Articles | Volume 23, issue 7
https://doi.org/10.5194/hess-23-2795-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-2795-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influences of Lake Malawi on the spatial and diurnal variability of local precipitation
Geophysical Institute, University of Bergen, Bjerknes Centre for Climate Research, Bergen, Norway
Priscilla A. Mooney
NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Shunya Koseki, Rubén Vázquez, William Cabos, Claudia Gutiérrez, Dmitry V. Sein, and Marie-Lou Bachèlery
Earth Syst. Dynam., 15, 1401–1416, https://doi.org/10.5194/esd-15-1401-2024, https://doi.org/10.5194/esd-15-1401-2024, 2024
Short summary
Short summary
Using a high-resolution regionally coupled model, we suggest that Dakar Niño variability will be reinforced under the Representative Concentration Pathway (RCP) 8.5 scenario. This may be induced by intensified surface heat flux anomalies and, secondarily, by anomalies in horizontal and vertical advection. Increased sea surface temperature (SST) variability can be associated with stronger wind variability, attributed to amplified surface temperature anomalies between ocean and land.
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
Biogeosciences, 21, 4149–4168, https://doi.org/10.5194/bg-21-4149-2024, https://doi.org/10.5194/bg-21-4149-2024, 2024
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to better represent the primary production and air–sea CO2 flux in terms of climatology, seasonal cycle, and response to climate variability.
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
Shunya Koseki, Hervé Giordani, and Katerina Goubanova
Ocean Sci., 15, 83–96, https://doi.org/10.5194/os-15-83-2019, https://doi.org/10.5194/os-15-83-2019, 2019
Short summary
Short summary
With an ocean frontogenetic function, the frontogenesis of the Angola–Benguela Frontal Zone (ABFZ) is investigated. On an annual-mean timescale, the meridional confluence of Angola and Benguela currents and tilting effect due to the upwelling are the main sources to generate the ABFZ. The annual cycle of the ABFZ is also mainly driven by these two effects.
Hans Segura, Xabier Pedruzo-Bagazgoitia, Philipp Weiss, Sebastian K. Müller, Thomas Rackow, Junhong Lee, Edgar Dolores-Tesillos, Imme Benedict, Matthias Aengenheyster, Razvan Aguridan, Gabriele Arduini, Alexander J. Baker, Jiawei Bao, Swantje Bastin, Eulàlia Baulenas, Tobias Becker, Sebastian Beyer, Hendryk Bockelmann, Nils Brüggemann, Lukas Brunner, Suvarchal K. Cheedela, Sushant Das, Jasper Denissen, Ian Dragaud, Piotr Dziekan, Madeleine Ekblom, Jan Frederik Engels, Monika Esch, Richard Forbes, Claudia Frauen, Lilli Freischem, Diego García-Maroto, Philipp Geier, Paul Gierz, Álvaro González-Cervera, Katherine Grayson, Matthew Griffith, Oliver Gutjahr, Helmuth Haak, Ioan Hadade, Kerstin Haslehner, Shabeh ul Hasson, Jan Hegewald, Lukas Kluft, Aleksei Koldunov, Nikolay Koldunov, Tobias Kölling, Shunya Koseki, Sergey Kosukhin, Josh Kousal, Peter Kuma, Arjun U. Kumar, Rumeng Li, Nicolas Maury, Maximilian Meindl, Sebastian Milinski, Kristian Mogensen, Bimochan Niraula, Jakub Nowak, Divya Sri Praturi, Ulrike Proske, Dian Putrasahan, René Redler, David Santuy, Domokos Sármány, Reiner Schnur, Patrick Scholz, Dmitry Sidorenko, Dorian Spät, Birgit Sützl, Daisuke Takasuka, Adrian Tompkins, Alejandro Uribe, Mirco Valentini, Menno Veerman, Aiko Voigt, Sarah Warnau, Fabian Wachsmann, Marta Wacławczyk, Nils Wedi, Karl-Hermann Wieners, Jonathan Wille, Marius Winkler, Yuting Wu, Florian Ziemen, Janos Zimmermann, Frida A.-M. Bender, Dragana Bojovic, Sandrine Bony, Simona Bordoni, Patrice Brehmer, Marcus Dengler, Emanuel Dutra, Saliou Faye, Erich Fischer, Chiel van Heerwaarden, Cathy Hohenegger, Heikki Järvinen, Markus Jochum, Thomas Jung, Johann H. Jungclaus, Noel S. Keenlyside, Daniel Klocke, Heike Konow, Martina Klose, Szymon Malinowski, Olivia Martius, Thorsten Mauritsen, Juan Pedro Mellado, Theresa Mieslinger, Elsa Mohino, Hanna Pawłowska, Karsten Peters-von Gehlen, Abdoulaye Sarré, Pajam Sobhani, Philip Stier, Lauri Tuppi, Pier Luigi Vidale, Irina Sandu, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2025-509, https://doi.org/10.5194/egusphere-2025-509, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The nextGEMS project developed two Earth system models that resolve processes of the order of 10 km, giving more fidelity to the representation of local phenomena, globally. In its fourth cycle, nextGEMS performed simulations with coupled ocean, land, and atmosphere over the 2020–2049 period under the SSP3-7.0 scenario. Here, we provide an overview of nextGEMS, insights into the model development, and the realism of multi-decadal, kilometer-scale simulations.
