Articles | Volume 22, issue 10
https://doi.org/10.5194/hess-22-5387-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-5387-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Future hot-spots for hydro-hazards in Great Britain: a probabilistic assessment
Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK
now at: Irstea, 1 rue Pierre Gilles de Gennes, 92 160 Antony, France
Shaun Harrigan
European Centre for Medium-Range Weather Forecasts, Shinfield Road,
Reading, RG2 9AX, UK
Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
Christel Prudhomme
European Centre for Medium-Range Weather Forecasts, Shinfield Road,
Reading, RG2 9AX, UK
Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
Giuseppe Formetta
Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
Lindsay Beevers
Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK
Related authors
No articles found.
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
Gwyneth Matthews, Christopher Barnard, Hannah Cloke, Sarah L. Dance, Toni Jurlina, Cinzia Mazzetti, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 2939–2968, https://doi.org/10.5194/hess-26-2939-2022, https://doi.org/10.5194/hess-26-2939-2022, 2022
Short summary
Short summary
The European Flood Awareness System creates flood forecasts for up to 15 d in the future for the whole of Europe which are made available to local authorities. These forecasts can be erroneous because the weather forecasts include errors or because the hydrological model used does not represent the flow in the rivers correctly. We found that, by using recent observations and a model trained with past observations and forecasts, the real-time forecast can be corrected, thus becoming more useful.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Seán Donegan, Conor Murphy, Shaun Harrigan, Ciaran Broderick, Dáire Foran Quinn, Saeed Golian, Jeff Knight, Tom Matthews, Christel Prudhomme, Adam A. Scaife, Nicky Stringer, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021, https://doi.org/10.5194/hess-25-4159-2021, 2021
Short summary
Short summary
We benchmarked the skill of ensemble streamflow prediction (ESP) for a diverse sample of 46 Irish catchments. We found that ESP is skilful in the majority of catchments up to several months ahead. However, the level of skill was strongly dependent on lead time, initialisation month, and individual catchment location and storage properties. We also conditioned ESP with the winter North Atlantic Oscillation and show that improvements in forecast skill, reliability, and discrimination are possible.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
Short summary
A new river discharge reanalysis dataset is produced operationally by coupling ECMWF's latest global atmospheric reanalysis, ERA5, with the hydrological modelling component of the Global Flood Awareness System (GloFAS). The GloFAS-ERA5 reanalysis is a global gridded dataset with a horizontal resolution of 0.1° at a daily time step and is freely available from 1979 until near real time. The evaluation against observations shows that the GloFAS-ERA5 reanalysis was skilful in 86 % of catchments.
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
Short summary
It is important to understand historic droughts in order to plan and prepare for possible future events. In this study we use the standardised streamflow index for 1891–2015 to systematically identify, characterise and rank hydrological drought events for 108 near-natural UK catchments. Results show when and where the most severe events occurred and describe events of the early 20th century, providing catchment-scale detail important for both science and planning applications of the future.
Eric Sauquet, Bastien Richard, Alexandre Devers, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 3683–3710, https://doi.org/10.5194/hess-23-3683-2019, https://doi.org/10.5194/hess-23-3683-2019, 2019
Short summary
Short summary
This study aims to identify catchments and the associated water uses vulnerable to climate change. Vulnerability is considered here to be the likelihood of water restrictions which are unacceptable for agricultural uses. This study provides the first regional analysis of the stated water restrictions, highlighting heterogeneous decision-making processes; data from a national system of compensation to farmers for uninsurable damages were used to characterize past failure events.
Annie Visser-Quinn, Lindsay Beevers, and Sandhya Patidar
Hydrol. Earth Syst. Sci., 23, 3279–3303, https://doi.org/10.5194/hess-23-3279-2019, https://doi.org/10.5194/hess-23-3279-2019, 2019
Short summary
Short summary
The ecological impact of changes in river flow may be explored through the simulation of ecologically relevant flow indicators. Traditional approaches to model parameterization are not well-suited for this. To this end, this paper considers the ability of a
modified covariance approach, applied to five hydrologically diverse catchments. An overall improvement in consistency is observed, whilst timing and rate of change represent the best and worst replicated indicators respectively.
Katie A. Smith, Lucy J. Barker, Maliko Tanguy, Simon Parry, Shaun Harrigan, Tim P. Legg, Christel Prudhomme, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 23, 3247–3268, https://doi.org/10.5194/hess-23-3247-2019, https://doi.org/10.5194/hess-23-3247-2019, 2019
Short summary
Short summary
This paper describes the multi-objective calibration approach used to create a consistent dataset of reconstructed daily river flow data for 303 catchments in the UK over 1891–2015. The modelled data perform well when compared to observations, including in the timing and the classification of drought events. This method and data will allow for long-term studies of flow trends and past extreme events that have not been previously possible, enabling water managers to better plan for the future.
Louise J. Slater, Guillaume Thirel, Shaun Harrigan, Olivier Delaigue, Alexander Hurley, Abdou Khouakhi, Ilaria Prosdocimi, Claudia Vitolo, and Katie Smith
Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019, https://doi.org/10.5194/hess-23-2939-2019, 2019
Short summary
Short summary
This paper explores the benefits and advantages of R's usage in hydrology. We provide an overview of a typical hydrological workflow based on reproducible principles and packages for retrieval of hydro-meteorological data, spatial analysis, hydrological modelling, statistics, and the design of static and dynamic visualizations and documents. We discuss some of the challenges that arise when using R in hydrology as well as a roadmap for R’s future within the discipline.
