Articles | Volume 23, issue 2
https://doi.org/10.5194/hess-23-1015-2019
https://doi.org/10.5194/hess-23-1015-2019
Research article
 | 
19 Feb 2019
Research article |  | 19 Feb 2019

Identifying rainfall-runoff events in discharge time series: a data-driven method based on information theory

Stephanie Thiesen, Paul Darscheid, and Uwe Ehret

Related authors

Histogram via entropy reduction (HER): an information-theoretic alternative for geostatistics
Stephanie Thiesen, Diego M. Vieira, Mirko Mälicke, Ralf Loritz, J. Florian Wellmann, and Uwe Ehret
Hydrol. Earth Syst. Sci., 24, 4523–4540, https://doi.org/10.5194/hess-24-4523-2020,https://doi.org/10.5194/hess-24-4523-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024,https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024,https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
HESS Opinions: The sword of Damocles of the impossible flood
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024,https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Metamorphic testing of machine learning and conceptual hydrologic models
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024,https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
The influence of human activities on streamflow reductions during the megadrought in central Chile
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024,https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary

Cited articles

Bellman, R.: Dynamic Programming, Princeton University Press, Princeton, USA, 1957. 
Blower, G. and Kelsall, J. E.: Nonlinear Kernel Density Estimation for Binned Data: Convergence in Entropy, Bernoulli, 8, 423–449, 2002. 
Blume, T., Zehe, E., and Bronstert, A.: Rainfall-runoff response, event-based runoff coefficients and hydrograph separation, Hydrolog. Sci. J., 52, 843–862, https://doi.org/10.1623/hysj.52.5.843, 2007. 
Brunsell, N. A.: A multiscale information theory approach to assess spatial-temporal variability of daily precipitation, J. Hydrol., 385, 165–172, https://doi.org/10.1016/j.jhydrol.2010.02.016, 2010. 
Chapman, T. G.: Entropy as a measure of hydrologic data uncertainty and model performance, J. Hydrol., 85, 111–126, https://doi.org/10.1016/0022-1694(86)90079-X, 1986. 
Download
Short summary
We present a data-driven approach created to explore the full information of data sets, avoiding parametric assumptions. The evaluations are based on Information Theory concepts, introducing an objective measure of information and uncertainty. The approach was applied to automatically identify rainfall-runoff events in discharge time series, however it is generic enough to be adapted to other practical applications.