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Abstract. India has witnessed some of the most severe his-
torical droughts in the current decade, and severity, fre-
quency, and areal extent of droughts have been increas-
ing. As a large part of the population of India is depen-
dent on agriculture, soil moisture drought affecting agricul-
tural activities (crop yields) has significant impacts on socio-
economic conditions. Due to limited observations, soil mois-
ture is generally simulated using land-surface hydrological
models (LSMs); however, these LSM outputs have uncer-
tainty due to many factors, including errors in forcing data
and model parameterization. Here we reconstruct agricul-
tural drought events over India during the period of 1951–
2015 based on simulated soil moisture from three LSMs,
the Variable Infiltration Capacity (VIC), the Noah, and the
Community Land Model (CLM). Based on simulations from
the three LSMs, we find that major drought events occurred
in 1987, 2002, and 2015 during the monsoon season (June
through September). During the Rabi season (November
through February), major soil moisture droughts occurred
in 1966, 1973, 2001, and 2003. Soil moisture droughts esti-
mated from the three LSMs are comparable in terms of their
spatial coverage; however, differences are found in drought
severity. Moreover, we find a higher uncertainty in simu-
lated drought characteristics over a large part of India dur-
ing the major crop-growing season (Rabi season, November
to February: NDJF) compared to those of the monsoon sea-
son (June to September: JJAS). Furthermore, uncertainty in
drought estimates is higher for severe and localized droughts.
Higher uncertainty in the soil moisture droughts is largely
due to the difference in model parameterizations (especially
soil depth), resulting in different persistence of soil moisture
simulated by the three LSMs. Our study highlights the impor-

tance of accounting for the LSMs’ uncertainty and consider-
ation of the multi-model ensemble system for the real-time
monitoring and prediction of drought over India.

1 Introduction

Drought is among the top natural disasters that affect food
and fresh water security. The 2014–2015 drought in India af-
fected more than 3.3 million people and resulted in the loss of
INR 6 50 000 crore (Indian express, 11 May 2016). Drought
characteristics such as frequency, areal extent, and intensity
have increased in India, which can be attributed to erratic
summer monsoon as well as an increase in air temperature
(Shah and Mishra, 2014). Moreover, the frequency of severe
and widespread multi-year droughts has also increased dur-
ing recent decades (Mishra et al., 2016). For instance, In-
dia experienced 10 major droughts between 1950 and 1989,
while 5 droughts occurred after 2000 (Pai et al., 2017). The
drought of 2015 was among the most severe during the pe-
riod of 1901–2015, which caused enormous damage to crops
and affected various sectors of society (Mishra et al., 2016).
Precipitation deficit during the monsoon (rainy) season not
only affects water availability during that season, but also af-
fects water availability in the post-monsoon (dry) season.

Despite an increase in irrigation infrastructure during the
last few decades, about 66 % of Indian agriculture remains
rain-fed and largely reliant on the monsoon season rainfall,
which accounts for about 80 % of the total annual rainfall.
Precipitation deficit during the monsoon season leads to a
deficit in root-zone soil moisture during the post-monsoon
crop-growing season. This deficit in the soil moisture can
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be amplified by positive temperature anomalies during the
growing season. Due to lack of long-term observations of
soil moisture, the impacts of climate variability and climate
change on soil moisture drought are often studied using land-
surface (hydrologic) models (LSMs, Mishra et al., 2014;
Sheffield and Wood, 2008; Samaniego et al., 2013). How-
ever, these LSMs have differences in model parameteriza-
tion and representation of hydrological processes (Mishra et
al., 2017; Wang et al., 2009), which point to uncertainty re-
lated to model structural error deficits. Moreover, soil depths
specified in the LSMs vary depending on an individual model
configuration, which can lead to differences in soil moisture
persistence (Wang et al., 2009). Soil moisture persistence is
important for understanding the dynamics of soil moisture in
response to meteorological forcing. For instance, LSMs with
low soil moisture persistence may show higher sensitivity
to temperature and/or precipitation anomalies. Differences in
soil moisture persistence in LSMs can lead to uncertainty in
drought monitoring and assessment.