Rebecca Emerton, Ervin Zsoter, Louise Arnal, Hannah L. Cloke, Davide Muraro, Christel Prudhomme, Elisabeth M. Stephens, Peter Salamon, and Florian Pappenberger
Geosci. Model Dev., 11, 3327–3346, https://doi.org/10.5194/gmd-11-3327-2018, https://doi.org/10.5194/gmd-11-3327-2018, 2018
Short summary
Short summary
Global overviews of upcoming flood and drought events are key for many applications from agriculture to disaster risk reduction. Seasonal forecasts are designed to provide early indications of such events weeks or even months in advance. This paper introduces GloFAS-Seasonal, the first operational global-scale seasonal hydro-meteorological forecasting system producing openly available forecasts of high and low river flow out to 4 months ahead.
Sikhululekile Ncube, Lindsay Beevers, Adebayo J. Adeloye, and Annie Visser
Proc. IAHS, 379, 67–72, https://doi.org/10.5194/piahs-379-67-2018, https://doi.org/10.5194/piahs-379-67-2018, 2018
Short summary
Short summary
The aim of this study is to understand the impact of flow regulation on supporting ecosystem services in the Beas Basin in India, using macroinvertebrates as an indicator. Findings show that both river flows and macroinvertebrate abundance have decreased overtime in the Beas Basin. Consequently, this could have a detrimental impact on instream supporting ecosystem services delivery. Such an understanding is important in future water resources management in the Beas River Basin.
Maliko Tanguy, Christel Prudhomme, Katie Smith, and Jamie Hannaford
Earth Syst. Sci. Data, 10, 951–968, https://doi.org/10.5194/essd-10-951-2018, https://doi.org/10.5194/essd-10-951-2018, 2018
Short summary
Short summary
Potential evapotranspiration (PET) is necessary input data for most hydrological models, used to simulate river flows. To reconstruct PET prior to the 1960s, simplified methods are needed because of lack of climate data required for complex methods. We found that the McGuinness–Bordne PET equation, which only needs temperature as input data, works best for the UK provided it is calibrated for local conditions. This method was used to produce a 5 km gridded PET dataset for the UK for 1891–2015.
Louise Arnal, Hannah L. Cloke, Elisabeth Stephens, Fredrik Wetterhall, Christel Prudhomme, Jessica Neumann, Blazej Krzeminski, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, https://doi.org/10.5194/hess-22-2057-2018, 2018
Short summary
Short summary
This paper presents a new operational forecasting system (driven by atmospheric forecasts), predicting river flow in European rivers for the next 7 months. For the first month only, these river flow forecasts are, on average, better than predictions that do not make use of atmospheric forecasts. Overall, this forecasting system can predict whether abnormally high or low river flows will occur in the next 7 months in many parts of Europe, and could be valuable for various applications.
Shaun Harrigan, Christel Prudhomme, Simon Parry, Katie Smith, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 22, 2023–2039, https://doi.org/10.5194/hess-22-2023-2018, https://doi.org/10.5194/hess-22-2023-2018, 2018
Short summary
Short summary
We benchmarked when and where ensemble streamflow prediction (ESP) is skilful in the UK across a diverse set of 314 catchments. We found ESP was skilful in the majority of catchments across all lead times up to a year ahead, but the degree of skill was strongly conditional on lead time, forecast initialization month, and individual catchment location and storage properties. Results have practical implications for current operational use of the ESP method in the UK.
Conor Murphy, Ciaran Broderick, Timothy P. Burt, Mary Curley, Catriona Duffy, Julia Hall, Shaun Harrigan, Tom K. R. Matthews, Neil Macdonald, Gerard McCarthy, Mark P. McCarthy, Donal Mullan, Simon Noone, Timothy J. Osborn, Ciara Ryan, John Sweeney, Peter W. Thorne, Seamus Walsh, and Robert L. Wilby
Clim. Past, 14, 413–440, https://doi.org/10.5194/cp-14-413-2018, https://doi.org/10.5194/cp-14-413-2018, 2018
Short summary
Short summary
This work reconstructs a continuous 305-year rainfall record for Ireland. The series reveals remarkable variability in decadal rainfall – far in excess of the typical period of digitised data. Notably, the series sheds light on exceptionally wet winters in the 1730s and wet summers in the 1750s. The derived record, one of the longest continuous series in Europe, offers a firm basis for benchmarking other long-term records and reconstructions of past climate both locally and across Europe.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Simon Parry, Robert L. Wilby, Christel Prudhomme, and Paul J. Wood
Hydrol. Earth Syst. Sci., 20, 4265–4281, https://doi.org/10.5194/hess-20-4265-2016, https://doi.org/10.5194/hess-20-4265-2016, 2016
Short summary
Short summary
This paper identifies periods of recovery from drought in 52 river flow records from the UK between 1883 and 2013. The approach detects 459 events that vary in space and time. This large dataset allows individual events to be compared with others in the historical record. The ability to objectively appraise contemporary events against the historical record has not previously been possible, and may allow water managers to prepare for a range of outcomes at the end of a drought.
