Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2269-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-22-2269-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reconstruction of droughts in India using multiple land-surface models (1951–2015)
Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gujarat, 382355, India
Reepal Shah
Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gujarat, 382355, India
Syed Azhar
Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gujarat, 382355, India
Harsh Shah
Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gujarat, 382355, India
Parth Modi
Civil Engineering, Indian Institute of Technology (IIT) Gandhinagar, Gujarat, 382355, India
Rohini Kumar
UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
Related authors
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
EGUsphere, https://doi.org/10.5194/egusphere-2024-1303, https://doi.org/10.5194/egusphere-2024-1303, 2024
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of the reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers and data users.
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024, https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Anukesh Ambika and Vimal Mishra
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-81, https://doi.org/10.5194/essd-2022-81, 2022
Preprint withdrawn
Short summary
Short summary
Understanding the impacts of drought on agriculture is hampered due to the lack of high-resolution data in India. Moreover, most of the existing drought monitoring system do not account for the influence of irrigation on drought mitigation. To fill these crucial gaps in drought assessment capability, we develop a high-resolution (250 m) dataset of land surface temperature (LST) and enhanced vegetation index (EVI) for India for 2000–2017 period.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Vimal Mishra, Saran Aaadhar, Harsh Shah, Rahul Kumar, Dushmanta Ranjan Pattanaik, and Amar Deep Tiwari
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-480, https://doi.org/10.5194/hess-2018-480, 2018
Manuscript not accepted for further review
Stephen Blenkinsop, Hayley J. Fowler, Renaud Barbero, Steven C. Chan, Selma B. Guerreiro, Elizabeth Kendon, Geert Lenderink, Elizabeth Lewis, Xiao-Feng Li, Seth Westra, Lisa Alexander, Richard P. Allan, Peter Berg, Robert J. H. Dunn, Marie Ekström, Jason P. Evans, Greg Holland, Richard Jones, Erik Kjellström, Albert Klein-Tank, Dennis Lettenmaier, Vimal Mishra, Andreas F. Prein, Justin Sheffield, and Mari R. Tye
Adv. Sci. Res., 15, 117–126, https://doi.org/10.5194/asr-15-117-2018, https://doi.org/10.5194/asr-15-117-2018, 2018
Short summary
Short summary
Measurements of sub-daily (e.g. hourly) rainfall totals are essential if we are to understand short, intense bursts of rainfall that cause flash floods. We might expect the intensity of such events to increase in a warming climate but these are poorly realised in projections of future climate change. The INTENSE project is collating a global dataset of hourly rainfall measurements and linking with new developments in climate models to understand the characteristics and causes of these events.
Anne F. Van Loon, Rohini Kumar, and Vimal Mishra
Hydrol. Earth Syst. Sci., 21, 1947–1971, https://doi.org/10.5194/hess-21-1947-2017, https://doi.org/10.5194/hess-21-1947-2017, 2017
Short summary
Short summary
Summer 2015 was extremely dry in Europe, hampering groundwater supply to irrigation and drinking water. For effective management, the groundwater situation should be monitored in real time, but data are not available. We tested two methods to estimate groundwater in near-real time, based on satellite data and using the relationship between rainfall and historic groundwater levels. The second method gave a good spatially variable representation of the 2015 groundwater drought in Europe.
Reepal Shah, Atul Kumar Sahai, and Vimal Mishra
Hydrol. Earth Syst. Sci., 21, 707–720, https://doi.org/10.5194/hess-21-707-2017, https://doi.org/10.5194/hess-21-707-2017, 2017
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Vishal Thakur, Yannis Markonis, Rohini Kumar, Johanna Ruth Thomson, Mijael Rodrigo Vargas Godoy, Martin Hanel, and Oldrich Rakovec
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-341, https://doi.org/10.5194/hess-2024-341, 2024
Preprint under review for HESS
Short summary
Short summary
Understanding the changes in water movement in earth is crucial for everyone. To quantify this water movement there are several techniques. We examined how different methods of estimating evaporation impact predictions of various types of water movement across Europe. We found that, while these methods generally agree on whether changes are increasing or decreasing, they differ in magnitude. This means selecting the right evaporation method is crucial for accurate predictions of water movement.
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024, https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
Short summary
Nitrogen (N) and phosphorus (P) contamination of water bodies is a long-term issue due to the long history of N and P inputs to the environment and their persistence. Here, we introduce a long-term and high-resolution dataset of N and P inputs from wastewater (point sources) for Germany, combining data from different sources and conceptual understanding. We also account for uncertainties in modelling choices, thus facilitating robust long-term and large-scale water quality studies.
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2761, https://doi.org/10.5194/egusphere-2024-2761, 2024
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Groundwater is a crucial resource at risk by droughts. To understand drought effects on groundwater in Germany, we grouped 6626 wells into six regional and two nationwide head patterns. Weather explained half of the head variations with varied response times. Shallow groundwater responds fast and is more vulnerable to short droughts (few months). Dampened deep heads buffer short droughts but suffer from long droughts and recoveries. Two nationwide trend patterns were linked to human water use.
Masooma Batool, Fanny J. Sarrazin, and Rohini Kumar
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-294, https://doi.org/10.5194/essd-2024-294, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our paper presents a reconstruction and analysis of the gridded P surplus in European landscapes from 1850 to 2019 at a 5 arcmin resolution. By utilizing 48 different estimates, we account for uncertainties in major components of the P surplus. Our findings highlight substantial historical changes, with the total P surplus in EU-27 tripling over 170 years. Our dataset enables flexible aggregation at various spatial scales, providing critical insights for land and water management strategies.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, and Miroslav Trnka
EGUsphere, https://doi.org/10.5194/egusphere-2024-1434, https://doi.org/10.5194/egusphere-2024-1434, 2024
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, which was clustered into 775/630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
EGUsphere, https://doi.org/10.5194/egusphere-2024-1303, https://doi.org/10.5194/egusphere-2024-1303, 2024
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of the reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers and data users.
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024, https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023, https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Short summary
We analyzed the uncertainty of the water transit time distribution (TTD) arising from model input (interpolated tracer data) and structure (StorAge Selection, SAS, functions). We found that uncertainty was mainly associated with temporal interpolation, choice of SAS function, nonspatial interpolation, and low-flow conditions. It is important to characterize the specific uncertainty sources and their combined effects on TTD, as this has relevant implications for both water quantity and quality.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Sadaf Nasreen, Markéta Součková, Mijael Rodrigo Vargas Godoy, Ujjwal Singh, Yannis Markonis, Rohini Kumar, Oldrich Rakovec, and Martin Hanel
Earth Syst. Sci. Data, 14, 4035–4056, https://doi.org/10.5194/essd-14-4035-2022, https://doi.org/10.5194/essd-14-4035-2022, 2022
Short summary
Short summary
This article presents a 500-year reconstructed annual runoff dataset for several European catchments. Several data-driven and hydrological models were used to derive the runoff series using reconstructed precipitation and temperature and a set of proxy data. The simulated runoff was validated using independent observed runoff data and documentary evidence. The validation revealed a good fit between the observed and reconstructed series for 14 catchments, which are available for further analysis.
Pia Ebeling, Rohini Kumar, Stefanie R. Lutz, Tam Nguyen, Fanny Sarrazin, Michael Weber, Olaf Büttner, Sabine Attinger, and Andreas Musolff
Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022, https://doi.org/10.5194/essd-14-3715-2022, 2022
Short summary
Short summary
Environmental data are critical for understanding and managing ecosystems, including the mitigation of water quality degradation. To increase data availability, we present the first large-sample water quality data set (QUADICA) of riverine macronutrient concentrations combined with water quantity, meteorological, and nutrient forcing data as well as catchment attributes. QUADICA covers 1386 German catchments to facilitate large-sample data-driven and modeling water quality assessments.
Anukesh Ambika and Vimal Mishra
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-81, https://doi.org/10.5194/essd-2022-81, 2022
Preprint withdrawn
Short summary
Short summary
Understanding the impacts of drought on agriculture is hampered due to the lack of high-resolution data in India. Moreover, most of the existing drought monitoring system do not account for the influence of irrigation on drought mitigation. To fill these crucial gaps in drought assessment capability, we develop a high-resolution (250 m) dataset of land surface temperature (LST) and enhanced vegetation index (EVI) for India for 2000–2017 period.