There have been several projects on the inter-comparison
of soil moisture and other hydrologic fluxes from differ-
ent LSMs. For instance, the Global Land Data Assimilation
System (GLDAS; Rodell et al., 2004), the earthH2Observe
project (Beck et al., 2017), the Project for Intercomparison of
Land Surface Parameterization Schemes (PILPS; Bowling et
al., 2003), and the Global Soil Wetness Project (Dirmeyer et
al., 1999, 2006) provide useful insights into the differences
in soil moisture simulations from the LSMs and hydrological
models. Our aim here is to understand the uncertainty in soil
moisture drought characteristics simulated using three LSMs
over India. We use observed gridded meteorological data to
force the calibrated VIC, Noah, and CLM land-surface mod-
els. We estimate drought indices based on precipitation and
60 cm depth (as a surrogate for root-zone depth) soil mois-
ture from the three LSMs to reconstruct the major drought
events that occurred during the period of 1951–2015. We
selected the top 60 cm to analyze soil moisture drought be-
cause, for many crops, effective root-zone depth falls in this
region (Jalota and Arora, 2002). Also, we consider this depth
for all three models in our drought assessment so as to re-
duce uncertainty due to specification of different root-zone
depth (based on respective vegetation parameters) and soil
layer thicknesses in three LSMs. We recognize that there ex-
ist different sources of uncertainty in model estimates (of soil
moisture), including those arising from errors in input vari-
ables (e.g., meteorological forcings, surface and sub-surface
characteristics); however, here, our aim is not to quantify un-
certainty due to all the sources. Rather, we limit ourselves
to understanding the uncertainty in historical reconstructions
of soil moisture droughts over India due to structural differ-
ences among different LSMs.

2 Methodology

2.1 Data

The three LSMs (VIC, Noah, and CLM) used in this study
were forced with a common meteorological dataset that com-
prises daily precipitation, maximum and minimum tempera-
tures, and wind speed. We used a 0.25◦ daily gridded pre-
cipitation product available for the period 1901–2015 from
the India Meteorological Department (hereafter IMD; Pai et
al., 2015), which was developed by IMD using data from
6995 gauge stations across India and an inverse distance
weighting scheme (Shepard, 1984). In the gridded precipi-
tation data from IMD, orographic and topographic features
of precipitation are well captured along with the spatial vari-
ability associated with the Indian summer monsoon. We used
1◦ daily gridded maximum and minimum air temperatures
from IMD (Srivastava et al., 2009), which were developed
using the data from 395 observation stations across India.
We re-gridded air temperatures from 1 to 0.25◦ using the
method described in Maurer et al. (2002), which is based
on a temperature lapse rate of 6.5 ◦C km−1 rise in elevation
and the SYMAP algorithm. In re-gridding of air tempera-
ture, we used a 0.25◦ digital elevation model (DEM) that
was resampled from the original 30 m elevation data from
the Shuttle Radar Topography Mission (SRTM). The gridded
precipitation and air temperature products have been used in
many previous studies on drought and heat waves (Shah et
al., 2017; Shah and Mishra, 2014; R. D. Shah and Mishra,
2016, 2015; Mishra et al., 2016).