A. Chiverton, J. Hannaford, I. P. Holman, R. Corstanje, C. Prudhomme, T. M. Hess, and J. P. Bloomfield
Hydrol. Earth Syst. Sci., 19, 2395–2408, https://doi.org/10.5194/hess-19-2395-2015, https://doi.org/10.5194/hess-19-2395-2015, 2015
Short summary
Short summary
Current hydrological change detection methods are subject to a host of limitations. This paper develops a new method, temporally shifting variograms (TSVs), which characterises variability in the river flow regime using several parameters, changes in which can then be attributed to precipitation characteristics. We demonstrate the use of the method through application to 94 UK catchments, showing that periods of extremes as well as more subtle changes can be detected.
I. Giuntoli, J.-P. Vidal, C. Prudhomme, and D. M. Hannah
Earth Syst. Dynam., 6, 267–285, https://doi.org/10.5194/esd-6-267-2015, https://doi.org/10.5194/esd-6-267-2015, 2015
Short summary
Short summary
We assessed future changes in high and low flows globally using runoff projections from global hydrological models (GHMs) driven by global climate models (GCMs) under the RCP8.5 scenario. Further, we quantified the relative size of uncertainty from GHMs and from GCMs using ANOVA. We show that GCMs are the major contributors to uncertainty overall, but GHMs increase their contribution for low flows and can equal or outweigh GCM uncertainty in snow-dominated areas for both high and low flows.
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
S. Harrigan, C. Murphy, J. Hall, R. L. Wilby, and J. Sweeney
Hydrol. Earth Syst. Sci., 18, 1935–1952, https://doi.org/10.5194/hess-18-1935-2014, https://doi.org/10.5194/hess-18-1935-2014, 2014
C. Prudhomme and J. Williamson
Hydrol. Earth Syst. Sci., 17, 1365–1377, https://doi.org/10.5194/hess-17-1365-2013, https://doi.org/10.5194/hess-17-1365-2013, 2013
C. Prudhomme, T. Haxton, S. Crooks, C. Jackson, A. Barkwith, J. Williamson, J. Kelvin, J. Mackay, L. Wang, A. Young, and G. Watts
Earth Syst. Sci. Data, 5, 101–107, https://doi.org/10.5194/essd-5-101-2013, https://doi.org/10.5194/essd-5-101-2013, 2013
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Uncertainty analysis
Robust multi-objective optimization under multiple uncertainties using the CM-ROPAR approach: case study of water resources allocation in the Huaihe River basin
Actionable human-water systems modeling under uncertainty
Evaluating the impact of post-processing medium-range ensemble streamflow forecasts from the European Flood Awareness System
Coupled effects of observation and parameter uncertainty on urban groundwater infrastructure decisions
Disentangling sources of future uncertainties for water management in sub-Saharan river basins
Possibilistic response surfaces: incorporating fuzzy thresholds into bottom-up flood vulnerability analysis
Evaluation of impacts of future climate change and water use scenarios on regional hydrology
Planning for climate change impacts on hydropower in the Far North
Describing the interannual variability of precipitation with the derived distribution approach: effects of record length and resolution
Dissolved oxygen prediction using a possibility theory based fuzzy neural network
Projected changes in US rainfall erosivity
Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data
Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation
Robust global sensitivity analysis of a river management model to assess nonlinear and interaction effects
Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin
Irrigation efficiency and water-policy implications for river basin resilience
On an improved sub-regional water resources management representation for integration into earth system models
Statistical analysis of error propagation from radar rainfall to hydrological models
The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin
Prioritization of water management under climate change and urbanization using multi-criteria decision making methods
Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications
Jitao Zhang, Dimitri Solomatine, and Zengchuan Dong
Hydrol. Earth Syst. Sci., 28, 3739–3753, https://doi.org/10.5194/hess-28-3739-2024, https://doi.org/10.5194/hess-28-3739-2024, 2024
Short summary
Short summary
Faced with the problem of uncertainty in the field of water resources management, this paper proposes the Copula Multi-objective Robust Optimization and Probabilistic Analysis of Robustness (CM-ROPAR) approach to obtain robust water allocation schemes based on the uncertainty of drought and wet encounters and the uncertainty of inflow. We believe that this research article not only highlights the significance of the CM-ROPAR approach but also provides a new concept for uncertainty analysis.
Laura Gil-García, Nazaret M. Montilla-López, Carlos Gutiérrez-Martín, Ángel Sánchez-Daniel, Pablo Saiz-Santiago, Josué M. Polanco-Martínez, Julio Pindado, and C. Dionisio Pérez-Blanco
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-61, https://doi.org/10.5194/hess-2024-61, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This paper presents an interdisciplinary model for quantifying uncertainties in water allocation under climate change. It combines climate, hydrological, and microeconomic experiments with a decision support system. Multi-model analyses reveal potential futures for water management policies, emphasizing nonlinear climate responses. As illustrated in the Douro River Basin, minor water allocation changes have significant economic impacts, stresssing the need for adaptation strategies.