Shunya Koseki, Rubén Vázquez, William Cabos, Claudia Gutiérrez, Dmitry V. Sein, and Marie-Lou Bachèlery
Earth Syst. Dynam., 15, 1401–1416, https://doi.org/10.5194/esd-15-1401-2024, https://doi.org/10.5194/esd-15-1401-2024, 2024
Short summary
Short summary
Using a high-resolution regionally coupled model, we suggest that Dakar Niño variability will be reinforced under the Representative Concentration Pathway (RCP) 8.5 scenario. This may be induced by intensified surface heat flux anomalies and, secondarily, by anomalies in horizontal and vertical advection. Increased sea surface temperature (SST) variability can be associated with stronger wind variability, attributed to amplified surface temperature anomalies between ocean and land.
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
Biogeosciences, 21, 4149–4168, https://doi.org/10.5194/bg-21-4149-2024, https://doi.org/10.5194/bg-21-4149-2024, 2024
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to better represent the primary production and air–sea CO2 flux in terms of climatology, seasonal cycle, and response to climate variability.
Xavier J. Levine, Ryan S. Williams, Gareth Marshall, Andrew Orr, Lise Seland Graff, Dörthe Handorf, Alexey Karpechko, Raphael Köhler, René R. Wijngaard, Nadine Johnston, Hanna Lee, Lars Nieradzik, and Priscilla A. Mooney
Earth Syst. Dynam., 15, 1161–1177, https://doi.org/10.5194/esd-15-1161-2024, https://doi.org/10.5194/esd-15-1161-2024, 2024
Short summary
Short summary
While the most recent climate projections agree that the Arctic is warming, differences remain in how much and in other climate variables such as precipitation. This presents a challenge for stakeholders who need to develop mitigation and adaptation strategies. We tackle this problem by using the storyline approach to generate four plausible and actionable realisations of end-of-century climate change for the Arctic, spanning its most likely range of variability.
Alok K. Samantaray, Priscilla A. Mooney, and Carla A. Vivacqua
Geosci. Model Dev., 17, 3321–3339, https://doi.org/10.5194/gmd-17-3321-2024, https://doi.org/10.5194/gmd-17-3321-2024, 2024
Short summary
Short summary
Any interpretation of climate model data requires a comprehensive evaluation of the model performance. Numerous error metrics exist for this purpose, and each focuses on a specific aspect of the relationship between reference and model data. Thus, a comprehensive evaluation demands the use of multiple error metrics. However, this can lead to confusion. We propose a clustering technique to reduce the number of error metrics needed and a composite error metric to simplify the interpretation.
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Short summary
Snow plays a major role in the regulation of the Earth's surface temperature. Together with climate change, rising temperatures are already altering snow in many ways. In this context, it is crucial to better understand the ability of climate models to represent snow and snow processes. This work focuses on Europe and shows that the melting season in spring still represents a challenge for climate models and that more work is needed to accurately simulate snow–atmosphere interactions.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
Hannah Ming Siu Vickers, Priscilla Mooney, Eirik Malnes, and Hanna Lee
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-57, https://doi.org/10.5194/tc-2022-57, 2022
Manuscript not accepted for further review
Short summary
Short summary
Rain-on-snow (ROS) events are becoming more frequent as a result of a warming climate, and can have significant impacts on nature and society. Accurate representation of ROS events is need to identify where impacts are greatest both now and in the future. We compare rain-on-snow climatologies from a climate model, ground and satellite radar observations and show how different methods can lead to contrasting conclusions and interpretation of the results should take into account their limitations.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
Shunya Koseki, Hervé Giordani, and Katerina Goubanova
Ocean Sci., 15, 83–96, https://doi.org/10.5194/os-15-83-2019, https://doi.org/10.5194/os-15-83-2019, 2019
Short summary
Short summary
With an ocean frontogenetic function, the frontogenesis of the Angola–Benguela Frontal Zone (ABFZ) is investigated. On an annual-mean timescale, the meridional confluence of Angola and Benguela currents and tilting effect due to the upwelling are the main sources to generate the ABFZ. The annual cycle of the ABFZ is also mainly driven by these two effects.
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River
High-resolution land surface modelling over Africa: the role of uncertain soil properties in combination with forcing temporal resolution
Investigating the global and regional response of drought to idealized deforestation using multiple global climate models
Distribution, trends, and drivers of flash droughts in the United Kingdom
Are dependencies of extreme rainfall on humidity more reliable in convection-permitting climate models?
Leveraging a radar-based disdrometer network to develop a probabilistic precipitation phase model in eastern Canada
Assessment of seasonal soil moisture forecasts over the Central Mediterranean
Do land models miss key soil hydrological processes controlling soil moisture memory?