2.2 Land-surface models

We used simulated soil moisture from the three LSMs, the
VIC, the Noah, and the CLM, to assess uncertainty in root-
zone (60 cm) depth soil moisture and retrospective drought
assessment. These three LSMs have been widely used for
producing land-surface fluxes at global and regional scales
(Rodell et al., 2004; Shah and Mishra, 2015; Unnikrishnan et
al., 2013; see also Table S1 in the Supplement for a brief de-
scription of major hydrological processes). All three LSMs
were forced with the same meteorological forcing from IMD
at 0.25◦ resolution, and additional (radiation-related) forcing
variables for the Noah and CLM were derived from the MT-
CLIM algorithm integrated in the VIC model (see Bohn et
al., 2013). This will keep basic forcing data consistent across
models. In all LSMs routines are there which disaggregate
daily precipitation uniformly to a sub-daily timescale, while
temperature and radiation are temporally disaggregated fol-
lowing the diurnal cycle. Regarding the usage of land-surface
datasets, we note here that each model used a slightly dif-
ferent set of input datasets. Soil textural properties and re-
sulting hydrologic parameters (like field capacity, wilting
points, and available water) are mostly derived based on the
Harmonized World Soil Database (HWSD) and the Food
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and Agriculture Organization (FAO) based soil maps. How-
ever, since land-surface models use soil parameters from
two different sources that can lead to differences in avail-
able water (Fig. S2), we evaluated the difference in the sim-
ulated soil moisture anomalies from the VIC model using
the soil parameters based on the FAO and HWSD datasets
(Fig. S3). We do not find a significant difference in the sim-
ulated soil moisture anomalies based on the soil parameters
from the two sources. It is worth noting that the underlying
(soil-textural) dataset for the HWSD is mostly derived based
on the FAO dataset. The different products may use differ-
ent pedo-transfer functions to derive soil-related parameters.
Nevertheless the derived (static) soil parameters do not in-
duce significant differences in the temporal dynamics of sim-
ulated soil moisture anomalies (Figs. S2 and S3).

Vegetation characteristics specified within LSMs were de-
rived from the Advanced Very High-Resolution Radiome-
ter (AVHRR) and Moderate Resolution Imaging Spectrora-
diometer (MODIS) datasets. We evaluated the sensitivity of
vegetation parameters derived from AVHRR and MODIS to
simulated soil moisture using the Noah model (Fig. S4). In
this case too we do not find any substantial differences in
the dynamics of the simulated soil moisture anomalies due
to differences in the underlying vegetation parameters esti-
mated from the AVHRR and MODIS datasets (Fig. S4). We
note that the analysis conducted here is at a 0.25◦ spatial res-
olution – as a result the differences among the model simula-
tions due to fine-scale soil and vegetation characteristics may
not be observed at a coarse scale.

All three LSMs were first spun up using 65 years (1951–
2015) of data to establish initial conditions for the mod-
eled states and fluxes. All three LSMs were manually cal-
ibrated to match simulated monthly streamflow with ob-
served streamflow data obtained from the India-WRIS (http:
//www.india-wris.gov.in) at the gauging stations (H. L. Shah
and Mishra, 2016) that are least affected by human interven-
tions related to water diversion and water withdrawal for irri-
gation (see the Supplement, Fig. S1 and Table S2, for the ge-
ographical location of these stations). We identified the cali-
bration parameter for each LSM based on prior studies (Cai
et al., 2014; Hogue et al., 2005; Nijssen et al., 2001) and
by performing a simple (one parameter at a time) sensitivity
analysis. We used soil thickness also as calibration parame-
ters following the success of calibrating the VIC using soil-
layer thickness (Nijssen et al., 2001; R. D. Shah and Mishra,
2016). The calibration parameters were manually adjusted
so as to match observed streamflow (see Table S2). Further,
we evaluated the model skill by comparing simulated soil
moisture with station and satellite-based soil moisture, and
also by comparing the total column soil moisture changes
with terrestrial water change based on GRACE products (see
Sect. 3.1 for more details).