Gwyneth Matthews, Christopher Barnard, Hannah Cloke, Sarah L. Dance, Toni Jurlina, Cinzia Mazzetti, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 2939–2968, https://doi.org/10.5194/hess-26-2939-2022, https://doi.org/10.5194/hess-26-2939-2022, 2022
Short summary
Short summary
The European Flood Awareness System creates flood forecasts for up to 15 d in the future for the whole of Europe which are made available to local authorities. These forecasts can be erroneous because the weather forecasts include errors or because the hydrological model used does not represent the flow in the rivers correctly. We found that, by using recent observations and a model trained with past observations and forecasts, the real-time forecast can be corrected, thus becoming more useful.
Marina R. L. Mautner, Laura Foglia, and Jonathan D. Herman
Hydrol. Earth Syst. Sci., 26, 1319–1340, https://doi.org/10.5194/hess-26-1319-2022, https://doi.org/10.5194/hess-26-1319-2022, 2022
Short summary
Short summary
Sensitivity analysis can be harnessed to evaluate effects of model uncertainties on planning outcomes. This study explores how observation and parameter uncertainty propagate through a hydrogeologic model to influence the ranking of decision alternatives. Using global sensitivity analysis and evaluation of aquifer management objectives, we evaluate how physical properties of the model and choice of observations for calibration can lead to variations in decision-relevant model outputs.
Alessandro Amaranto, Dinis Juizo, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 26, 245–263, https://doi.org/10.5194/hess-26-245-2022, https://doi.org/10.5194/hess-26-245-2022, 2022
Short summary
Short summary
This study aims at designing water supply strategies that are robust against climate, social, and land use changes in a sub-Saharan river basin. We found that robustness analysis supports the discovery of policies enhancing the resilience of water resources systems, benefiting the agricultural, energy, and urban sectors. We show how energy sustainability is affected by water availability, while urban and irrigation resilience also depends on infrastructural interventions and land use changes.
Thibaut Lachaut and Amaury Tilmant
Hydrol. Earth Syst. Sci., 25, 6421–6435, https://doi.org/10.5194/hess-25-6421-2021, https://doi.org/10.5194/hess-25-6421-2021, 2021
Short summary
Short summary
Response surfaces are increasingly used to identify the hydroclimatic conditions leading to a water resources system's failure. Partitioning the surface usually requires performance thresholds that are not necessarily crisp. We propose a methodology that combines the inherent uncertainty of response surfaces with the ambiguity of performance thresholds. The proposed methodology is illustrated with a multireservoir system in Canada for which some performance thresholds are imprecise.
Seungwoo Chang, Wendy Graham, Jeffrey Geurink, Nisai Wanakule, and Tirusew Asefa
Hydrol. Earth Syst. Sci., 22, 4793–4813, https://doi.org/10.5194/hess-22-4793-2018, https://doi.org/10.5194/hess-22-4793-2018, 2018
Short summary
Short summary
It is important to understand potential impacts of climate change and human water use on streamflow and groundwater levels. This study used climate models with an integrated hydrologic model to project future streamflow and groundwater level in Tampa Bay for a variety of future water use scenarios. Impacts of different climate projections on streamflow were found to be much stronger than the impacts of different human water use scenarios, but both were significant for groundwater projection.
Jessica E. Cherry, Corrie Knapp, Sarah Trainor, Andrea J. Ray, Molly Tedesche, and Susan Walker
Hydrol. Earth Syst. Sci., 21, 133–151, https://doi.org/10.5194/hess-21-133-2017, https://doi.org/10.5194/hess-21-133-2017, 2017
Short summary
Short summary
We know that climate is changing quickly in the Far North (the Arctic and sub-Arctic). Hydropower continues to grow in this region because water resources are perceived to be plentiful. However, with changes in glacier extent and permafrost, and more extreme events, will those resources prove reliable into the future? This study amasses the evidence that quantitative hydrology modeling and uncertainty assessment have matured to the point where they should be used in water resource planning.
Claudio I. Meier, Jorge Sebastián Moraga, Geri Pranzini, and Peter Molnar
Hydrol. Earth Syst. Sci., 20, 4177–4190, https://doi.org/10.5194/hess-20-4177-2016, https://doi.org/10.5194/hess-20-4177-2016, 2016
Short summary
Short summary
We show that the derived distribution approach is able to characterize the interannual variability of precipitation much better than fitting a probabilistic model to annual rainfall totals, as long as continuously gauged data are available. The method is a useful tool for describing temporal changes in the distribution of annual rainfall, as it works for records as short as 5 years, and therefore does not require any stationarity assumption over long periods.
Usman T. Khan and Caterina Valeo
Hydrol. Earth Syst. Sci., 20, 2267–2293, https://doi.org/10.5194/hess-20-2267-2016, https://doi.org/10.5194/hess-20-2267-2016, 2016
Short summary
Short summary
This paper contains a new two-step method to construct fuzzy numbers using observational data. In addition an existing fuzzy neural network is modified to account for fuzzy number inputs. This is combined with possibility-theory based intervals to train the network. Furthermore, model output and a defuzzification technique is used to estimate the risk of low Dissolved Oxygen so that water resource managers can implement strategies to prevent the occurrence of low Dissolved Oxygen.