Observation-driven model for calculating water-harvesting potential from advective fog in (semi-)arid coastal regions
Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets
Downscaling the probability of heavy rainfall over the Nordic countries
Modelling convective cell life cycles with a copula-based approach
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Assessing rainfall radar errors with an inverse stochastic modelling framework
Towards a Robust Hydrologic Data Assimilation System for Hurricane-induced River Flow Forecasting
Enhanced hydrological modelling with the WRF-Hydro lake/reservoir module at Convection-Permitting scale: a case study of the Tana River basin in East Africa
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Karakoram Himalaya
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
Skilful probabilistic predictions of UK floods months ahead using machine learning models trained on multimodel ensemble climate forecasts
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
The role of land-atmosphere coupling in subseasonal surface air temperature prediction
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
An increase in the spatial extent of European floods over the last 70 years
140-year daily ensemble streamflow reconstructions over 661 catchments in France
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Improving runoff simulation in the Western United States with Noah-MP and VIC models
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Global catalog of soil moisture droughts over the past four decades
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Global total precipitable water variations and trends over the period 1958–2021
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Identification of compound drought and heatwave events on a daily scale and across four seasons
Implementation of global soil databases in NOAH-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Potential for historically unprecedented Australian droughts from natural variability and climate change
Flood risk assessment for Indian sub-continental river basins
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Divergent future drought projections in UK river flows and groundwater levels
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Accounting for hydroclimatic properties in flood frequency analysis procedures
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
A semi-parametric hourly space–time weather generator
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025, https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Short summary
We compared hourly and daily extreme precipitation across Norway from HARMONIE Climate models at convection-permitting 3 km (HCLIM3) and 12 km (HCLIM12) resolutions. HCLIM3 more accurately captures the extremes in most regions and seasons (except in summer). Its advantages are more pronounced for hourly extremes than for daily extremes. The results highlight the value of convection-permitting models in improving extreme-precipitation predictions and in helping the local society brace for extreme weather.
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025, https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary
Short summary
Hydrometeorological forecasting is crucial for managing water resources and mitigating extreme weather events, yet current long-term forecast products are often embedded with uncertainties. We develop a deep-learning-based modelling framework to improve 30 d rainfall and streamflow forecasts by combining advanced neural networks and physical models. With the flow forecast error reduced by up to 33 %, the framework has the potential to enhance water management and disaster prevention.
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025, https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Short summary
We studied how soil and weather data affect land model simulations over Africa. By combining soil data processed in different ways with weather data of varying time intervals, we found that weather inputs had a greater impact on water processes than soil data type. However, the way soil data were processed became crucial when paired with high-frequency weather inputs, showing that detailed weather data can improve local and regional predictions of how water moves and interacts with the land.
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
Hydrol. Earth Syst. Sci., 29, 1637–1658, https://doi.org/10.5194/hess-29-1637-2025, https://doi.org/10.5194/hess-29-1637-2025, 2025
Short summary
Short summary
Deforestation has a significant impact on climate, yet its effects on drought remain less understood. This study investigates how deforestation affects drought across various climate zones and timescales. Findings indicate that deforestation leads to drier conditions in tropical regions and wetter conditions in arid areas, with minimal effects in temperate zones. Long-term drought is more affected than short-term drought, offering valuable insights into vegetation–climate interactions.
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 29, 1295–1317, https://doi.org/10.5194/hess-29-1295-2025, https://doi.org/10.5194/hess-29-1295-2025, 2025
Short summary
Short summary
The study provides a detailed characterisation of flash drought in the UK for 1969–2021. The spatio-temporal distribution and trends of flash droughts are highly variable, with important regional and seasonal contrasts. In the UK, flash drought development responds primarily to precipitation variability, while the atmospheric evaporative demand plays a secondary role. We also found that the North Atlantic Oscillation is the main circulation pattern controlling flash drought development.
Geert Lenderink, Nikolina Ban, Erwan Brisson, Ségolène Berthou, Virginia Edith Cortés-Hernández, Elizabeth Kendon, Hayley J. Fowler, and Hylke de Vries
Hydrol. Earth Syst. Sci., 29, 1201–1220, https://doi.org/10.5194/hess-29-1201-2025, https://doi.org/10.5194/hess-29-1201-2025, 2025
Short summary
Short summary
Future extreme rainfall events are influenced by changes in both absolute and relative humidity. The impact of increasing absolute humidity is reasonably well understood, but the role of relative humidity decreases over land remains largely unknown. Using hourly observations from France and the Netherlands, we find that lower relative humidity generally leads to more intense rainfall extremes. This relation is only captured well in recently developed convection-permitting climate models.
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci., 29, 1135–1158, https://doi.org/10.5194/hess-29-1135-2025, https://doi.org/10.5194/hess-29-1135-2025, 2025
Short summary
Short summary
Precipitation data from an automated observational network in eastern Canada showed a temperature interval where rain and snow could coexist. Random forest models were developed to classify the precipitation phase using meteorological data to evaluate operational applications. The models demonstrated significantly improved phase classification and reduced error compared to benchmark operational models. However, accurate prediction of mixed-phase precipitation remains challenging.
Lorenzo Silvestri, Miriam Saraceni, Bruno Brunone, Silvia Meniconi, Giulia Passadore, and Paolina Bongioannini Cerlini
Hydrol. Earth Syst. Sci., 29, 925–946, https://doi.org/10.5194/hess-29-925-2025, https://doi.org/10.5194/hess-29-925-2025, 2025
Short summary
Short summary
This work demonstrates that seasonal forecasts of soil moisture are a valuable resource for groundwater management in the areas of the Central Mediterranean where longer memory timescales are found. In particular, they show significant correlation coefficients and forecast skill for the deepest soil moisture at 289 cm depth. Wet and dry events can be predicted 6 months in advance, and, in general, dry events are better captured than wet events.
Mohammad A. Farmani, Ali Behrangi, Aniket Gupta, Ahmad Tavakoly, Matthew Geheran, and Guo-Yue Niu
Hydrol. Earth Syst. Sci., 29, 547–566, https://doi.org/10.5194/hess-29-547-2025, https://doi.org/10.5194/hess-29-547-2025, 2025
Short summary
Short summary
Soil moisture memory (SMM) shows how long soil stays moist after rain, impacting climate and ecosystems. Current models often overestimate SMM, causing inaccuracies in evaporation predictions. We enhanced a land model, Noah-MP, to include better water flow and ponding processes, and we tested it against satellite and field data. This improved model reduced overestimations and enhanced short-term predictions, helping create more accurate climate and weather forecasts.