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022, https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables
environmental modelers to efficiently use extensive datasets for model setups.
It flexibly ingests the datasets using user-defined data–parameter relationships
and rescales parameter fields to given model resolutions. Modern
land surface models especially benefit from MPR through increased transparency and
flexibility in modeling decisions. Thus, MPR empowers more sound and robust
simulations of the Earth system.
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021, https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Short summary
Increased nitrate concentrations in surface waters can compromise river ecosystem health. As riverine nitrate uptake is hard to measure, we explore how low-frequency nitrate concentration and discharge observations (that are widely available) can help to identify (in)efficient uptake in river networks. We find that channel geometry and water velocity rather than the biological uptake capacity dominate the nitrate-discharge pattern at the outlet. The former can be used to predict uptake.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Miao Jing, Rohini Kumar, Falk Heße, Stephan Thober, Oldrich Rakovec, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020, https://doi.org/10.5194/hess-24-1511-2020, 2020
Short summary
Short summary
This study investigates the response of regional groundwater system to the climate change under three global warming levels (1.5, 2, and 3 °C) in a central German basin. A comprehensive uncertainty analysis is also presented. This study indicates that the variability of responses increases with the amount of global warming, which might affect the cost of managing the groundwater system.
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Short summary
This study shows quantitative and temporal offsets between nitrogen input and riverine output, using time series of three nested catchments in central Germany. The riverine concentrations show lagged reactions to the input, but at the same time exhibit strong inter-annual changes in the relationship between riverine discharge and concentration. The study found a strong retention of nitrogen that is dominantly assigned to a hydrological N legacy, which will affect future stream concentrations.
Stephan Thober, Matthias Cuntz, Matthias Kelbling, Rohini Kumar, Juliane Mai, and Luis Samaniego
Geosci. Model Dev., 12, 2501–2521, https://doi.org/10.5194/gmd-12-2501-2019, https://doi.org/10.5194/gmd-12-2501-2019, 2019
Short summary
Short summary
We present a model that aggregates simulated runoff along a river
(i.e. a routing model). The unique feature of the model is that it
can be run at multiple resolutions without any modifications to the
input data. The model internally (dis-)aggregates all input data to
the resolution given by the user. The model performance does not
depend on the chosen resolution. This allows efficient model
calibration at coarse resolution and subsequent model application at
fine resolution.
Naoki Mizukami, Oldrich Rakovec, Andrew J. Newman, Martyn P. Clark, Andrew W. Wood, Hoshin V. Gupta, and Rohini Kumar
Hydrol. Earth Syst. Sci., 23, 2601–2614, https://doi.org/10.5194/hess-23-2601-2019, https://doi.org/10.5194/hess-23-2601-2019, 2019
Short summary
Short summary
We find that Nash–Sutcliffe (NSE)-based model calibrations result in poor reproduction of high-flow events, such as the annual peak flows that are used for flood frequency estimation. The use of Kling–Gupta efficiency (KGE) results in annual peak flow estimates that are better than from NSE, with only a slight degradation in performance with respect to other related metrics.
Miao Jing, Falk Heße, Rohini Kumar, Olaf Kolditz, Thomas Kalbacher, and Sabine Attinger
Hydrol. Earth Syst. Sci., 23, 171–190, https://doi.org/10.5194/hess-23-171-2019, https://doi.org/10.5194/hess-23-171-2019, 2019
Short summary
Short summary
We evaluated the uncertainty propagation from the inputs (forcings) and parameters to the predictions of groundwater travel time distributions (TTDs) using a fully distributed numerical model (mHM-OGS) and the StorAge Selection (SAS) function. Through detailed numerical and analytical investigations, we emphasize the key role of recharge estimation in the reliable predictions of TTDs and the good interpretability of the SAS function.
Vimal Mishra, Saran Aaadhar, Harsh Shah, Rahul Kumar, Dushmanta Ranjan Pattanaik, and Amar Deep Tiwari
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-480, https://doi.org/10.5194/hess-2018-480, 2018
Manuscript not accepted for further review
Stephen Blenkinsop, Hayley J. Fowler, Renaud Barbero, Steven C. Chan, Selma B. Guerreiro, Elizabeth Kendon, Geert Lenderink, Elizabeth Lewis, Xiao-Feng Li, Seth Westra, Lisa Alexander, Richard P. Allan, Peter Berg, Robert J. H. Dunn, Marie Ekström, Jason P. Evans, Greg Holland, Richard Jones, Erik Kjellström, Albert Klein-Tank, Dennis Lettenmaier, Vimal Mishra, Andreas F. Prein, Justin Sheffield, and Mari R. Tye
Adv. Sci. Res., 15, 117–126, https://doi.org/10.5194/asr-15-117-2018, https://doi.org/10.5194/asr-15-117-2018, 2018
Short summary
Short summary
Measurements of sub-daily (e.g. hourly) rainfall totals are essential if we are to understand short, intense bursts of rainfall that cause flash floods. We might expect the intensity of such events to increase in a warming climate but these are poorly realised in projections of future climate change. The INTENSE project is collating a global dataset of hourly rainfall measurements and linking with new developments in climate models to understand the characteristics and causes of these events.
Miao Jing, Falk Heße, Rohini Kumar, Wenqing Wang, Thomas Fischer, Marc Walther, Matthias Zink, Alraune Zech, Luis Samaniego, Olaf Kolditz, and Sabine Attinger
Geosci. Model Dev., 11, 1989–2007, https://doi.org/10.5194/gmd-11-1989-2018, https://doi.org/10.5194/gmd-11-1989-2018, 2018
Andreas Marx, Rohini Kumar, Stephan Thober, Oldrich Rakovec, Niko Wanders, Matthias Zink, Eric F. Wood, Ming Pan, Justin Sheffield, and Luis Samaniego
Hydrol. Earth Syst. Sci., 22, 1017–1032, https://doi.org/10.5194/hess-22-1017-2018, https://doi.org/10.5194/hess-22-1017-2018, 2018
Short summary
Short summary
Hydrological low flows are affected under different levels of future global warming (i.e. 1.5, 2, and 3 K). The multi-model ensemble results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean, while they increase in the Alpine and Northern regions. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Adaptation should make use of change and uncertainty information.
Luis Samaniego, Rohini Kumar, Stephan Thober, Oldrich Rakovec, Matthias Zink, Niko Wanders, Stephanie Eisner, Hannes Müller Schmied, Edwin H. Sutanudjaja, Kirsten Warrach-Sagi, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 4323–4346, https://doi.org/10.5194/hess-21-4323-2017, https://doi.org/10.5194/hess-21-4323-2017, 2017
Short summary
Short summary
We inspect the state-of-the-art of several land surface (LSMs) and hydrologic models (HMs) and show that most do not have consistent and realistic parameter fields for land surface geophysical properties. We propose to use the multiscale parameter regionalization (MPR) technique to solve, at least partly, the scaling problem in LSMs/HMs. A general model protocol is presented to describe how MPR can be applied to a specific model.
Gabriele Baroni, Matthias Zink, Rohini Kumar, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 2301–2320, https://doi.org/10.5194/hess-21-2301-2017, https://doi.org/10.5194/hess-21-2301-2017, 2017
Short summary
Short summary
Three methods are used to characterize the uncertainty in soil properties. The effect on simulated states and fluxes is quantified using a distributed hydrological model. Different impacts are identified as function of the perturbation method, of the model outputs and of the spatio-temporal resolution. The study underlines the importance of a proper characterization of the uncertainty in soil properties for a correct assessment of their role and further improvements in the model application.
Anne F. Van Loon, Rohini Kumar, and Vimal Mishra
Hydrol. Earth Syst. Sci., 21, 1947–1971, https://doi.org/10.5194/hess-21-1947-2017, https://doi.org/10.5194/hess-21-1947-2017, 2017
Short summary
Short summary
Summer 2015 was extremely dry in Europe, hampering groundwater supply to irrigation and drinking water. For effective management, the groundwater situation should be monitored in real time, but data are not available. We tested two methods to estimate groundwater in near-real time, based on satellite data and using the relationship between rainfall and historic groundwater levels. The second method gave a good spatially variable representation of the 2015 groundwater drought in Europe.