M. Biasutti and R. Seager
Hydrol. Earth Syst. Sci., 19, 2945–2961, https://doi.org/10.5194/hess-19-2945-2015, https://doi.org/10.5194/hess-19-2945-2015, 2015
Short summary
Short summary
We estimate future changes in US erosivity from the most recent ensemble projections of daily and monthly rainfall accumulation. The expectation of overall increase in erosivity is confirmed by these calculations, but a quantitative assessment is marred by large uncertainties. Specifically, the uncertainty in the method of estimation of erosivity is more consequential than that deriving from the spread in climate simulations, and leads to changes of uncertain sign in parts of the south.
M. C. Peel, R. Srikanthan, T. A. McMahon, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 1615–1639, https://doi.org/10.5194/hess-19-1615-2015, https://doi.org/10.5194/hess-19-1615-2015, 2015
Short summary
Short summary
We present a proof-of-concept approximation of within-GCM uncertainty using non-stationary stochastic replicates of monthly precipitation and temperature projections and investigate the impact of within-GCM uncertainty on projected runoff and reservoir yield. Amplification of within-GCM variability from precipitation to runoff to reservoir yield suggests climate change impact assessments ignoring within-GCM uncertainty would provide water resources managers with an unjustified sense of certainty
T. A. McMahon, M. C. Peel, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 361–377, https://doi.org/10.5194/hess-19-361-2015, https://doi.org/10.5194/hess-19-361-2015, 2015
Short summary
Short summary
Here we assess GCM performance from a hydrologic perspective. We identify five better performing CMIP3 GCMs that reproduce grid-scale climatological statistics of observed precipitation and temperature over global land regions for future hydrologic simulation. GCM performance in reproducing observed mean and standard deviation of annual precipitation, mean annual temperature and mean monthly precipitation and temperature was assessed and ranked, and five better performing GCMs were identified.
L. J. M. Peeters, G. M. Podger, T. Smith, T. Pickett, R. H. Bark, and S. M. Cuddy
Hydrol. Earth Syst. Sci., 18, 3777–3785, https://doi.org/10.5194/hess-18-3777-2014, https://doi.org/10.5194/hess-18-3777-2014, 2014
L. Zhuo, M. M. Mekonnen, and A. Y. Hoekstra
Hydrol. Earth Syst. Sci., 18, 2219–2234, https://doi.org/10.5194/hess-18-2219-2014, https://doi.org/10.5194/hess-18-2219-2014, 2014
C. A. Scott, S. Vicuña, I. Blanco-Gutiérrez, F. Meza, and C. Varela-Ortega
Hydrol. Earth Syst. Sci., 18, 1339–1348, https://doi.org/10.5194/hess-18-1339-2014, https://doi.org/10.5194/hess-18-1339-2014, 2014
N. Voisin, H. Li, D. Ward, M. Huang, M. Wigmosta, and L. R. Leung
Hydrol. Earth Syst. Sci., 17, 3605–3622, https://doi.org/10.5194/hess-17-3605-2013, https://doi.org/10.5194/hess-17-3605-2013, 2013
D. Zhu, D. Z. Peng, and I. D. Cluckie
Hydrol. Earth Syst. Sci., 17, 1445–1453, https://doi.org/10.5194/hess-17-1445-2013, https://doi.org/10.5194/hess-17-1445-2013, 2013
B. L. Harding, A. W. Wood, and J. R. Prairie
Hydrol. Earth Syst. Sci., 16, 3989–4007, https://doi.org/10.5194/hess-16-3989-2012, https://doi.org/10.5194/hess-16-3989-2012, 2012
J.-S. Yang, E.-S. Chung, S.-U. Kim, and T.-W. Kim
Hydrol. Earth Syst. Sci., 16, 801–814, https://doi.org/10.5194/hess-16-801-2012, https://doi.org/10.5194/hess-16-801-2012, 2012
S. Quiroga, Z. Fernández-Haddad, and A. Iglesias
Hydrol. Earth Syst. Sci., 15, 505–518, https://doi.org/10.5194/hess-15-505-2011, https://doi.org/10.5194/hess-15-505-2011, 2011
Cited articles
Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood
risk at the global scale, Climatic Change, 134, 387–401, https://doi.org/10.1007/s10584-014-1084-5, 2016.
ASC: UK Climate Change Risk Assessment 2017 Synthesis Report: priorities for
the next five years, Adaptation Sub-Committee of the Committee on Climate
Change, London, 2016.
Augustin, N., Beevers, L., and Sloan, W.: Predicting river flows for future
climates using an autoregressive multinomial logit model, Water Resour.
Res., 44, W07403, https://doi.org/10.1029/2006WR005127, 2008.
Bai, X., Dawson, R., Ürge-Vorsatz, D., Delgado, G., Salisu Barau, A., Dhakal,
S., Dodman, D., Leonardsen, L., Masson-Delmotte, V., Roberts, D., and
Schultz, S.: Six research priorities for cities and climate change, Nature, 555,
23–25, https://doi.org/10.1038/d41586-018-02409-z, 2018.
