Articles | Volume 24, issue 4
https://doi.org/10.5194/hess-24-1859-2020
https://doi.org/10.5194/hess-24-1859-2020
Research article
 | 
15 Apr 2020
Research article |  | 15 Apr 2020

A proposed method for estimating interception from near-surface soil moisture response

Subodh Acharya, Daniel McLaughlin, David Kaplan, and Matthew J. Cohen

Related authors

Hydrologic controls on aperiodic spatial organization of the ridge–slough patterned landscape
Stephen T. Casey, Matthew J. Cohen, Subodh Acharya, David A. Kaplan, and James W. Jawitz
Hydrol. Earth Syst. Sci., 20, 4457–4467, https://doi.org/10.5194/hess-20-4457-2016,https://doi.org/10.5194/hess-20-4457-2016, 2016
Short summary
Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland
S. Acharya, D. A. Kaplan, S. Casey, M. J. Cohen, and J. W. Jawitz
Hydrol. Earth Syst. Sci., 19, 2133–2144, https://doi.org/10.5194/hess-19-2133-2015,https://doi.org/10.5194/hess-19-2133-2015, 2015

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Instruments and observation techniques
Coupled hydrogeophysical inversion of an artificial infiltration experiment monitored with ground-penetrating radar: synthetic demonstration
Rohianuu Moua, Nolwenn Lesparre, Jean-François Girard, Benjamin Belfort, François Lehmann, and Anis Younes
Hydrol. Earth Syst. Sci., 27, 4317–4334, https://doi.org/10.5194/hess-27-4317-2023,https://doi.org/10.5194/hess-27-4317-2023, 2023
Short summary
Technical note: Discrete in situ vapor sampling for subsequent lab-based water stable isotope analysis
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023,https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
A change in perspective: downhole cosmic-ray neutron sensing for the estimation of soil moisture
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023,https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary
Impacts of soil management and climate on saturated and near-saturated hydraulic conductivity: analyses of the Open Tension-disk Infiltrometer Meta-database (OTIM)
Guillaume Blanchy, Lukas Albrecht, Gilberto Bragato, Sarah Garré, Nicholas Jarvis, and John Koestel
Hydrol. Earth Syst. Sci., 27, 2703–2724, https://doi.org/10.5194/hess-27-2703-2023,https://doi.org/10.5194/hess-27-2703-2023, 2023
Short summary
Physics-informed machine learning for understanding rock moisture dynamics in a sandstone cave
Kai-Gao Ouyang, Xiao-Wei Jiang, Gang Mei, Hong-Bin Yan, Ran Niu, Li Wan, and Yijian Zeng
Hydrol. Earth Syst. Sci., 27, 2579–2590, https://doi.org/10.5194/hess-27-2579-2023,https://doi.org/10.5194/hess-27-2579-2023, 2023
Short summary

Cited articles

Acharya, B. S., Stebler, E., and Zou, C. B.: Monitoring litter interception of rainfall using leaf wetness sensor under controlled and field conditions, Hydrol. Process., 31, 240–249, https://doi.org/10.1002/hyp.11047, 2005. 
Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Control, 19, 716–723, 1974. 
Blume, T., Zehe, E., and Bronstert, A.: Investigation of runoff generation in a pristine, poorly gauged catchment in the Chilean Andes. II: Qualitative and quantitative use of tracers at three different spatial scales, Hydrol. Process., 22, 3676–3688, 2008. 
Blume, T., Zehe, E., and Bronstert, A.: Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes, Hydrol. Earth Syst. Sci., 13, 1215–1233, https://doi.org/10.5194/hess-13-1215-2009, 2009. 
Bryant, M. L., Bhat, S., and Jacobs, J. M.: Measurements and modeling of throughfall variability for five forest communities in the southeastern US, J. Hydrol., 312, 95–108, https://doi.org/10.1016/j.jhydrol.2005.02.012, 2005. 
Download
Short summary
Interception is the storage and subsequent evaporation of rain by vegetation and surface litter. Quantifying interception is critical for understanding the water balance, but it can be difficult and costly to measure. We developed an approach to estimate interception using automated soil moisture measurements during rainfall events. Results suggest that interception can be estimated using soil moisture data, leading to potential cost savings and logistical advantages over conventional methods.