Matthias Zink, Rohini Kumar, Matthias Cuntz, and Luis Samaniego
Hydrol. Earth Syst. Sci., 21, 1769–1790, https://doi.org/10.5194/hess-21-1769-2017, https://doi.org/10.5194/hess-21-1769-2017, 2017
Short summary
Short summary
We discuss the estimation of a long-term, high-resolution, continuous and consistent dataset of hydro-meteorological variables for Germany. Here we describe the derivation of national-scale parameter sets and analyze the uncertainty of the estimated hydrologic variables (focusing on the parametric uncertainty). Our study highlights the role of accounting for the parametric uncertainty in model-derived hydrological datasets.
Reepal Shah, Atul Kumar Sahai, and Vimal Mishra
Hydrol. Earth Syst. Sci., 21, 707–720, https://doi.org/10.5194/hess-21-707-2017, https://doi.org/10.5194/hess-21-707-2017, 2017
Falk Heße, Matthias Zink, Rohini Kumar, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 549–570, https://doi.org/10.5194/hess-21-549-2017, https://doi.org/10.5194/hess-21-549-2017, 2017
Short summary
Short summary
Travel-time distributions are a comprehensive tool for the characterization of hydrological systems. In our study, we used data that were simulated by virtue of a well-established hydrological model. This gave us a very large yet realistic dataset, both in time and space, from which we could infer the relative impact of different factors on travel-time behavior. These were, in particular, meteorological (precipitation), land surface (land cover, leaf-area index) and subsurface (soil) properties.
Remko C. Nijzink, Luis Samaniego, Juliane Mai, Rohini Kumar, Stephan Thober, Matthias Zink, David Schäfer, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 1151–1176, https://doi.org/10.5194/hess-20-1151-2016, https://doi.org/10.5194/hess-20-1151-2016, 2016
Short summary
Short summary
The heterogeneity of landscapes in river basins strongly affects the hydrological response. In this study, the distributed mesoscale Hydrologic Model (mHM) was equipped with additional processes identified by landscapes within one modelling cell. Seven study catchments across Europe were selected to test the value of this additional sub-grid heterogeneity. In addition, the models were constrained based on expert knowledge. Generally, the modifications improved the representation of low flows.
Rohini Kumar, Jude L. Musuuza, Anne F. Van Loon, Adriaan J. Teuling, Roland Barthel, Jurriaan Ten Broek, Juliane Mai, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, https://doi.org/10.5194/hess-20-1117-2016, 2016
Short summary
Short summary
In a maiden attempt, we performed a multiscale evaluation of the widely used SPI to characterize local- and regional-scale groundwater (GW) droughts using observations at 2040 groundwater wells in Germany and the Netherlands. From this data-based exploratory analysis, we provide sufficient evidence regarding the inability of the SPI to characterize GW drought events, and stress the need for more GW observations and accounting for regional hydrogeological characteristics in GW drought monitoring.
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
H. V. Gupta, C. Perrin, G. Blöschl, A. Montanari, R. Kumar, M. Clark, and V. Andréassian
Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, https://doi.org/10.5194/hess-18-463-2014, 2014
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
Quantifying Spatiotemporal and Elevational Precipitation Gauge Network Uncertainty in the Canadian Rockies
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Historical rainfall data in northern Italy predict larger meteorological drought hazard than climate projections
Daytime-only mean data enhance understanding of land–atmosphere coupling
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II
Choosing between post-processing precipitation forecasts or chaining several uncertainty quantification tools in hydrological forecasting systems
Performance of the Global Forecast System's medium-range precipitation forecasts in the Niger river basin using multiple satellite-based products
Uncertainties and their interaction in flood hazard assessment with climate change
Bias-correcting input variables enhances forecasting of reference crop evapotranspiration
Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies
At which timescale does the complementary principle perform best in evaporation estimation?
Uncertainty in nonstationary frequency analysis of South Korea's daily rainfall peak over threshold excesses associated with covariates
Assessment of extreme flows and uncertainty under climate change: disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability
The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden
A new uncertainty estimation approach with multiple datasets and implementation for various precipitation products
A crash-testing framework for predictive uncertainty assessment when forecasting high flows in an extrapolation context
Required sampling density of ground-based soil moisture and brightness temperature observations for calibration and validation of L-band satellite observations based on a virtual reality
Response of global evaporation to major climate modes in historical and future Coupled Model Intercomparison Project Phase 5 simulations
Cross-validating precipitation datasets in the Indus River basin
Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics
Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network
Influence of three phases of El Niño–Southern Oscillation on daily precipitation regimes in China
Dual-polarized quantitative precipitation estimation as a function of range
Relative effects of statistical preprocessing and postprocessing on a regional hydrological ensemble prediction system
Exploratory studies into seasonal flow forecasting potential for large lakes
Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China
Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate
Providing a non-deterministic representation of spatial variability of precipitation in the Everest region
Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada
Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones
Characteristics of rainfall events in regional climate model simulations for the Czech Republic
The rainfall erosivity factor in the Czech Republic and its uncertainty
Hierarchy of climate and hydrological uncertainties in transient low-flow projections
Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game
Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India
Comparing CFSR and conventional weather data for discharge and soil loss modelling with SWAT in small catchments in the Ethiopian Highlands
Uncertainties in calculating precipitation climatology in East Asia
Measurement and interpolation uncertainties in rainfall maps from cellular communication networks
Characterization of precipitation product errors across the United States using multiplicative triple collocation
Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework
Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties
Multi-objective parameter optimization of common land model using adaptive surrogate modeling
Testing gridded land precipitation data and precipitation and runoff reanalyses (1982–2010) between 45° S and 45° N with normalised difference vegetation index data
Evaluation of high-resolution precipitation analyses using a dense station network
Prediction of extreme floods based on CMIP5 climate models: a case study in the Beijiang River basin, South China
Estimating the water needed to end the drought or reduce the drought severity in the Carpathian region
Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn River: a comparison
Comparison of drought indicators derived from multiple data sets over Africa
André Bertoncini and John W. Pomeroy
EGUsphere, https://doi.org/10.5194/egusphere-2024-288, https://doi.org/10.5194/egusphere-2024-288, 2024
Short summary
Short summary
Rainfall and snowfall spatial estimation for hydrological purposes is often compromised in cold mountain regions due to inaccessibility, creating sparse gauge networks with few high-elevation gauges. This study developed a framework to quantify gauge network uncertainty, considering elevation to aid in future gauge placement in mountain regions. Results show that gauge placement above 2000 m was the most cost-effective measure to decrease gauge network uncertainty in the Canadian Rockies.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Rui Guo and Alberto Montanari
Hydrol. Earth Syst. Sci., 27, 2847–2863, https://doi.org/10.5194/hess-27-2847-2023, https://doi.org/10.5194/hess-27-2847-2023, 2023
Short summary
Short summary
The present study refers to the region of Bologna, where the availability of a 209-year-long daily rainfall series allows us to make a unique assessment of global climate models' reliability and their predicted changes in rainfall and multiyear droughts. Our results suggest carefully considering the impact of uncertainty when designing climate change adaptation policies for droughts. Rigorous use and comprehensive interpretation of the available information are needed to avoid mismanagement.
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023, https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Short summary
Land–atmosphere (L–A) interactions typically focus on daytime processes connecting the land state with the overlying atmospheric boundary layer. However, much prior L–A work used monthly or daily means due to the lack of daytime-only data products. Here we show that monthly smoothing can significantly obscure the L–A coupling signal, and including nighttime information can mute or mask the daytime processes of interest. We propose diagnosing L–A coupling within models or archiving subdaily data.
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022, https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Short summary
Precipitation forecasting has potential uncertainty due to data and model uncertainties. Here, an integrated predictive uncertainty modeling framework is proposed by jointly considering data and model uncertainties through an uncertainty propagation theorem. The results indicate an effective predictive uncertainty estimation for precipitation forecasting, indicating the great potential for uncertainty quantification of numerous predictive applications.
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022, https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Short summary
Increasing temperature will impact evaporation and water resource management. Hydrological models are fed with an estimation of the evaporative demand of the atmosphere, called potential evapotranspiration (PE). The objectives of this study were (1) to compute the future PE anomaly over France and (2) to determine the impact of the choice of the method to estimate PE. Our results show that all methods present similar future trends. No method really stands out from the others.