Bayliss, A. C. and Jones, R. C.: Peaks-over-threshold flood database: Summary
statistics and seasonality, IH Report No. 121, 68 pp., Institute of Hydrology, Crowmarsh Gifford, UK, 1993.
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B.,
Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M.,
Canjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova,
N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M.,
Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O.,
Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P.,
Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger,
M., Salinas, J. L., Sauquet, E., Sraj, M., Szolgay, J., Viglione, A., Volpi,
E., Wilson, D., Zaimi, K., and Zivkovic, N.: Changing climate shifts timing
of European floods, Science, 357, 588–590, https://doi.org/10.1126/science.aan2506, 2017.
Borgomeo, E., Farmer, C. L., and Hall, J. H.: Numerical rivers: A synthetic
streamflow generator for water resources vulnerability assessments, Water
Resour. Res., 51, 5382–5405, https://doi.org/10.1002/2014WR016827, 2015.
British Geological Survey: Future Flows and Groundwater Levels: projections for the 21st century,
available at: http://www.bgs.ac.uk/research/groundwater/change/FutureFlows/home.html, last access: 10 October
2018.
Burt, T. P., Howden, N. J. K., and Worrall, F.: The changing water cycle:
hydroclimatic extremes in the British Isles, WIREs Water, 3, 854–870, https://doi.org/10.1002/wat2.1169, 2016.
CEH: Environmental Informatics Data Centre, available at: https://gateway.ceh.ac.uk/, last access: 10 October
2018a.
CEH: National River Flow Archive,
available at: http://nrfa.ceh.ac.uk/data/search?db=nrfa_public&stn=categories%3A%2AFUTUREFLOWS%2A, last access: 10 October
2018b.
Collet, L., Ruelland, D., Borrell-Estupina, V., Dezetter, A., and Servat,
E.: Water Supply sustainability and adaptation strategies under
anthropogenic and climatic changes of a meso-scale Mediterranean catchment,
Sci. Total Environ., 536, 589–602, 2015.
Collet, L., Beevers, L., and Prudhomme, C.: Assessing the Impact of Climate
Change and Extreme Value Uncertainty to Extreme Flows across Great Britain,
Water, 9, 103, https://doi.org/10.3390/w9010103, 2017.
Collet, L., Beevers, L., and Stewart, M. D.: Decision-making and flood risk
uncertainty: Statistical data set analysis for flood risk assessment, Water
Resour. Res., 54, WR022024, https://doi.org/10.1029/2017WR022024, 2018.
Crooks, S. M. and Naden, P. S.: CLASSIC: a semi-distributed rainfall-runoff
modelling system, Hydrol. Earth Syst. Sci., 11, 516–531,
https://doi.org/10.5194/hess-11-516-2007, 2007.
Di Baldassarre, G., Castellarin, A., Montanari, A., and Brath, A.:
Probability-weighted hazard maps for comparing different flood risk
management strategies: A case study, Nat. Hazards, 50, 479–496, 2009.
Environment Agency: Collaborative research priorities, available at:
https://www.gov.uk/government/publications/collaborative-research-priorities-for-the-environment-agency-2015-to-2019 (last access: 22 May 2015), 2014.
EEA: Water abstraction, available at: http://www.eea.europa.eu/themes/water/water-resources/water-abstraction (last access: 9 August 2015), 2008.
Fischer, E. M., Beyerle, U., and Knutti, R.: Robust spatially aggregated
projections of climate extremes, Nat. Clim. Change, 3, 1033–1038,
https://doi.org/10.1038/nclimate2051, 2013.
Formetta, G., Bell, V., and Stewart, E.: Use of flood seasonality in
pooling-group formation and quantile estimation: an application in Great
Britain, Water Resour. Res., 54, 1127–1145, https://doi.org/10.1002/2017WR021623, 2018.
Fowler, H. J. and Kilsby, H. J.: A weather-type approach to analysing water
resource drought in the Yorkshire region from 1881 to 1998, J. Hydrol., 262, 177–192, https://doi.org/10.1016/S0022-1694(02)00034-3, 2002.
Griffiths, J., Young, A. R., and Keller, V.: Continuous Estimation of River
Flows (CERF) – Technical Report: Task 1.3: Model Scheme for Representing
Rainfall Interception and Soil Moisture, p. 45, CEH: Wallingford, UK, 2006.
Gustard, A. and Demuth, S. (Eds): Manual on Low-flow Estimation and
Prediction, Operational Hydrology Report No. 50, WMO-No. 1029, 136 pp.,
Chairperson, Publications Board World Meteorological Organization (WMO),
Geneva, Switzerland, 2009.
Hannaford, J. and Marsh, T. J.: High-flow and flood trends in a network of
undisturbed catchments in the UK, Int. J. Climatol., 28, 1325–1338, https://doi.org/10.1002/joc.1643, 2008.
Hannaford, J. and Hall, J. W.: Flood risk in the UK: evidence of change and
management responses, in: Changes in flood risk in Europe, edited by:
Kundzewicz, Z. W. and Zbigniew, W., IAHS Press, IAHS Special Publication,
Wallingford, 10, 344–361, 2012.