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo del Río
Hydrol. Earth Syst. Sci., 29, 109–125, https://doi.org/10.5194/hess-29-109-2025, https://doi.org/10.5194/hess-29-109-2025, 2025
Short summary
Short summary
Water resources are fundamental for the social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligate us to find new water resources. Fog harvesting (FH) emerges as a complementary resource in regions where it is abundant but untapped. This research proposes a model to estimate FH potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where FH could be a viable water source.
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci., 29, 85–108, https://doi.org/10.5194/hess-29-85-2025, https://doi.org/10.5194/hess-29-85-2025, 2025
Short summary
Short summary
We assess 63 gridded ground (G), satellite (S), and reanalysis (R) climate datasets. Higher-density station data and less-hilly terrain improved climate data. In mountainous and humid regions, dataset types performed similarly; however, R outperformed G when underlying data had low station density. G outperformed S or R datasets, although better streamflow modeling did not always follow. Hydrologic analyses need datasets that better represent climate variable dependencies and complex topography.
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025, https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Short summary
We present a new method to calculate the chance of heavy downpour and the maximum rainfall expected over a 25-year period. It is designed to analyse global climate models' reproduction of past and future climates. For the Nordic countries, it projects a wetter climate in the future with increased intensity but not necessarily more wet days. The analysis also shows that rainfall intensity is sensitive to future greenhouse gas emissions, while the number of wet days appears to be less affected.
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
Hydrol. Earth Syst. Sci., 29, 1–25, https://doi.org/10.5194/hess-29-1-2025, https://doi.org/10.5194/hess-29-1-2025, 2025
Short summary
Short summary
This study presents a new algorithm to model convective storms. We used advanced tracking methods to analyse 165 storm events in Birmingham (UK) and reconstruct storm cell life cycles. We found that cell properties like intensity and size are interrelated and vary over time. The new algorithm, based on vine copulas, accurately simulates these properties and their evolution. It also integrates an exponential shape function for realistic rainfall patterns, enhancing its hydrological applicability.
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024, https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Short summary
This work aims to improve the understanding of precipitation patterns in High-mountain Asia, a crucial water source for around 1.9 billion people. Through a novel machine learning method, we generate high-resolution precipitation predictions, including the likelihoods of floods and droughts. Compared to state-of-the-art methods, our method is simpler to implement and more suitable for small datasets. The method also shows accuracy comparable to or better than existing benchmark datasets.
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024, https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Short summary
Having accurate up-to-date maps of soil moisture is important for many purposes. However, current modelled and remotely sensed maps are rather coarse and not very accurate. Here, we demonstrate a simple but accurate approach that is closely linked to direct measurements of soil moisture at a network sites across the UK, to the water balance (precipitation minus drainage and evaporation) measured at a large number of catchments (1212) and to remotely sensed satellite estimates.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
Peyman Abbaszadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-209, https://doi.org/10.5194/hess-2024-209, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The Hybrid Ensemble and Variational Data Assimilation framework for Environmental System (HEAVEN) enhances flood predictions by refining hydrologic models through improved data integration and uncertainty management. Tested in three Southeastern U.S. watersheds during hurricanes, HEAVEN assimilates real-time USGS streamflow data, boosting forecast accuracy.
Ling Zhang, Lu Li, Zhongshi Zhang, Joël Arnault, Stefan Sobolowski, Anthony Musili Mwanthi, Pratik Kad, Mohammed Abdullahi Hassan, Tanja Portele, and Harald Kunstmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-278, https://doi.org/10.5194/hess-2024-278, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
To address challenges related to unreliable hydrological simulations, we present an enhanced hydrological simulation with a refined climate model and a more comprehensive hydrological model. The model with the two parts outperforms that without, especially in migrating bias in peak flow and dry-season flow. Our findings highlight the enhanced hydrological simulation capability with the refined climate and lake module contributing 24 % and 76 % improvement, respectively.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2805, https://doi.org/10.5194/egusphere-2024-2805, 2024
Short summary
Short summary
We introduce a novel method for improving daily precipitation maps in mountain regions and pilot it across three basins in the Hindu Kush Karakoram Himalaya (HKH). The approach leverages climate model and weather station data, along with statistical / machine learning techniques. Our results show this approach outperforms traditional methods, especially in remote, ungauged areas, suggesting it could be used to improve precipitation maps across much of the HKH, as well as other mountain regions.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Simon Moulds, Louise Slater, Louise Arnal, and Andrew Wood
EGUsphere, https://doi.org/10.31223/X5X405, https://doi.org/10.31223/X5X405, 2024
Short summary
Short summary
Seasonal streamflow forecasts are an important component of flood risk management. Here, we train and test a machine learning model to predict the monthly maximum daily streamflow up to four months ahead. We train the model on precipitation and temperature forecasts to produce probabilistic hindcasts for 579 stations across the UK for the period 2004–2016. We show skilful results up to four months ahead in many locations, although in general the skill declines with increasing lead time.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Yuna Lim, Andrea M. Molod, Randal D. Koster, and Joseph A. Santanello
EGUsphere, https://doi.org/10.5194/egusphere-2024-2312, https://doi.org/10.5194/egusphere-2024-2312, 2024
Short summary
Short summary
To better utilize a given set of predictions, identifying “forecasts of opportunity” has great value. It can help anticipate when prediction skill will be higher. This study reveals that when strong L-A coupling is detected 3–4 weeks into a forecast, the prediction skill for surface air temperature at this lead increases across the Midwest and northern Great Plains. Regions experiencing strong L-A coupling exhibit warm and dry anomalies, leading to improved predictions of abnormally warm events.