Jing Xu, François Anctil, and Marie-Amélie Boucher
Hydrol. Earth Syst. Sci., 26, 1001–1017, https://doi.org/10.5194/hess-26-1001-2022, https://doi.org/10.5194/hess-26-1001-2022, 2022
Short summary
Short summary
The performance of the non-dominated sorting genetic algorithm II (NSGA-II) is compared with a conventional post-processing method of affine kernel dressing. NSGA-II showed its superiority in improving the forecast skill and communicating trade-offs with end-users. It allows the enhancement of the forecast quality since it allows for setting multiple specific objectives from scratch. This flexibility should be considered as a reason to implement hydrologic ensemble prediction systems (H-EPSs).
Emixi Sthefany Valdez, François Anctil, and Maria-Helena Ramos
Hydrol. Earth Syst. Sci., 26, 197–220, https://doi.org/10.5194/hess-26-197-2022, https://doi.org/10.5194/hess-26-197-2022, 2022
Short summary
Short summary
We investigated how a precipitation post-processor interacts with other tools for uncertainty quantification in a hydrometeorological forecasting chain. Four systems were implemented to generate 7 d ensemble streamflow forecasts, which vary from partial to total uncertainty estimation. Overall analysis showed that post-processing and initial condition estimation ensure the most skill improvements, in some cases even better than a system that considers all sources of uncertainty.
Haowen Yue, Mekonnen Gebremichael, and Vahid Nourani
Hydrol. Earth Syst. Sci., 26, 167–181, https://doi.org/10.5194/hess-26-167-2022, https://doi.org/10.5194/hess-26-167-2022, 2022
Short summary
Short summary
The development of high-resolution global precipitation forecasts and the lack of reliable precipitation forecasts over Africa motivates this work to evaluate the precipitation forecasts from the Global Forecast System (GFS) over the Niger river basin in Africa. The GFS forecasts, at a 15 d accumulation timescale, have an acceptable performance; however, the forecasts are highly biased. It is recommended to apply bias correction to GFS forecasts before their application.
Hadush Meresa, Conor Murphy, Rowan Fealy, and Saeed Golian
Hydrol. Earth Syst. Sci., 25, 5237–5257, https://doi.org/10.5194/hess-25-5237-2021, https://doi.org/10.5194/hess-25-5237-2021, 2021
Short summary
Short summary
The assessment of future impacts of climate change is associated with a cascade of uncertainty linked to the modelling chain employed in assessing local-scale changes. Understanding and quantifying this cascade is essential for developing effective adaptation actions. We find that not only do the contributions of different sources of uncertainty vary by catchment, but that the dominant sources of uncertainty can be very different on a catchment-by-catchment basis.
Qichun Yang, Quan J. Wang, Kirsti Hakala, and Yating Tang
Hydrol. Earth Syst. Sci., 25, 4773–4788, https://doi.org/10.5194/hess-25-4773-2021, https://doi.org/10.5194/hess-25-4773-2021, 2021
Short summary
Short summary
Forecasts of water losses from land surface to the air are highly valuable for water resource management and planning. In this study, we aim to fill a critical knowledge gap in the forecasting of evaporative water loss. Model experiments across Australia clearly suggest the necessity of correcting errors in input variables for more reliable water loss forecasting. We anticipate that the strategy developed in our work will benefit future water loss forecasting and lead to more skillful forecasts.
Mostafa Tarek, François Brissette, and Richard Arsenault
Hydrol. Earth Syst. Sci., 25, 3331–3350, https://doi.org/10.5194/hess-25-3331-2021, https://doi.org/10.5194/hess-25-3331-2021, 2021
Short summary
Short summary
It is not known how much uncertainty the choice of a reference data set may bring to impact studies. This study compares precipitation and temperature data sets to evaluate the uncertainty contribution to the results of climate change studies. Results show that all data sets provide good streamflow simulations over the reference period. The reference data sets also provided uncertainty that was equal to or larger than that related to general circulation models over most of the catchments.
Liming Wang, Songjun Han, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 25, 375–386, https://doi.org/10.5194/hess-25-375-2021, https://doi.org/10.5194/hess-25-375-2021, 2021
Short summary
Short summary
It remains unclear at which timescale the complementary principle performs best in estimating evaporation. In this study, evaporation estimation was assessed over 88 eddy covariance monitoring sites at multiple timescales. The results indicate that the generalized complementary functions perform best in estimating evaporation at the monthly scale. This study provides a reference for choosing a suitable time step for evaporation estimations in relevant studies.
Okjeong Lee, Jeonghyeon Choi, Jeongeun Won, and Sangdan Kim
Hydrol. Earth Syst. Sci., 24, 5077–5093, https://doi.org/10.5194/hess-24-5077-2020, https://doi.org/10.5194/hess-24-5077-2020, 2020
Short summary
Short summary
The uncertainty of the model interpreting rainfall extremes with temperature is analyzed. The performance of the model focuses on the reliability of the output. It has been found that the selection of temperatures suitable for extreme levels plays an important role in improving model reliability. Based on this, a methodology is proposed to quantify the degree of uncertainty inherent in the change in rainfall extremes due to global warming.
Chao Gao, Martijn J. Booij, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 24, 3251–3269, https://doi.org/10.5194/hess-24-3251-2020, https://doi.org/10.5194/hess-24-3251-2020, 2020
Short summary
Short summary
This paper studies the impact of climate change on high and low flows and quantifies the contribution of uncertainty sources from representative concentration pathways (RCPs), global climate models (GCMs) and internal climate variability in extreme flows. Internal climate variability was reflected in a stochastic rainfall model. The results show the importance of internal climate variability and GCM uncertainty in high flows and GCM and RCP uncertainty in low flows especially for the far future.
Marc Schleiss, Jonas Olsson, Peter Berg, Tero Niemi, Teemu Kokkonen, Søren Thorndahl, Rasmus Nielsen, Jesper Ellerbæk Nielsen, Denica Bozhinova, and Seppo Pulkkinen
Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020, https://doi.org/10.5194/hess-24-3157-2020, 2020
Short summary
Short summary
A multinational assessment of radar's ability to capture heavy rain events is conducted. In total, six different radar products in Denmark, the Netherlands, Finland and Sweden were considered. Results show a fair agreement, with radar underestimating by 17 %-44 % on average compared with gauges. Despite being adjusted for bias, five of six radar products still exhibited strong conditional biases with intensities of 1–2% per mm/h. Median peak intensity bias was significantly higher, reaching 44 %–67%.
Xudong Zhou, Jan Polcher, Tao Yang, and Ching-Sheng Huang
Hydrol. Earth Syst. Sci., 24, 2061–2081, https://doi.org/10.5194/hess-24-2061-2020, https://doi.org/10.5194/hess-24-2061-2020, 2020
Short summary
Short summary
This article proposes a new estimation approach for assessing the uncertainty with multiple datasets by fully considering all variations in temporal and spatial dimensions. Comparisons demonstrate that classical metrics may underestimate the uncertainties among datasets due to an averaging process in their algorithms. This new approach is particularly suitable for overall assessment of multiple climatic products, but can be easily applied to other spatiotemporal products in related fields.
Lionel Berthet, François Bourgin, Charles Perrin, Julie Viatgé, Renaud Marty, and Olivier Piotte
Hydrol. Earth Syst. Sci., 24, 2017–2041, https://doi.org/10.5194/hess-24-2017-2020, https://doi.org/10.5194/hess-24-2017-2020, 2020
Short summary
Short summary
An increasing number of flood forecasting services assess and communicate the uncertainty associated with their forecasts. We present a crash-testing framework that evaluates the quality of hydrological forecasts in an extrapolation context. Overall, the results highlight the challenge of uncertainty quantification when forecasting high flows. They show a significant drop in reliability when forecasting high flows and considerable variability among catchments and across lead times.