Harrigan, S., Hannaford, J., Muchan, K., and Marsh, T.: Designation and trend
analysis of the updated UK Benchmark Network of river flow stations: The
UKBN2 dataset, Hydrol. Res., 49, nh2017058, https://doi.org/10.2166/nh.2017.058, 2018.
Haxton, T., Crooks, S., Jackson, C. R., Barkwith, A. K. A. P., Kelvin, J.,
Williamson, J., Mackay, J. D., Wang, L., Davies, H., Young, A., and
Prudhomme, C.: Future flows hydrology data, NERC Environmental Information
Data Centre, https://doi.org/10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b, 2012.
HM Government: Water for Life (Water White Paper) Crown Copyright, Controller of Her Majesty's Stationery Office, UK, 2011.
Institute of Hydrology: Flood Estimation Handbook, Vol. 3: Statistical
procedures for flood frequency estimation, Centre for Ecology &
Hydrology, Wallingford, UK, 1999.
Kay, A. L., Crooks, S. M., Davies, H. N., and Reynard, N. S.: Probabilistic
impacts of climate change on flood frequency using response surfaces I:
England and Wales, Reg. Environ. Change, 14, 1215–1227, https://doi.org/10.1007/s10113-013-0563-y, 2014a.
Kay, A. L., Crooks, S. M., Davies, H. N., and Reynard, N. S.: Probabilistic
impacts of climate change on flood frequency using response surfaces II:
Scotland, Reg. Environ. Change, 14, 1243–1255,
https://doi.org/10.1007/s10113-013-0564-x, 2014b.
Kundzewic, Z. (Ed.): Changes in Flood Risk in Europe, IAHS Special
Publication, CRC Press, Wallingford, Oxfordshire, UK, 2012.
Kundzewicz, Z. W., Krysanova, V., Dankers, R., Hirabayashi, Y., Kanae, S.,
Hattermann, F. F., Huang, S., Milly, P. C. D., Stoffel, M., Driessen, P. P. J.,
Matczak, P., Quevauviller, P., and Schellnhuber, H.-J.: Differences in flood
hazard projections in Europe – their causes and consequences for decision
making, Hydrol. Sci. J., 62, 1–14, https://doi.org/10.1080/02626667.2016.1241398,
2017.
Kundzewicz, Z. W., Krysanova, V., Benestad, R. E., Hov, Ø., Piniewski, M.,
and Otto, I. M.: Uncertainty in climate change impacts on water resources,
Environ. Sci. Policy, 79, 1–8, https://doi.org/10.1016/j.envsci.2017.10.008, 2018.
Maraun, D., Osborn, T. J., and Gillett, N. P.: United Kingdom Daily
Precipitation Intensity: Improved Early Data, Error Estimates and an Update
from 2000 to 2006, Int. J. Climatol., 28, 833–842, https://doi.org/10.1002/joc.1672,
2008.
Marsh, T., Cole, G., and Wilby, R.: Major droughts in England and Wales,
1800–2006, Weather, 62, 87–93, https://doi.org/10.1002/wea.67, 2007.
Masood, M. and Takeuchi, K.: Assessment of flood hazard, vulnerability and
risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model, Nat. Hazards., 61, 757–770, https://doi.org/10.1007/s11069-011-0060-x, 2012.
Met Office Hadley Centre, Department for Environment Food & Rural
Affaires, Department of Energy and Climate Change, Environment Agency: Is
UKCP09 still an appropriate tool for adaptation planning? Land Projections,
Technical report, 11 pp., available at:
http://ukclimateprojections.metoffice.gov.uk/media.jsp?mediaid=88738&filetype=pdf
(last access: 10 October 2018), 2016.
Miller, J. and Brewer, T.: Refining flood estimation in urbanized
catchments using landscape metrics, Landscape Urban Plan., 175,
34–49, https://doi.org/10.1016/j.landurbplan.2018.02.003, 2018.
Moore, R. J.: The PDM rainfall-runoff model, Hydrol. Earth Syst. Sci., 11, 483–499, https://doi.org/10.5194/hess-11-483-2007, 2007.
Murphy, J. M., Booth, B. B. B., Collins, M., Harris, G. R., Sexton, D. M. H., and
Webb, M. J.: A methodology for probabilistic predictions of regional climate
change from perturbed physics ensembles, Philos. T. Roy. Soc. A, 365,
1993–2028, https://doi.org/10.1098/rsta.2007.2077, 2007.
Murphy, J. M., Sexton, D. M. H., Jenkins, G. J., Boorman, P. M., Booth, B. B. B.,
Brown, C. C., Clark, R. T., Collins, M., Harris, G. R., Kendon, E. J., Betts,
R. A., Brown, S. J., Howard, T. P., Humphrey, K. A., McCarthy, M. P., McDonald,
R. E., Stephens, A., Wallace, C., Warren, R., Wilby, R., and Wood, R. A.: UK
Climate Projections Science Report: Climate change projections, Met Office
Hadley Centre, Exeter, UK, 2009.
Parry, S., Marsh, T., and Kendon, M.: 2012: from drought to floods in
England and Wales, Weather, 68, 268–274, https://doi.org/10.1002/wea.2152, 2013.