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024, https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
Short summary
The accurate estimation of precipitation and its spatial variability within a watershed is crucial for reliable discharge simulations. The study is the first detailed analysis of the potential usage of the cellular automata technique to merge different rainfall data inputs to hydrological models. This work shows an improvement in the performance of hydrological simulations when satellite and rain gauge data are merged.
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024, https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Short summary
We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024, https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Short summary
The Gran Chaco is a large, dry forest in South America that has been heavily deforested, particularly in the dry Chaco subregion. This deforestation, mainly driven by the expansion of the agricultural frontier, has changed the land's characteristics, affecting the local and regional climate. The study reveals that deforestation has resulted in reduced precipitation, soil moisture, and runoff, and if intensive agriculture continues, it could make summers in this arid region even drier and hotter.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Lu Su, Dennis P. Lettenmaier, Ming Pan, and Benjamin Bass
Hydrol. Earth Syst. Sci., 28, 3079–3097, https://doi.org/10.5194/hess-28-3079-2024, https://doi.org/10.5194/hess-28-3079-2024, 2024
Short summary
Short summary
We fine-tuned the variable infiltration capacity (VIC) and Noah-MP models across 263 river basins in the Western US. We developed transfer relationships to similar basins and extended the fine-tuned parameters to ungauged basins. Both models performed best in humid areas, and the skills improved post-calibration. VIC outperforms Noah-MP in all but interior dry basins following regionalization. VIC simulates annual mean streamflow and high flow well, while Noah-MP performs better for low flows.
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024, https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Short summary
The increase in precipitation as a function of elevation is poorly understood in areas with complex topography. In this article, the reproduction of these orographic gradients is assessed with several precipitation products. The best product is a simulation from a convection-permitting regional climate model. The corresponding seasonal gradients vary significantly in space, with higher values for the first topographical barriers exposed to the dominant air mass circulations.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, and Miroslav Trnka
EGUsphere, https://doi.org/10.5194/egusphere-2024-1434, https://doi.org/10.5194/egusphere-2024-1434, 2024
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, which was clustered into 775/630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024, https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Short summary
Climate change is expected to increase flood hazard worldwide. The evolution is typically estimated from multi-model chains, where regional hydrological scenarios are simulated from weather scenarios derived from coarse-resolution atmospheric outputs of climate models. We show that two such chains are able to reproduce, from an atmospheric reanalysis, the 1902–2009 discharge variations and floods of the upper Rhône alpine river, provided that the weather scenarios are bias-corrected.
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024, https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Short summary
Global warming occurs at a rate of 0.21 K per decade, resulting in about 9.5 % K−1 of water vapor response to temperature from 1993 to 2021. Terrestrial areas experienced greater warming than the ocean, with a ratio of 2 : 1. The total precipitable water change in response to surface temperature changes showed a variation around 6 % K−1–8 % K−1 in the 15–55° N latitude band. Further studies are needed to identify the mechanisms leading to different water vapor responses.
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024, https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Short summary
This study examines centuries of nonstationary trends in meteorological drought and pluvial climatology. A novel approach merges tree-ring proxy data (North American Seasonal Precipitation Atlas – NASPA) with instrumental precipitation datasets by temporally downscaling proxy data, correcting biases, and analyzing shared trends in normal and extreme precipitation anomalies. We identify regions experiencing recent unprecedented shifts towards drier or wetter conditions and shifts in seasonality.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Kazeem Ishola, Gerald Mills, Ankur Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-304, https://doi.org/10.5194/hess-2023-304, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The global soil information contributes to uncertainty in many models that monitor soil hydrothermal changes. Using the NOAH-MP model with two different global soil information, we show under-represented soil properties in wet loam soil, leading to dry bias in soil moisture. The dry bias is higher and drought categories are more severe in SOILGRIDS. We conclude that models should consider using detailed regionally-derived soil information, to reduce model uncertainties.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024, https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024, https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) often cause high economic loss due to heavy winds and rainfall, particularly in densely populated regions such as the Pearl River Delta (China). This study provides a reference to set up regional climate models for TC simulations. They contribute to a better TC process understanding and assess the potential changes and risks of TCs in the future. This lays the foundation for hydrodynamical modelling, from which the cities' disaster management and defence could benefit.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
Hydrol. Earth Syst. Sci., 28, 241–259, https://doi.org/10.5194/hess-28-241-2024, https://doi.org/10.5194/hess-28-241-2024, 2024
Short summary
Short summary
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current level. There are large disagreements on the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of the glacial meltwater effect.