Shaoning Lv, Bernd Schalge, Pablo Saavedra Garfias, and Clemens Simmer
Hydrol. Earth Syst. Sci., 24, 1957–1973, https://doi.org/10.5194/hess-24-1957-2020, https://doi.org/10.5194/hess-24-1957-2020, 2020
Short summary
Short summary
Passive remote sensing of soil moisture has good potential to improve weather forecasting via data assimilation in theory. We use the virtual reality data set (VR01) to infer the impact of sampling density on soil moisture ground cal/val activity. It shows how the sampling error is growing with an increasing sampling distance for a SMOS–SMAP scale footprint in about 40 km, 9 km, and 3 km. The conclusion will help in understanding the passive remote sensing soil moisture products.
Thanh Le and Deg-Hyo Bae
Hydrol. Earth Syst. Sci., 24, 1131–1143, https://doi.org/10.5194/hess-24-1131-2020, https://doi.org/10.5194/hess-24-1131-2020, 2020
Short summary
Short summary
Here we investigate the response of global evaporation to main climate modes, including the Indian Ocean Dipole (IOD), the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). Our results indicate that ENSO is an important driver of evaporation for many regions, while the impacts of NAO and IOD are substantial. This study allows us to obtain insight about the predictability of evaporation and, hence, may help to improve the early-warning systems of climate extremes.
Jean-Philippe Baudouin, Michael Herzog, and Cameron A. Petrie
Hydrol. Earth Syst. Sci., 24, 427–450, https://doi.org/10.5194/hess-24-427-2020, https://doi.org/10.5194/hess-24-427-2020, 2020
Short summary
Short summary
The amount of precipitation falling in the Indus River basin remains uncertain while its variability impacts 100 million inhabitants. A comparison of datasets from diverse sources (ground remote observations, model outputs) reduces this uncertainty significantly. Grounded observations offer the most reliable long-term variability but with important underestimation in winter over the mountains. By contrast, recent model outputs offer better estimations of total amount and short-term variability.
Kamal Ahmed, Dhanapala A. Sachindra, Shamsuddin Shahid, Mehmet C. Demirel, and Eun-Sung Chung
Hydrol. Earth Syst. Sci., 23, 4803–4824, https://doi.org/10.5194/hess-23-4803-2019, https://doi.org/10.5194/hess-23-4803-2019, 2019
Short summary
Short summary
This study evaluated the performance of 36 CMIP5 GCMs in simulating seasonal precipitation and maximum and minimum temperature over Pakistan using spatial metrics (SPAtial EFficiency, fractions skill score, Goodman–Kruskal's lambda, Cramer's V, Mapcurves, and Kling–Gupta efficiency) for the period 1961–2005. NorESM1-M, MIROC5, BCC-CSM1-1, and ACCESS1-3 were identified as the most suitable GCMs for simulating all three climate variables over Pakistan.
Sungmin O and Ulrich Foelsche
Hydrol. Earth Syst. Sci., 23, 2863–2875, https://doi.org/10.5194/hess-23-2863-2019, https://doi.org/10.5194/hess-23-2863-2019, 2019
Short summary
Short summary
We analyze heavy local rainfall to address questions regarding the spatial uncertainty due to the approximation of areal rainfall using point measurements. Ten years of rainfall data from a dense network of 150 rain gauges in southeastern Austria are employed, which permits robust examination of small-scale rainfall at various horizontal resolutions. Quantitative uncertainty information from the study can guide both data users and producers to estimate uncertainty in their own rainfall dataset.
Aifeng Lv, Bo Qu, Shaofeng Jia, and Wenbin Zhu
Hydrol. Earth Syst. Sci., 23, 883–896, https://doi.org/10.5194/hess-23-883-2019, https://doi.org/10.5194/hess-23-883-2019, 2019
Short summary
Short summary
ENSO-related changes in daily precipitation regimes are currently ignored by the scientific community. We analyzed the anomalies of daily precipitation and hydrological extremes caused by different phases of ENSO events, as well as the possible driving mechanisms, to reveal the influence of ENSO on China's daily precipitation regimes. Our results provide a valuable tool for daily precipitation prediction and enable the prioritization of adaptation efforts ahead of extreme events in China.
Micheal J. Simpson and Neil I. Fox
Hydrol. Earth Syst. Sci., 22, 3375–3389, https://doi.org/10.5194/hess-22-3375-2018, https://doi.org/10.5194/hess-22-3375-2018, 2018
Short summary
Short summary
Many researchers have expressed that one of the main difficulties in modeling watershed hydrology is that of obtaining continuous, widespread weather input data, especially precipitation. The overarching objective of this study was to provide a comprehensive study of three weather radars as a function of range. We found that radar-estimated precipitation was best at ranges between 100 and 150 km from the radar, with different radar parameters being superior at varying distances from the radar.
Sanjib Sharma, Ridwan Siddique, Seann Reed, Peter Ahnert, Pablo Mendoza, and Alfonso Mejia
Hydrol. Earth Syst. Sci., 22, 1831–1849, https://doi.org/10.5194/hess-22-1831-2018, https://doi.org/10.5194/hess-22-1831-2018, 2018
Short summary
Short summary
We investigate the relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at short- to medium-range forecast lead times (day 1–7). For this purpose, we develop and implement a regional hydrologic ensemble prediction system (RHEPS). Overall analysis shows that implementing both preprocessing and postprocessing ensures the most skill improvements, but postprocessing alone can often be a competitive alternative.
Kevin Sene, Wlodek Tych, and Keith Beven
Hydrol. Earth Syst. Sci., 22, 127–141, https://doi.org/10.5194/hess-22-127-2018, https://doi.org/10.5194/hess-22-127-2018, 2018
Short summary
Short summary
The theme of the paper is exploration of the potential for seasonal flow forecasting for large lakes using a range of stochastic transfer function techniques with additional insights gained from simple analytical approximations. The methods were evaluated using records for two of the largest lakes in the world. The paper concludes with a discussion of the relevance of the results to operational flow forecasting systems for other large lakes.
Fan Yang, Hui Lu, Kun Yang, Jie He, Wei Wang, Jonathon S. Wright, Chengwei Li, Menglei Han, and Yishan Li
Hydrol. Earth Syst. Sci., 21, 5805–5821, https://doi.org/10.5194/hess-21-5805-2017, https://doi.org/10.5194/hess-21-5805-2017, 2017
Short summary
Short summary
In this paper, we show that CLDAS has the highest spatial and temporal resolution, and it performs best in terms of precipitation, while it overestimates the shortwave radiation. CMFD also has high resolution and its shortwave radiation data match well with the station data; its annual-mean precipitation is reliable but its monthly precipitation needs improvements. Both GLDAS and CN05.1 over mainland China need to be improved. The results can benefit researchers for forcing data selection.
Rachel Bazile, Marie-Amélie Boucher, Luc Perreault, and Robert Leconte
Hydrol. Earth Syst. Sci., 21, 5747–5762, https://doi.org/10.5194/hess-21-5747-2017, https://doi.org/10.5194/hess-21-5747-2017, 2017
Short summary
Short summary
Meteorological forecasting agencies constantly work on pushing the limit of predictability farther in time. However, some end users need proof that climate model outputs are ready to be implemented operationally. We show that bias correction is crucial for the use of ECMWF System4 forecasts for the studied area and there is a potential for the use of 1-month-ahead forecasts. Beyond this, forecast performance is equivalent to using past climatology series as inputs to the hydrological model.
Judith Eeckman, Pierre Chevallier, Aaron Boone, Luc Neppel, Anneke De Rouw, Francois Delclaux, and Devesh Koirala
Hydrol. Earth Syst. Sci., 21, 4879–4893, https://doi.org/10.5194/hess-21-4879-2017, https://doi.org/10.5194/hess-21-4879-2017, 2017
Short summary
Short summary
The central part of the Himalayan Range presents tremendous heterogeneity in terms of topography and climatology, but the representation of hydro-climatic processes for Himalayan catchments is limited due to a lack of knowledge in such poorly instrumented environments. The proposed approach is to characterize the effect of altitude on precipitation by considering ensembles of acceptable altitudinal factors. Ensembles of acceptable values for the components of the water cycle are then provided.