Pender, D., Patidar, S., Hassan, K., and Haynes, H.: Method for
Incorporating Morphological Sensitivity into Flood Inundation Modeling, J.
Hydrol. Eng., 142, 04016008, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001127,
2016.
Prudhomme, C. and Williamson, J.: Derivation of RCM-driven potential
evapotranspiration for hydrological climate change impact analysis in Great
Britain: a comparison of methods and associated uncertainty in future
projections, Hydrol. Earth Syst. Sci., 17, 1365–1377,
https://doi.org/10.5194/hess-17-1365-2013, 2013.
Prudhomme, C., Young, A., Watts, G., Haxton, T., Crooks, S., Williamson, J.,
Davies, H., Dadson, S., and Allen, S.: The drying up of Britain? A national
estimate of changes in seasonal river flows from 11 Regional Climate Model
simulations, Hydrol. Process., 26, 1115–1118, https://doi.org/10.1002/hyp.8434,
2012a.
Prudhomme, C., Dadson, S., Morris, D., Williamson, J., Goodsell, G., Crooks,
S., Boelee, L., Davies, H., Buys, G., Lafon, T., and Watts, G.: Future Flows
Climate: an ensemble of 1-km climate change projections for hydrological
application in Great Britain, Earth Syst. Sci. Data, 4, 143–148,
https://doi.org/10.5194/essd-4-143-2012, 2012b.
Prudhomme, C., Crooks, S., Jackson, C., Kelvin, J., and Young, A.: Future flows
and Groundwater Levels, Final Technical Report Science Report/Project Note
– SC090016/PN9, CEH Wallingford, 118 pp., 2012c.
Prudhomme, C., Haxton, T., Crooks, S., Jackson, C., Barkwith, A., Williamson,
J., Kelvin, J., Mackay, J., Wang, L., Young, A., and Watts, G.: Future Flows
Hydrology: an ensemble of daily river flow and monthly groundwater levels for
use for climate change impact assessment across Great Britain, Earth Syst.
Sci. Data, 5, 101–107, https://doi.org/10.5194/essd-5-101-2013, 2013.
Quesada-Montano, B., Baldassarre, G. D., Rangecroft, S., and Van Loon, A. F.:
Hydrological change: Towards a consistent approach to assess changes on both
floods and droughts, Adv. Water Resour., 111, 31–35, https://doi.org/10.1016/j.advwatres.2017.10.038,
2018.
Rahiz, M. and New, M.: 21st Century Drought Scenarios for the UK, Water
Resour Manag., 27, 1039–1061, https://doi.org/10.1007/s11269-012-0183-1, 2013.
Reynard, N., Kay, A., Anderson, M., Donovan, B., and Duckworth, C.: The
evolution of climate change guidance for fluvial flood risk management in
England, Prog. Phys. Geog., 41, 222–237, https://doi.org/10.1177/0309133317702566,
2017.
Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J., and Rudd, A. C.:
Trends in atmospheric evaporative demand in Great Britain using
high-resolution meteorological data, Hydrol. Earth Syst. Sci., 21,
1189–1224, https://doi.org/10.5194/hess-21-1189-2017, 2017.
Robson, A. J. and Reed, D. W.: Flood Estimation Handbook, Institute of
Hydrology, Wallingford, UK, 1999.
Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., and Ludwig,
F.: Projections of future floods and hydrological droughts in Europe under a
+2 ∘C global warming, Climatic Change, 135, 341–355, https://doi.org/10.1007/s10584-015-1570-4,
2016.
Stedinger, J. R., Vogel, R. M., and Foufoula-Georgiou, E.: Frequency analysis
of extreme events, in: Handbook of hydrology, edited by: Maidment, D.,
McGraw-Hill, New York, 1993.
Trenberth, K.: Changes in precipitation with climate change, Clim. Res.,
47, 123–138, 2011.
UK Parliament: Current Parliamentary Material Available on Flooding, available at: http://www.parliament.uk/topics/Flooding.htm,
last access: 16 August 2013.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of
hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946,
https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. A. J., Teuling, A.
J., and Uijlenhoet, R.: How climate seasonality modifies drought duration and
deficit, J. Geophys. Res.-Atmos., 119, 4640–4656, https://doi.org/10.1002/2013JD020383,
2014.
Wilby, R. L., Beven, K. J., and Reynard, N. S.: Climate change and fluvial
flood risk in the UK: more of the same?, Hydrol. Process., 22, 2511–2523,
https://doi.org/10.1002/hyp.6847, 2008.
Wilby, R. L.: Evaluating climate model outputs for hydrological applications,
Hydrol. Sci. J., 55, 1090–1093, 2010.
Wilby, R. L. and Dessai, S.: Robust adaptation to climate change, Weather,
65, 180–185, 2010.
Short summary
Floods and droughts cause significant damages and pose risks to lives worldwide. In a climate change context this work identifies hotspots across Great Britain, i.e. places expected to be impacted by an increase in floods and droughts. By the 2080s the western coast of England and Wales and northeastern Scotland would experience more floods in winter and droughts in autumn, with a higher increase in drought hazard, showing a need to adapt water management policies in light of climate change.
Floods and droughts cause significant damages and pose risks to lives worldwide. In a climate...