, L., Gourmelen, N., Weissgerber, F., Nienow, P., Williams, J. J.,
Shepherd, A., Drinkwater, M. R., and Plummer, S.: Heterogeneous and rapid ice
loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar
altimetry, Remote Sens. Environ., 211, 441–455, 2018.
Garreaud, R. D.: Precipitation and circulation covariability in the
extratropics, J. Climate, 20, 4789–4797, https://doi.org/10.1175/JCLI4257.1, 2007.
Garreaud, R. D.: The Andes climate and weather, Adv. Geosci., 22, 3–11, https://doi.org/10.5194/adgeo-22-3-2009, 2009.
Garreaud, R. D. and Muñoz, R. C.: The Low-Level Jet off the West Coast
of Subtropical South America: Structure and Variability, Mon. Weather Rev.,
133, 2246–2261, https://doi.org/10.1175/MWR3074.1, 2005.
Garreaud, R. D., Lopez, P., Minvielle, M., and Rojas, M.: Large-scale control
on the Patagonian climate, J. Climate, 26, 215–230,
https://doi.org/10.1175/JCLI-D-12-00001.1, 2013.
Garreaud, R., Falvey, M., Montecinos, A., Garreaud, R., Falvey, M., and
Montecinos, A.: Orographic Precipitation in Coastal Southern Chile: Mean
Distribution, Temporal Variability, and Linear Contribution, J.
Hydrometeorol., 17, 1185–1202, https://doi.org/10.1175/JHM-D-15-0170.1, 2016.
Held, I. M., Soden, B. J., Held, I. M., and Soden, B. J.: Robust Responses of
the Hydrological Cycle to Global Warming, J. Climate, 19, 5686–5699,
https://doi.org/10.1175/JCLI3990.1, 2006.
Jarosch, A. H., Anslow, F. S., and Clarke, G. K. C.: High-resolution
precipitation and temperature downscaling for glacier models, Clim. Dynam.,
38, 391–409, https://doi.org/10.1007/s00382-010-0949-1, 2012.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database, available at:
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1
(last access: 16 November 2016), 2008.
Killick, R., Fearnhead, P., and Eckley, I. A.: Optimal detection of
changepoints with a linear computational cost, J. Am. Stat. Assoc.,
107, 1590–1598, https://doi.org/10.1080/01621459.2012.737745, 2012.
Landaeta, M. F., López, G., Suárez-Donoso, N., Bustos, C. A.,
Balbontiín, F., and Balbontín, F.: Larval fish distribution, growth
and feeding in Patagonian fjords: potential effects of freshwater discharge,
Environ. Biol. Fish., 93, 73–87, https://doi.org/10.1007/s10641-011-9891-2, 2012.
Langhamer, L., Sauter, T., and Mayr, G. J.: Lagrangian Detection of Moisture
Sources for the Southern Patagonia Icefield (1979–2017), Front. Earth Sci.,
6, 219, https://doi.org/10.3389/feart.2018.00219, 2018.
Lenaerts, J. T. M., Van Den Broeke, M. R., van Wessem, J. M., van de Berg,
W. J., van Meijgaard, E., van Ulft, L. H., Schaefer, M., and Bilt, D.:
Extreme precipitation and climate gradients in Patagonia revealed by
high-resolution regional atmospheric climate modeling, J. Climate, 27,
4607–4621, https://doi.org/10.1175/JCLI-D-13-00579.1, 2014.
Malz, P., Meier, W., Casassa, G., Jaña, R., Skvarca, P., and Braun, M.
H.: Elevation and mass changes of the Southern Patagonia Icefield derived
from TanDEM-X and SRTM Data, Remote Sens., 10, 188, https://doi.org/10.3390/rs10020188, 2018.
Marshall, G. J., Thompson, D. W. J., and van den Broeke, M. R.: The Signature
of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic
Precipitation, Geophys. Res. Lett., 44, 11,580-11,589,
https://doi.org/10.1002/2017GL075998, 2017.
Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change from the surface mass balance of glaciers, The Cryosphere, 6, 1295–1322, https://doi.org/10.5194/tc-6-1295-2012, 2012.
Massmann, A. K., Minder, J. R., Garreaud, R. D., Kingsmill, D. E.,
Valenzuela, R. A., Montecinos, A., Fults, S. L., and Snider, J. R.: The
Chilean Coastal Orographic Precipitation Experiment: Observing the Influence
of Microphysical Rain Regimes on Coastal Orographic Precipitation, J.
Hydrometeorol., 18, 2723–2743, https://doi.org/10.1175/jhm-d-17-0005.1, 2017.
Mayr, C., Langhamer, L., Wissel, H., Meier, W., Sauter, T., Laprida, C., Massaferro, J., Försterra, G., and Lücke, A.: Atmospheric controls on hydrogen and oxygen isotope composition of meteoric and surface waters in Patagonia, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-431, 2018.
Mernild, S. H., Liston, G. E., Hiemstra, C., and Wilson, R.: The Andes
Cordillera. Part III: glacier surface mass balance and contribution to sea
level rise (1979–2014), Int. J. Climatol., 37, 3154–3174,
https://doi.org/10.1002/joc.4907, 2017.
NASA/CIGRA: Shuttle Radar Topographic Mission (SRTM) elevation data v4.1, available at:
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1,
last access: 16 November 2016.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical recipes 3rd edition: The art of scientific computing, Cambridge
university press, Cambridge, UK, 2007.
Rasmussen, L. A., Conway, H., and Raymond, C. F.: Influence of upper air
conditions on the Patagonia icefields, Global Planet. Change, 59, 203–216,
https://doi.org/10.1016/j.gloplacha.2006.11.025, 2007.
Rignot, E., Rivera, A., and Casassa, G.: Contribution of the Patagonia
Icefields of South America to Sea Level Rise, Science, 302,
434–437, https://doi.org/10.1126/science.1087393, 2003.
Sauter, T., Schneider, C., Kilian, R., and Moritz, M.: Simulation and
analysis of runoff from a partly glaciated meso-scale catchment area in
Patagonia using an artificial neural network, Hydrol. Process., 23,
1019–1030, https://doi.org/10.1002/hyp.7210, 2009.
Sauter, T., Möller, M., Finkelnburg, R., Grabiec, M., Scherer, D., and Schneider, C.: Snowdrift modelling for the Vestfonna ice cap, north-eastern Svalbard, The Cryosphere, 7, 1287–1301, https://doi.org/10.5194/tc-7-1287-2013, 2013.
Schaefer, M., Machguth, H., Falvey, M., and Casassa, G.: Modeling past and
future surface mass balance of the Northern Patagonia Icefield, J. Geophys.
Res.-Earth, 118, 571–588, https://doi.org/10.1002/jgrf.20038, 2013.
Schaefer, M., Machguth, H., Falvey, M., Casassa, G., and Rignot, E.: Quantifying mass balance processes on the Southern Patagonia Icefield, The Cryosphere, 9, 25–35, https://doi.org/10.5194/tc-9-25-2015, 2015.
Schneider, C. and Gies, D.: Effects of El Niño-southern oscillation on
southernmost South America precipitation at 53
∘ S revealed from
NCEP-NCAR reanalyses and weather station data, Int. J. Climatol., 24,
1057–1076, https://doi.org/10.1002/joc.1057, 2004.
Schneider, C., Glaser, M., Kilian, R., Santana, A., Butorovic, N., and
Casassa, G.: Weather Observations Across the Southern Andes at 53
∘ S, Phys. Geogr., 24, 97–119, https://doi.org/10.2747/0272-3646.24.2.97, 2003.
Schneider, T., O'Gorman, P. A., Levine, X. J., Gorman, P. A. O., and Levine,
X. J.: Water vapor and the dynamics of climate changes, Rev. Geophys., 48,
1–22, https://doi.org/10.1029/2009RG000302, 2010.