Jefferson S. Wong, Saman Razavi, Barrie R. Bonsal, Howard S. Wheater, and Zilefac E. Asong
Hydrol. Earth Syst. Sci., 21, 2163–2185, https://doi.org/10.5194/hess-21-2163-2017, https://doi.org/10.5194/hess-21-2163-2017, 2017
Short summary
Short summary
This study was conducted to quantify the spatial and temporal variability of the errors associated with various gridded precipitation products in Canada. Overall, WFDEI [GPCC] and CaPA performed best with respect to different performance measures, followed by ANUSPLIN and WEDEI [CRU]. Princeton and NARR demonstrated the lowest quality. Comparing the climate model-simulated products, PCIC ensembles generally performed better than NA-CORDEX ensembles in terms of reliability in four seasons.
Danlu Guo, Seth Westra, and Holger R. Maier
Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017, https://doi.org/10.5194/hess-21-2107-2017, 2017
Short summary
Short summary
This study assessed the impact of baseline climate conditions on the sensitivity of potential evapotranspiration (PET) to a large range of plausible changes in temperature, relative humidity, solar radiation and wind speed at 30 Australian locations. Around 2-fold greater PET changes were observed at cool and humid locations compared to others, indicating potential for elevated water loss in the future. These impacts can be useful to inform the selection of PET models under a changing climate.
Vojtěch Svoboda, Martin Hanel, Petr Máca, and Jan Kyselý
Hydrol. Earth Syst. Sci., 21, 963–980, https://doi.org/10.5194/hess-21-963-2017, https://doi.org/10.5194/hess-21-963-2017, 2017
Short summary
Short summary
The study presents validation of precipitation events as simulated by an ensemble of regional climate models for the Czech Republic. While the number of events per season, seasonal total precipitation due to heavy events and the distribution of rainfall depths are simulated relatively well, event maximum precipitation and event intensity are strongly underestimated. This underestimation cannot be explained by scale mismatch between point observations and area average (climate model simulations).
Martin Hanel, Petr Máca, Petr Bašta, Radek Vlnas, and Pavel Pech
Hydrol. Earth Syst. Sci., 20, 4307–4322, https://doi.org/10.5194/hess-20-4307-2016, https://doi.org/10.5194/hess-20-4307-2016, 2016
Short summary
Short summary
The paper is focused on assessment of the contribution of various sources of uncertainty to the estimated rainfall erosivity factor. It is shown that the rainfall erosivity factor can be estimated with reasonable precision even from records shorter than recommended, provided good spatial coverage and reasonable explanatory variables are available. The research was done as an update of the R factor estimates for the Czech Republic, which were later used for climate change assessment.
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Louise Arnal, Maria-Helena Ramos, Erin Coughlan de Perez, Hannah Louise Cloke, Elisabeth Stephens, Fredrik Wetterhall, Schalk Jan van Andel, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016, https://doi.org/10.5194/hess-20-3109-2016, 2016
Short summary
Short summary
Forecasts are produced as probabilities of occurrence of specific events, which is both an added value and a challenge for users. This paper presents a game on flood protection, "How much are you prepared to pay for a forecast?", which investigated how users perceive the value of forecasts and are willing to pay for them when making decisions. It shows that users are mainly influenced by the perceived quality of the forecasts, their need for the information and their degree of risk tolerance.
K. Sunilkumar, T. Narayana Rao, and S. Satheeshkumar
Hydrol. Earth Syst. Sci., 20, 1719–1735, https://doi.org/10.5194/hess-20-1719-2016, https://doi.org/10.5194/hess-20-1719-2016, 2016
Vincent Roth and Tatenda Lemann
Hydrol. Earth Syst. Sci., 20, 921–934, https://doi.org/10.5194/hess-20-921-2016, https://doi.org/10.5194/hess-20-921-2016, 2016
Short summary
Short summary
The Soil and Water Assessment Tool (SWAT) suggests using the CFSR global rainfall data for modelling discharge and soil erosion in data-scarce parts of the world. These data are freely available and ready to use for SWAT modelling. However, simulations with the CFSR data in the Ethiopian Highlands were unable to represent the specific regional climates and showed high discrepancies. This article compares SWAT simulations with conventional rainfall data and with CFSR rainfall data.
J. Kim and S. K. Park
Hydrol. Earth Syst. Sci., 20, 651–658, https://doi.org/10.5194/hess-20-651-2016, https://doi.org/10.5194/hess-20-651-2016, 2016
Short summary
Short summary
This study examined the uncertainty in climatological precipitation in East Asia, calculated from five gridded analysis data sets based on in situ rain gauge observations from 1980 to 2007. It is found that the regions of large uncertainties are typically lightly populated and are characterized by severe terrain and/or very high elevations. Thus, care must be taken in using long-term trends calculated from gridded precipitation analysis data for climate studies over such regions in East Asia.
M. F. Rios Gaona, A. Overeem, H. Leijnse, and R. Uijlenhoet
Hydrol. Earth Syst. Sci., 19, 3571–3584, https://doi.org/10.5194/hess-19-3571-2015, https://doi.org/10.5194/hess-19-3571-2015, 2015
Short summary
Short summary
Commercial cellular networks are built for telecommunication purposes. These kinds of networks have lately been used to obtain rainfall maps at country-wide scales. From previous studies, we now quantify the uncertainties associated with such maps. To do so, we divided the sources or error into two categories: from microwave link measurements and from mapping. It was found that the former is the source that contributes the most to the overall error in rainfall maps from microwave link network.
S. H. Alemohammad, K. A. McColl, A. G. Konings, D. Entekhabi, and A. Stoffelen
Hydrol. Earth Syst. Sci., 19, 3489–3503, https://doi.org/10.5194/hess-19-3489-2015, https://doi.org/10.5194/hess-19-3489-2015, 2015
Short summary
Short summary
This paper introduces a new variant of the triple collocation technique with multiplicative error model. The method is applied, for the first time, to precipitation products across the central part of continental USA. Results show distinctive patterns of error variance in each product that are estimated without a priori assumption of any of the error distributions. The correlation coefficients between each product and the truth are also estimated, which provides another performance perspective.
M. S. Raleigh, J. D. Lundquist, and M. P. Clark
Hydrol. Earth Syst. Sci., 19, 3153–3179, https://doi.org/10.5194/hess-19-3153-2015, https://doi.org/10.5194/hess-19-3153-2015, 2015
Short summary
Short summary
A sensitivity analysis is used to examine how error characteristics (type, distributions, and magnitudes) in meteorological forcing data impact outputs from a physics-based snow model in four climates. Bias and error magnitudes were key factors in model sensitivity and precipitation bias often dominated. However, the relative importance of forcings depended somewhat on the selected model output. Forcing uncertainty was comparable to model structural uncertainty as found in other studies.
S. Garrigues, A. Olioso, J. C. Calvet, E. Martin, S. Lafont, S. Moulin, A. Chanzy, O. Marloie, S. Buis, V. Desfonds, N. Bertrand, and D. Renard
Hydrol. Earth Syst. Sci., 19, 3109–3131, https://doi.org/10.5194/hess-19-3109-2015, https://doi.org/10.5194/hess-19-3109-2015, 2015
Short summary
Short summary
Land surface model simulations of evapotranspiration are assessed over a 12-year Mediterranean crop succession. Evapotranspiration mainly results from soil evaporation when it is simulated over a Mediterranean crop succession. This leads to a high sensitivity to the soil parameters. Errors on soil hydraulic properties can lead to a large bias in cumulative evapotranspiration over a long period of time. Accounting for uncertainties in soil properties is essential for land surface modelling.
W. Gong, Q. Duan, J. Li, C. Wang, Z. Di, Y. Dai, A. Ye, and C. Miao
Hydrol. Earth Syst. Sci., 19, 2409–2425, https://doi.org/10.5194/hess-19-2409-2015, https://doi.org/10.5194/hess-19-2409-2015, 2015
S. O. Los
Hydrol. Earth Syst. Sci., 19, 1713–1725, https://doi.org/10.5194/hess-19-1713-2015, https://doi.org/10.5194/hess-19-1713-2015, 2015
Short summary
Short summary
The study evaluates annual precipitation (largely rainfall) amounts for the tropics and subtropics; precipitation was obtained from ground observations, satellite observations and numerical weather forecasting models.
- Annual precipitation amounts from ground and satellite observations were the most realistic.
- Newer weather forecasting models better predicted annual precipitation than older models.
- Weather forecasting models predicted inaccurate precipitation amounts for Africa.