Joeri B. Reinders and Samuel E. Munoz
Hydrol. Earth Syst. Sci., 28, 217–227, https://doi.org/10.5194/hess-28-217-2024, https://doi.org/10.5194/hess-28-217-2024, 2024
Short summary
Short summary
Flooding presents a major hazard for people and infrastructure along waterways; however, it is challenging to study the likelihood of a flood magnitude occurring regionally due to a lack of long discharge records. We show that hydroclimatic variables like Köppen climate regions and precipitation intensity explain part of the variance in flood frequency distributions and thus reduce the uncertainty of flood probability estimates. This gives water managers a tool to locally improve flood analysis.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023, https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
Short summary
Long continuous time series of meteorological variables (i.e. rainfall, temperature) are required for the modelling of floods. Observed time series are generally too short or not available. Weather generators are models that reproduce observed weather time series. This study extends an existing station-based rainfall model into space by enforcing observed spatial rainfall characteristics. To model other variables (i.e. temperature) the model is then coupled to a simple resampling approach.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023, https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Short summary
Intensity–duration–frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, for example, for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations, which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023, https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Short summary
High-resolution precipitation data, needed for many applications in hydrology, are typically rare. Such data can be simulated from daily precipitation with stochastic disaggregation. In this work, multiplicative random cascades are used to disaggregate time series of 40 min precipitation from daily precipitation for 81 Swiss stations. We show that very relevant statistics of precipitation are obtained when precipitation asymmetry is accounted for in a continuous way in the cascade generator.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023, https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.
Cited articles
Bhatt, B. C., Sobolowski, S., and Higuchi, A.: Simulation of Diurnal
Rainfall
Variability over the Maritime Continent with a High-Resolution Regional
Climate Model, J. Meteorol. Soc. Jpn., 94, 89–103,
https://doi.org/10.2151/jmsj.2015-052, 2016.
Bohlinger, P., Sorteberg, A., and Sodemann, H.: Synoptic conditions and
moisture sources actuating extreme precipitation in Nepal, J. Geophys. Res.-Atmos., 122, 12653–12671, https://doi.org/10.1002/2017JD027543, 2017.
Bonan, G. B.: Forests and Climate Change: forcings, feedbacks and climate
benefits of forests, Science, 320, 1444–1449, 2008.
Camberlin, P.: Rainfall Anomalies in the Source Region of the Nile and Their Connection with the Indian Summer Monsoon, J. Climate, 10, 1380–1392, 1997.
Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology
model with the Pen State/NCAR MM5 modeling system. Part I: model
description and implementation, Mon. Weather Rev., 129, 569–585, 2001a.
Chen, F. and Dudhia, J.: Coupling an advanced land-surface/hydrology
model with the Pen State/NCAR MM5 modeling system. Part II: model
validation, Mon. Weather Rev., 129, 587–604, 2001b.
Chen, F., Manning, K. W., LeMone, M. A., Trier, S. B., Alfieri, J. G., Roberts, R., Tewari, M., Niyogi, D., Horst, T. W., Oncley, S. P., Basara, J. B., and Blanken, P. D.: Description and Evaluation of the Characteristic
of the NCAR High-Resolution Land Data Assimilation, J. Appl. Meteorol. Clim., 46, 694–713,
https://doi.org/10.1175/JAM2463.1, 2007.
Cook, B. I., Bonan, G. B., and Levis, S.: Soil Moisture Feedbacks to
Precipitation in Southern Africa, J. Climate, 19, 4198–4206, 2006.
Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., Sheffield, J., Duan, Q., Luo, L., Higgins, R. W., Pinker, R. T., and Tarpley, J. D.: Land surface model spin-up behavior in the
North American Land Data Assimilation System (NLDAS), J. Geophys. Res., 108, 8845,
https://doi.org/10.1029/2002JD003316, 2002.
Crosman, E. T. and Horel, J. D.: Sea and Lake Breezes: A Review of
Numerical Studies, Bound.-Lay. Meteorol., 137, 1–29,
https://doi.org/10.1007/s10546-010-9517-9, 2010.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli. P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hóml, E. V., Isaksen, L., Kåkkberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Diallo, I., Giorgi, F., and Stordal, F.: Influence of Lake Malawi on
regional
climate from a double-nested regional climate model experiment. Clim. Dynam.,
50, 3397–3411, https://doi.org/10.1007/s00382-017-3811-x, 2018.
Diro, G. T., Raischer, S. A., Giorgi, F., and Tompkins, A. M.: Sensitivity
to
seasonal climate and diurnal precipitation over Central America to land and
sea surface schemes in RegCM4, Clim. Res., 52, 31–48, https://doi.org/10.3354/cr01049,
2012.
ECMWF: available at:
https://www.ecmwf.int/, last access:
30 March 2018.
Estoque, M. A.: The sea breeze as a function of the prevailing synoptic
situation, J. Atmos. Sci., 19, 244–250, 1962.
Gleixner, S., Keenlyside, N. S., Demissie, T. D., Counillon, F., Wang, Y.,
and Viste, E.: Seasonal predictability of Kiremt rainfall in coupled general
circulation models, Environ. Res. Lett., 12, 114016, https://doi.org/10.1088/1748-9326/aa8cfa, 2017.
Hong, S., Noh, Y., and Dudhia, Y.: A new vertical diffusion package with an
explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, 2006.
Hong, S. Y. and Lim, J. O. J.: The WRF single-moment 6-Class microphysics
scheme (WSM6), J. Kor. Meteorol. Soc., 42, 129–151, 2006.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F.,
Gu, G., Hong,
Y., Bowman, K. P., and Stocker, E. F.: The TRMM multisatellite
precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55, 2007.
Janjíc, Z.: The Step-Mountain Eta Coordinate Model: Further development of the convection, viscous sublayer, and turbulence closure scheme,
Mon. Weather Rev., 122, 927–945, 1994.