Schwikowski, M., Brütsch, S., Casassa, G., and Rivera, A.: A potential
high-elevation ice-core site at Hielo Patagónico Sur, Ann. Glaciol., 43,
8–13, 2006.
Shiraiwa, T., Kohshima, S., Uemura, R., Yoshida, N., Matoba, S., Uetake, J.,
and Godoi, M. A.: High net accumulation rates at Campo de Hielo Patagonico
Sur, South America, revealed by analysis of a 45.97 m long ice core, Ann.
Glaciol., 35, 84–90, 2002.
Smith, R. B. and Evans, J. P.: Orographic Precipitation and Water Vapor
Fractionation over the Southern Andes, J. Hydrometeorol., 8, 3–19,
https://doi.org/10.1175/JHM555.1, 2007.
Trenberth, K. E., Fasullo, J., and Smith, L.: Trends and variability in
column-integrated atmospheric water vapor, Clim. Dynam., 24, 741–758,
https://doi.org/10.1007/s00382-005-0017-4, 2005.
Vallis, G. K., Zurita-gotor, P., Cairns, C., and Kidston, J.: Response of the
Large-Scale Structure of the Atmosphere to Global Warming, Q. J. Roy.
Meteor. Soc., 141, 1–27, https://doi.org/10.1002/qj.2456, 2014.
Vargas, C. A., Cuevas, L. A., Silva, N., González, H. E., De Pol-Holz, R., and
Narváez, D. A.: Influence of Glacier Melting and River
Discharges on the Nutrient Distribution and DIC Recycling in the Southern
Chilean Patagonia, J. Geophys. Res.-Biogeo., 123, 256–270, 2018.
Viale, M. and Garreaud, R.: Orographic effects of the subtropical and
extratropical Andes on upwind precipitating clouds, J. Geophys. Res.-Atmos.,
120, 4962–4974, 2015.
Viale, M., Houze Jr., R. A., and
Rasmussen, K. L.: Upstream Orographic Enhancement of a Narrow Cold-Frontal
Rainband Approaching the Andes, Mon. Weather Rev., 141, 1708–1730,
https://doi.org/10.1175/MWR-D-12-00138.1, 2013.
Waliser, D. and Guan, B.: Extreme winds and precipitation during landfall of
atmospheric rivers, Nat. Geosci., 10, 179–183, https://doi.org/10.1038/ngeo2894,
2017.
Weidemann, S., Sauter, T., Schneider, L., and Schneider, C.: Impact of two
conceptual precipitation downscaling schemes on mass-balance modeling of
Gran Campo Nevado ice cap, Patagonia, J. Glaciol., 59, 1106–1116,
https://doi.org/10.3189/2013JoG13J046, 2013.
Weidemann, S. S., Sauter, T., Kilian, R., Steger, D., Butorovic, N., and
Schneider, C.: A 17-year Record of Meteorological Observations Across the
Gran Campo Nevado Ice Cap in Southern Patagonia, Chile, Related to Synoptic
Weather Types and Climate Modes, Front. Earth Sci., 6, 53,
https://doi.org/10.3389/feart.2018.00053, 2018a.
Weidemann, S. S., Sauter, T., Malz, P., Jaña, R., Arigony-Neto, J.,
Casassa, G., and Schneider, C.: Glacier Mass Changes of Lake-Terminating Grey
and Tyndall Glaciers at the Southern Patagonia Icefield Derived From
Geodetic Observations and Energy and Mass Balance Modeling, Front. Earth
Sci., 6, 81, https://doi.org/10.3389/feart.2018.00081, 2018b.
Wentz, F. J., Spencer, R. W., Systems, R. S., Rosa, S., and Hydrology, G.:
SSM/I rain retrievals within a unified all-weather ocean algorithm, J.
Atmos. Sci., 55, 1613–1627, 1998.
Willis, M. J., Melkonian, A. K., Pritchard, M. E., and Rivera, A.: Ice loss
from the Southern Patagonian ice field, South America, between 2000 and
2012, Geophys. Res. Lett., 39, L17501, https://doi.org/10.1029/2012GL053136, 2012.