A. Kann, I. Meirold-Mautner, F. Schmid, G. Kirchengast, J. Fuchsberger, V. Meyer, L. Tüchler, and B. Bica
Hydrol. Earth Syst. Sci., 19, 1547–1559, https://doi.org/10.5194/hess-19-1547-2015, https://doi.org/10.5194/hess-19-1547-2015, 2015
Short summary
Short summary
The paper introduces a high resolution precipitation analysis system which operates on 1 km x 1 km resolution with high frequency updates of 5 minutes. The ability of such a system to adequately assess the convective precipitation distribution is evaluated by means of an independant, high resolution station network. This dense station network allows for a thorough evaluation of the analyses under different convective situations and of the representativeness error of raingaue measurements.
C. H. Wu, G. R. Huang, and H. J. Yu
Hydrol. Earth Syst. Sci., 19, 1385–1399, https://doi.org/10.5194/hess-19-1385-2015, https://doi.org/10.5194/hess-19-1385-2015, 2015
T. Antofie, G. Naumann, J. Spinoni, and J. Vogt
Hydrol. Earth Syst. Sci., 19, 177–193, https://doi.org/10.5194/hess-19-177-2015, https://doi.org/10.5194/hess-19-177-2015, 2015
P. López López, J. S. Verkade, A. H. Weerts, and D. P. Solomatine
Hydrol. Earth Syst. Sci., 18, 3411–3428, https://doi.org/10.5194/hess-18-3411-2014, https://doi.org/10.5194/hess-18-3411-2014, 2014
G. Naumann, E. Dutra, P. Barbosa, F. Pappenberger, F. Wetterhall, and J. V. Vogt
Hydrol. Earth Syst. Sci., 18, 1625–1640, https://doi.org/10.5194/hess-18-1625-2014, https://doi.org/10.5194/hess-18-1625-2014, 2014
Cited articles
Abramowitz, M. and Stegun, I. A.: Handbook of mathematical function, Editoral,
Dover, p. 1046, 1965.
Asoka, A., Gleeson, T., Wada, Y., and Mishra, V.: Relative contribution of
monsoon precipitation and pumping to groundwater storage changes in India,
Nat. Geosci., 10, 109–117, 2017.
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R.,
and Schellekens, J.: Global evaluation of runoff from 10 state-of-the-art
hydrological models, Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, 2017.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology/Un modèle à base physique de zone d'appel
variable de l'hydrologie du bassin versant, Hydrolog. Sci. J., 24, 43–69, 1979.
Bohn, T. J., Sonessa, M. Y., and Lettenmaier, D. P.: Seasonal Hydrologic
Forecasting: Do Multimodel Ensemble Averages Always Yield Improvements in Forecast
Skill?, J. Hydrometeorol., 11, 1358–1372, https://doi.org/10.1175/2010JHM1267.1, 2010.
Bohn, T. J., Livneh, B., Oyler, J. W., Running, S. W., Nijssen, B., and
Lettenmaier, D. P.: Global evaluation of MTCLIM and related algorithms for
forcing of ecological and hydrological models, Agr. Forest Meteorol., 176, 38–49, 2013.
Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W.: Landscapes as patches
of plant functional types: An integrating concept for climate and ecosystem
models, Global Biogeochem. Cy., 16, 5-1–5-23, https://doi.org/10.1029/2000GB001360, 2002.
Bowling, L. C., Lettenmaier, D. P., Nijssen, B., Graham, L. P., Clark, D. B.,
El Maayar, M., Essery, R., Goers, S., Gusev, Y. M., Habets, F., van den Hurk,
B., Jin, J., Kahan, D., Lohmann, D., Ma, X., Mahanama, S., Mocko, D., Nasonova,
O., Niu, G.-Y., Samuelsson, P., Shmakin, A. B., Takata, K., Verseghy, D., Viterbo,
P., Xia, Y., Xue, Y., and Yang, Z.-L.: Simulation of high-latitude hydrological
processes in the Torne–Kalix basin: PILPS Phase 2(e), Global Planet. Change,
38, 1–30, https://doi.org/10.1016/S0921-8181(03)00003-1, 2003.
Cai, X., Yang, Z.-L., David, C. H., Niu, G.-Y., and Rodell, M.: Hydrological
evaluation of the Noah-MP land surface model for the Mississippi River Basin,
J. Geophys. Res.-Atmos., 119, 23–38, https://doi.org/10.1002/2013JD020792, 2014.
Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Victor, K., Duan, Q.
Y., Michael, E., and Alan, B.: Modeling of land surface evaporation by four
schemes and comparison with FIFE observations, J. Geophys. Res., 101, 7251–7268, 1996.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T.: A statistical
exploration of the relationships of soil moisture characteristics to the physical
properties of soils, Water Resour. Res., 20, 682–690, 1984.
De Lannoy, G. J., Houser, P. R., Pauwels, V., and Verhoest, N. E.: Assessment
of model uncertainty for soil moisture through ensemble verification, J. Geophys.
Res.-Atmos., 111, D10101, https://doi.org/10.1029/2005JD006367, 2006.
Dirmeyer, P. A., Dolman, A. J., and Sato, N.: The pilot phase of the global
soil wetness project, B. Am. Meteorol. Soc., 80, 851–878, 1999.
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.: GSWP-2:
Multimodel Analysis and Implications for Our Perception of the Land Surface,
B. Am. Meteorol. Soc., 87, 1381–1397, https://doi.org/10.1175/BAMS-87-10-1381, 2006.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A.,
Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson,
T.: The International Soil Moisture Network: a data hosting facility for global
in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698,
https://doi.org/10.5194/hess-15-1675-2011, 2011.
Dorigo, W., de Jeu, R., Chung, D., Parinussa, R., Liu, Y., Wagner, W., and
Fernández-Prieto, D.: Evaluating global trends (1988–2010) in harmonized
multi-satellite surface soil moisture, Geophys. Res. Lett., 39, L18405,
https://doi.org/10.1029/2012GL052988, 2012.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi, M.,
Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Mistelbauer,
T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie,
R., Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA CCI soil moisture
for improved Earth system understanding: State-of-the art and future directions,
Remote Sens. Environ., 203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001 10.1016/j.rse.2017.07, 2017.
Edwards, D. C. and McKee, T. B.: Characteristics of 20th century drought in the
United States at multiple time scales, Climatology Report No. 97-2, Colorado
State Univ., Ft. Collins, CO, 1997.
Franchini, M. and Pacciani, M.: Comparative analysis of several conceptual
rainfall–runoff models, J. Hydrol., 122, 161–219, 1991.
Hao, Z. and AghaKouchak, A.: Multivariate Standardized Drought Index: A parametric
multi-index model, Adv. Water Resour., 57, 12–18, https://doi.org/10.1016/j.advwatres.2013.03.009, 2013.
Hogue, T. S., Bastidas, L., Gupta, H., Sorooshian, S., Mitchell, K., and
Emmerich, W.: Evaluation and transferability of the Noah land surface model in
semiarid environments, J. Hydrometeorol., 6, 68–84, 2005.
Jalota, S. and Arora, V.: Model-based assessment of water balance components
under different cropping systems in north-west India, Agr. Water Manage., 57,
75–87, https://doi.org/10.1016/S0378-3774(02)00049-5, 2002.
Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water
storage estimates, Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453, 2012.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S.: A simple hydrologically
based model of land surface water and energy fluxes for general circulation
models, J. Geophys. Res., 99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.
Lloyd-Hughes, B. and Saunders, M. A.: A drought climatology for Europe, Int. J.
Climatol., 22, 1571–1592, https://doi.org/10.1002/joc.846, 2002.
Mahrt, L. and Ek, M.: The influence of atmospheric stability on potential
evaporation, J. Clim. Appl. Meteorol., 23, 222–234, 1984.
Maurer, E. P., Wood, A. W., Adam, J. C., and Lettenmaier, D. P.: A long-term
hydrologically based dataset of land surface fluxes and states for the conterminous
United States, J. Climate, 15, 3237–3251, https://doi.org/10.1175/1520-0442(2002)015,3237:ALTHBD.2.0.CO;2, 2002.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency
and duration to time scales, in: Proceedings of the 8th Conference on Applied
Climatology, vol. 17, 179–183, American Meteorological Society, Boston, MA,
available at: http://ccc.atmos.colostate.edu/relationshipofdroughtfrequency.pd
(last access: 22 March 2017), 1993.