Joseph, B., Bhatt, B. C., Koh, T.-Y., and Chen, S.: Sea breeze simulation
over Malay Peninsula over an intermonsoon period, J. Geophys. Res., 113,
D20122, https://doi.org/10.1029/2008JD010319, 2008.
Jury, M. R.: Summer climate of Madagascar and monsoon pulsing of uts
vortex, Meteorol. Atmos. Phys., 128, 117–129,
https://doi.org/10.1007/s00703-015-0401-5, 2016.
Kain, J. S.: The Kain-Fritsch convective parameterization: an update,
J. Appl. Meteorol., 43, 170–181, 2004.
Kebede, S., Travia, Y., Alemayechu, T., and Marc, V.: Water balance of Lake
Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin,
Ethiopia,
J. Hydrol., 316, 233–247, 2006.
Keen, C. S. and Lyons, W. A.: Lake/Land Breeze Circulations on the Western
Shore of Lake Michigan, J. Appl. Meteorol., 17, 1843–1855, 1978.
Kikuchi, K. and Wang, B.: Diurnal Precipitation Regimes in the Global
Tropics, J. Climate, 21, 2680–2696, 2008.
Kitoh, A. and Arakawa, O.: Reduction in tropical rainfall diurnal variation
by global warming simulated by a 20-km mesh climate model,
Geophys. Res. Lett., 32, L187709, https://doi.org/10.1029/2005GL023350, 2005.
Koseki, S. and Bhatt, B. C.: Unique relationship between tropical rainfall
and SST to the north of the Mozambique Channel in boreal winter,
Int. J. Climatology, 38, e378–e387, https://doi.org/10.1002/joc.5378, 2018.
Koseki, S., Koh, T.-Y., and Teo, C.-K.: Effects of the cold tongue in the
South China Sea on the monsoon, diurnal cycle, and rainfall in the Maritime
Continent, Q. J. Roy. Meteor. Soc., 139,
1566–1582, https://doi.org/10.1002/qj.2052, 2013.
Koseki, S., Pohl, B., Bhatt, B. C., Keenlyside, N., and Nkwinkwa Njouodo, A.
S.: Insights into the summer diurnal cycle over eastern South Africa.
Mon. Weather Rev., 146, 4339–4356, https://doi.org/10.1175/MWR-D-18-0184.1, 2018.
Kruit, R. J. W., Holtslag, A. A. M., and Tijim, A. B. C.: Scaling of the
sea-breeze strength with observations in the Netherlands,
Bound.-Lay. Meteorol., 112, 369–380, 2004.
Kumambala, P. G. and Ervine, A.: Water Balance Model for Lake Malawi
and its Sensitivity to Climate Change,
Open Hydrology Journal, 4, 152–162, 2010.
Lauwaet, D., van Lipzig, N. P. M., Van Weverberg, K., De Ridder, K., and
Goyens,
C.: The precipitation response to the desciccation of Lake Chad, Q. J. Roy.
Meteor. Soc., 138, 707–719, 2012.
Mak, M. K. and Walsh, J. E.: On the relative intensities of sea and land
breezes,
J. Atmos. Sci., 33, 242–251, 1976.
Mlawer, E., Taubman, S., Brown, P., Iacono, M., and Clough, S.: Radiative
transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k
model for the long-wave, J. Geophys. Res., 102, 16663–16682, 1997.
Mooney, P. A., Mulligan, F. J., and Broderick, C.: Diurnal cycle of
precipitation over the British Isles in a 0.44∘ WRF multiphysics
regional climate ensemble over the period 1990–1995, Clim. Dynam., 47,
3281–3300,
https://doi.org/10.1007/s00382-016-3026-6, 2016.
Mooney, P. A., Broderick, C., Bruyere, C. L., Mulligan, F. J., and Prein, A.
F.:
Clustering of Observed Diurnal Cycle of Precipitation over the United
States for Evaluation of a WRF Multiphysics Regional Climate Ensemble,
J. Climate, 30, 9267–9286, https://doi.org/10.1175/JCLI-D-16-0851.1, 2017.
NASA: TRMM Data Downloads, available at:
https://pmm.nasa.gov/data-access/downloads/trmm, last access: 15 August 2017.
NASA: GPM Data Downloads, available at: https://pmm.nasa.gov/data-access/downloads/gpm, last access: 30 March 2018.
Neuland, H.: Abnormal high water levels of Lake Malawi?- An attempt to
assess the future behaviour of the lake water levels, Geo J.., 9,
323–334, 1984.
Nikulin, G., Jones, Colin, Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota, R., Christensen, O. B., Déqué, M., Fernandez, J., Hänsler, A., van Meijgaard, E., Samuelsson, P., Sylla, M. B., and Sushama, L.: Precipitation Climatology in an Ensemble of
CORDEX-Africa Regional Climate Simulations, J. Climate, 25, 6057–6078, 2012.
Notaro, M., Holman, K., Zarrin, A., Fluck, E., Vavrus, S., and Bennington,
V.:
Infleuence of the Laurentian Great Lakes on Regional Climate, J. Climate, 26,
789–804, 2013.
Pielke, R. A.: Influence of the spatial distribution of vegetation and soils
on the
prediction of cumulus convective rainfall, Rev. Geophys., 39, 151–177,
https://doi.org/10.1029/1999RG000072, 2001.
