Articles | Volume 23, issue 2
Hydrol. Earth Syst. Sci., 23, 741–762, 2019
https://doi.org/10.5194/hess-23-741-2019
Hydrol. Earth Syst. Sci., 23, 741–762, 2019
https://doi.org/10.5194/hess-23-741-2019

Research article 08 Feb 2019

Research article | 08 Feb 2019

Parameter-state ensemble thinning for short-term hydrological prediction

Bruce Davison et al.

Related authors

Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021,https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Representation and improved parameterization of reservoir operation in hydrological and land-surface models
Fuad Yassin, Saman Razavi, Mohamed Elshamy, Bruce Davison, Gonzalo Sapriza-Azuri, and Howard Wheater
Hydrol. Earth Syst. Sci., 23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019,https://doi.org/10.5194/hess-23-3735-2019, 2019

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021,https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models
Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil
Hydrol. Earth Syst. Sci., 25, 4611–4629, https://doi.org/10.5194/hess-25-4611-2021,https://doi.org/10.5194/hess-25-4611-2021, 2021
Short summary
Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
Herath Mudiyanselage Viraj Vidura Herath, Jayashree Chadalawada, and Vladan Babovic
Hydrol. Earth Syst. Sci., 25, 4373–4401, https://doi.org/10.5194/hess-25-4373-2021,https://doi.org/10.5194/hess-25-4373-2021, 2021
Short summary
Development and evaluation of 0.05° terrestrial water storage estimates using Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and assimilation of GRACE data
Natthachet Tangdamrongsub, Michael F. Jasinski, and Peter J. Shellito
Hydrol. Earth Syst. Sci., 25, 4185–4208, https://doi.org/10.5194/hess-25-4185-2021,https://doi.org/10.5194/hess-25-4185-2021, 2021
Short summary
Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times
Seán Donegan, Conor Murphy, Shaun Harrigan, Ciaran Broderick, Dáire Foran Quinn, Saeed Golian, Jeff Knight, Tom Matthews, Christel Prudhomme, Adam A. Scaife, Nicky Stringer, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021,https://doi.org/10.5194/hess-25-4159-2021, 2021
Short summary

Cited articles

Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: A comparison of the Canadian global and regional meteorological ensemble prediction systems for short-term hydrological forecasting, Mon. Weather Rev., 141, 3462–3476, 2013.
Agriculture and Agri-Food Canada: National Ecological Framework, digital media, available at: http://sis.agr.gc.ca/cansis/nsdb/ecostrat/index.html (last access: 6 January 2019), 2015.
Asch, M., Bocquet, M., and Nodet, M.: Data assimilation: methods, algorithms, and applications, in: vol. 11, SIAM, Philadelphia, 2016.
Bard, Y.: Nonlinear parameter estimation, in: vol. 513, Academic Press, New York, 1974.
Beck, M. B.: Water quality modeling: a review of the analysis of uncertainty, Water Resour. Res., 23, 1393–1442, 1987.
Download
Short summary
This paper explores a new method of predicting streamflow using a complex model. It makes use of streamflow observations to reduce an existing ensemble of model runs for predictive purposes. The study illustrated that the method could work given the proper constraints, which were only possible if there was enough knowledge about how the river responded to precipitation in the previous months. Ideas were discussed to allow the method to be used in a way to predict future streamflow.