Mishra, V. and Cherkauer, K. A.: Retrospective droughts in the crop growing
season: Implications to corn and soybean yield in the Midwestern United States,
Agr. Forest Meteorol., 150, 1030–1045, 2010.
Mishra, V., Cherkauer, K. A., and Bowling, L. C.: Parameterization of Lakes and
Wetlands for Energy and Water Balance Studies in the Great Lakes Region, J.
Hydrometeorol., 11, 1057–1082, https://doi.org/10.1175/2010JHM1207.1, 2010.
Mishra, V., Shah, R., and Thrasher, B.: Soil Moisture Droughts under the
Retrospective and Projected Climate in India, J. Hydrometeorol., 15, 2267–2292,
https://doi.org/10.1175/JHM-D-13-0177.1, 2014.
Mishra, V., Aadhar, S., Akarsh, A., Pai, S., and Kumar, R.: On the frequency
of the 2015 monsoon season drought in the Indo-Gangetic Plain, Geophys. Res.
Lett., 43, 102–112, https://doi.org/10.1002/2016GL071407, 2016.
Mishra, V., Kumar, R., Shah, H. L., Samaniego, L., Eisner, S., and Yang, T.:
Multimodel assessment of sensitivity and uncertainty of evapotranspiration and
a proxy for available water resources under climate change, Climatic Change,
141, 451–465, 2017.
Mitchell, K. E.: The multi-institution North American Land Data Assimilation
System (NLDAS): Utilizing multiple GCIP products and partners in a continental
distributed hydrological modeling system, J. Geophys. Res., 109, D07S90,
https://doi.org/10.1029/2003JD003823, 2004.
Nijssen, B., O'donnell, G. M., Hamlet, A. F., and Lettenmaier, D. P.: Hydrologic
sensitivity of global rivers to climate change, Climatic Change, 50, 143–175, 2001.
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E., and Su, H.: Development
of a simple groundwater model for use in climate models and evaluation with
Gravity Recovery and Climate Experiment data, J. Geophys. Res.-Atmos., 112,
D07103, https://doi.org/10.1029/2006JD007522, 2007.
Pai, D. S., Sridhar, L., Badwaik, M. R., and Rajeevan, M.: Analysis of the
daily rainfall events over India using a new long period (1901–2010) high
resolution (0.25∘ × 0.25∘) gridded rainfall data set,
Clim. Dynam., 45, 755–776, https://doi.org/10.1007/s00382-014-2307-1, 2015.
Pai, D. S., Guhathakurta, P., Kulkarni, A., and Rajeevan, M. N.: Variability
of Meteorological Droughts Over India, in: Observed Climate Variability and
Change over the Indian Region, edited by: Rajeevan, M. N. and Nayak, S., Springer,
Singapore, 73–87, 2017.
Peters-Lidard, C. D., Mocko, D. M., Garcia, M., Santanello, J. A., Tischler, M.
A., Moran, M. S., and Wu, Y.: Role of precipitation uncertainty in the estimation
of hydrologic soil properties using remotely sensed soil moisture in a semiarid
environment, Water Resour. Res., 44, W05S18, https://doi.org/10.1029/2007WR005884, 2008.
Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W.,
Dankers, R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N., Hagemann,
S., Hannah, D. M., Kim, H., Masaki, Y., Satoh, Y.,Stacke, T., Wada, Y., and
Wisser, D.: Hydrological droughts in the 21st century, hotspots and uncertainties
from a global multimodel ensemble experiment, P. Natl. Acad. Sci. USA,
111, 3262–3267, 2014.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J.,
Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K.,
Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation
System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Samaniego, L., Kumar, R., and Zink, M.: Implications of Parameter Uncertainty
on Soil Moisture Drought Analysis in Germany, J. Hydrometeorol., 14, 47–68,
https://doi.org/10.1175/JHM-D-12-075.1, 2013.
Schaake, J., Koren, V., Duan, Q. Y., Mitchell, K., and Chen, F.: Simple iwater
balance model for estimating runoff at different spatial and temporal scales,
J. Geophys. Res., 101, 7461–7475, https://doi.org/10.1029/95JD02892, 1996.
Shah, H. L. and Mishra, V.: Hydrologic Changes in Indian Sub-Continental River
Basins (1901–2012), J. Hydrometeorol., https://doi.org/10.1175/JHM-D-15-0231.1, 2016.
Shah, R. and Mishra, V.: Evaluation of the Reanalysis Products for the Monsoon
Season Droughts in India, J. Hydrometeorol., 15, 1575–1591, https://doi.org/10.1175/JHM-D-13-0103.1, 2014.
Shah, R., Sahai, A. K., and Mishra, V.: Short to sub-seasonal hydrologic forecast
to manage water and agricultural resources in India, Hydrol. Earth Syst. Sci.,
21, 707–720, https://doi.org/10.5194/hess-21-707-2017, 2017.
Shah, R. D. and Mishra, V.: Development of an Experimental Near-Real-Time Drought
Monitor for India, J. Hydrometeorol., 16, 327–345, https://doi.org/10.1175/JHM-D-14-0041.1, 2015.
Shah, R. D. and Mishra, V.: Utility of Global Ensemble Forecast System (GEFS)
Reforecast for Medium-Range Drought Prediction in India, J. Hydrometeorol., 17,
1781–1800, https://doi.org/10.1175/JHM-D-15-0050.1, 2016.
Sheffield, J. and Wood, E. F.: Projected changes in drought occurrence under
future global warming from multi-model, multi-scenario, IPCC AR4 simulations,
Clim. Dynam., 31, 79–105, https://doi.org/10.1007/s00382-007-0340-z, 2008.
Shepard, D. S.: Computer Mapping: The SYMAP Interpolation Algorithm, in: Spatial
Statistics and Models, edited by: Gaile, G. L. and Willmott, C. J., Springer
Netherlands, Dordrecht, 133–145, https://doi.org/10.1007/978-94-017-3048-8_7, 1984.
Shukla, S., Sheffield, J., Wood, E. F., and Lettenmaier, D. P.: On the sources
of global land surface hydrologic predictability, Hydrol. Earth Syst. Sci., 17,
2781–2796, https://doi.org/10.5194/hess-17-2781-2013, 2013.
Srivastava, A. K., Rajeevan, M., and Kshirsagar, S. R.: Development of a high
resolution daily gridded temperature data set (1969–2005) for the Indian region,
Atmos. Sci. Lett., 10, 249–254, https://doi.org/10.1002/asl.232, 2009.
Teuling, A. J., Uijlenhoet, R., van den Hurk, B., and Seneviratne, S. I.:
Parameter sensitivity in LSMs: An analysis using stochastic soil moisture models
and ELDAS soil parameters, J. Hydrometeorol., 10, 751–765, 2009.
Unnikrishnan, C. K., Rajeevan, M., Rao, S. V. B., and Kumar, M.: Development of
a high resolution land surface dataset for the South Asian monsoon region, Curr.
Sci., 105, 1235–1246, 2013.
Van Loon, A. F., Van Huijgevoort, M. H. J., and Van Lanen, H. A. J.: Evaluation
of drought propagation in an ensemble mean of large-scale hydrological models,
Hydrol. Earth Syst. Sci., 16, 4057–4078, https://doi.org/10.5194/hess-16-4057-2012, 2012.
Wang, A., Bohn, T. J., Mahanama, S. P., Koster, R. D., and Lettenmaier, D. P.:
Multimodel Ensemble Reconstruction of Drought over the Continental United States,
J. Climate, 22, 2694–2712, https://doi.org/10.1175/2008JCLI2586.1, 2009.
Wu, H., Svoboda, M. D., Hayes, M. J., Wilhite, D. A. and Wen, F.: Appropriate
application of the Standardized Precipitation Index in arid locations and dry
seasons, Int. J. Climatol., 27, 65–79, https://doi.org/10.1002/joc.1371, 2007.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L.,
Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q.,
Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy flux analysis
and validation for the North American Land Data Assimilation System project
phase 2 (NLDAS-2): 1. Intercomparison and application of model products, J.
Geophys. Res.-Atmos., 117, D03109, https://doi.org/10.1029/2011JD016051, 2012.