Pitman, A. J., Avila, F. B., Abramowitz, G., Wang, Y. P., Phipps, S. J., and
de Noblet-Ducoudré, N.: Importance of background climate in determing
impacts
of land-cover change on regional climate, Nat. Clim. Change, 1, 472–475,
https://doi.org/10.1038/NCLIMATE1294, 2011.
Pohl, B., Rouault, M., and Roy, S. S.: Simulation of the annual and diurnal
cycles of rainfall over South Africa by a regional climate model, Clim. Dynam.,
43, 2207–2226, https://doi.org/10.1007/s00382-013-2046-8, 2014.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and
Schlax, M.
G.: Daily high-resolution-blended analyses for sea surface temperature.
J. Climate, 20, 5437–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.
Schäfer, M. P., Ottfried, D., and Boniface, M.: Streamflow and lake water
level
changes and their attributed causes in Eastern and Southern Africa: state of
the
art review, Int. J. Water Resour. D., 6,
853–880, https://doi.org/10.1080/07900627.2015.1091289, 2015.
Segele, Z. T., Lamb, P. J., and Leslie, L. M.: Large-scale atmospheric
circulation and global sea surface temperature associations with Horn of
Africa June-September rainfall, Int. J. Climatol., 29, 1075–1100, 2009a.
Semazzi, F. H. M. and Song, Y.: A GCM study of climate change induced by
deforestration in Africa, Clim. Res., 17, 169–182, 2001.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,
Duda, M.,
Huang, X. Y., Wang, W., and Powers, J. G.: A description of the
advanced research WRF version 3, NCAR technical note,
NCAR/TN-475+STR, 123 pp., 2008.
Skofronick-Jackson, G., Peterson, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., Karar, R., Braun, S. A., Huffman, G. J., Iguchi, T., Kirstetter, P. E., Kummerow, C., Meneghini, R., Oki, R., Olson, W. S., Takayabu, Y. N., Furukawa, K., and Wilheit, T.: The Global Precipitation
Measurement (GPM) Mission for Science and Society, B. Am. Meteorol.
Soc., 98, 1679–1696, https://doi.org/10.1175/BAMS-D-15-00306.1, 2017.
Sousounis, P. J. and Mann, G. E.: Lake-Aggregate Mesoscale Disturbances.
PartV:
Impacts on Lake-Effect Precipitation, Mon. Weather Rev., 128, 728–745, 2000.
Steyn, D. G.: Scaling the vertical structure of sea breezes revisited.
Bound.-Lay. Meteorol., 107, 177–188, 2003.
Stivari, S. M. S., de Oliveira, A. P., Karam, H. A., and Suares, J.:
Patterns of
Local Circulation in the Itaipu Lake Area: Numerical Simulations of Lake
Breeze, J. Appl. Meteorol., 42, 37–50,
https://doi.org/10.1175/1520-0450(2003)042<0037:POLCIT>2.0.CO;2, 2003.
Sugimoto, S. and Takahashi, H. G.: Seasonal Differences in Precipitation
Sensitivity
to Soil Moisture in Bangladesh and Surround Regions, J. Climate, 30, 921–938, https://doi.org/10.1175/JCLI-D-15-0800.1, 2017.
Teo, C.-K., Koh, T.-Y., Lo, J. C. F., and Bhatt, B. C.: Principal component
analysis of observed and modeled diurnal rainfall in the Maritime Continent,
J. Climate, 24, 4662–4675, 2011.
Thiery, W., Davin, E. L., Seneviratne, S. I., Bedka, K., Lhermitte, S., and
van Lipzig,
N. P. M.: Hazardous thunderstorm intensification over Lake Victoria, Nat.
Commun., 7, 12786, https://doi.org/10.1038/ncomms12786, 2016.
Tyson, D. P.: Nocturnal local winds in a Drakensberg Valley,
S. Afr. Geogr. J., 50, 15–32, 1968a.
Tyson, D. P.: A Note on the Nomenclature of the Topographically-induced
Local Winds of Natal, S. Afr. Geogr. J., 50, 33–34, 1968b.
Viste, E. and Sorteberg, A.: The effect of moisture transport variability
on
Ethiopian summer precipitation, Int. J. Climatol., 33, 3106–2123,
https://doi.org/10.1002/joc.3566, 2013.
Walker, J. and Rowntree, P. R.: The effect of soil moisture on circulation
and rainfall
in a tropical model, Q. J. Roy. Meteor. Soc., 103, 29–46, 1977.
Weyl, O. L. F., Ribbink, A. J., and Tweddle, D.: Lake Malawi: fishes,
fisheries,
biodiversity, health and habitat, Aquat. Ecosyst. Health Manag., 13, 241–254,
https://doi.org/10.1080/14634988.2010.504695, 2010.
Xu, L., Liu, H., Du, Q., and Wang, L.: Evaluation of the WRF-lake model over
a highland freshwater lake in southwest China, J. Geophys. Res.-Atmos., 121,
13989–14005, https://doi.org/10.1002/2016JD025396, 2016.
Yang, G. and Slingo, J.: The diurnal cycle in the tropics.
Mon. Weather Rev., 129, 784–801,
https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2,
2001.
Short summary
This study revealed that Lake Malawi plays an important role for local precipitation in terms of spatial distribution and diurnal cycle in boreal summer (November to March). The diurnal cycle is detected by harmonics analysis and empirical orthogonal function analysis. An idealized simulation of WRF without Lake Malawi clearly showed that Lake Malawi is a source of local precipitation.
This study revealed that Lake Malawi plays an important role for local precipitation in terms of...