2.2.1 The Variable Infiltration Capacity (VIC) model

We used VIC v4.2.a (Liang et al., 1994), which is a semi-
distributed, physically based hydrologic model in water bal-
ance mode at a daily time step. The VIC model simulates
water and energy fluxes in each grid cell considering soil and
vegetation parameters, and meteorological forcing as input.
The model estimates total evapotranspiration as a sum of the
canopy and bare soil evaporation and transpiration from veg-
etation mosaics. Any number of vegetation types can be rep-
resented within a grid cell to represent sub-grid variability in
vegetation cover. Infiltration is estimated using a variable in-
filtration capacity curve. The VIC model has three soil layers
and the top two layers respond quickly to rainfall, and diffu-
sion is allowed from the middle to top layers when the mid-
dle (second) layer is wet. Baseflow from the bottom (third)
layer is estimated using the Arno model formulation (Fran-
chini and Pacciani, 1991). The bottom layer responds slowly
to depict seasonal soil moisture behavior. We calibrated the
VIC model parameters, which include depth of the soil lay-
ers, infiltration curve parameters, and parameters related to
baseflow, following Nijssen et al. (2001). Vegetation and soil
texture used in the VIC model were developed using the 1 km
Advanced Very High-Resolution Radiometer (AVHRR) and
Harmonized World Soil Database (HWSD), respectively, as
described in Table S1. The VIC model requires soil param-
eters like field capacity and wilting point, which were de-
rived by first identifying soil class based on the United States
Department of Agriculture (USDA) classification and then
applying the pedo-transfer functions of Cosby et al. (1984).
Soil texture specified at 0.25◦ for deriving soil parameters
is shown in Fig. S2a. More detailed information on the VIC
model calibration can be obtained from the previous stud-
ies (Mishra et al., 2010; Nijssen et al., 2001; H. L. Shah and
Mishra, 2016, R. D. Shah and Mishra, 2016).

2.2.2 The Noah model

We used the one-dimensional Noah model (version 3.1;
Mitchell, 2004; Schaake et al., 1996) which solves water and
energy balance in each grid cell. The Noah model has four
soil layers. The model uses the modified Penman–Monteith
equation to represent the diurnal variation of the atmospheric
resistance coefficient (Chen et al., 1996; Mahrt and Ek,
1984). In the Noah model, spatial variability of precipita-
tion and infiltration is considered to estimate surface runoff,
which is based on the exponential distribution of infiltration
capacity. Baseflow is proportional to soil moisture storage.
Vegetation parameters used in the Noah model were derived
from the MODIS dataset and classified based on the Modi-
fied International Geosphere Biosphere Programme (IGBP)
scheme. The MODIS-based IGBP product has 20 categories
of land use/land cover data, which were derived during the
observation period of 2001–2005. The vegetation parameters
of the Noah model consist of vegetation fraction, stomatal
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resistance, minimum and maximum values of LAI, albedo,
and roughness length. The major land cover classes are For-
est, Shrubs, Savannas, Tundra, Grasslands, Croplands, Wet-
lands, Built-up, Ice, and Water. We used soil textures derived
from a digital soil map (Fig. S2c) developed by the Food
and Agriculture Organization (FAO). The forcing parame-
ters required for the Noah model are daily precipitation, air
temperatures (maximum and minimum), wind speed, surface
pressure, relative humidity, long-wave radiation, and surface
downward solar radiation. Daily meteorological forcing in
the Noah model was internally disaggregated using a uni-
form distribution for precipitation and the diurnal cycle for
other variables. We calibrated the Noah model parameters
that include the depth of four soil layers, the Zilintikevich
coefficient, a surface runoff parameter, and a bare soil evap-
oration component. The Zilintikevich coefficient controls the
ratio of the roughness length for heat to the momentum by
representing the aerodynamic resistance.

2.2.3 The Community Land Model (CLM)

The CLM is a land-surface component of the community-
developed global climate system model version 3.0
(CCSM v3.0), which was developed by the National Centre
for Atmospheric Research (NCAR). The CLM has 10 soil
layers and, similarly to the VIC and Noah, simulates both
water and energy fluxes in each grid cell. Surface runoff in
the CLM is parameterized based on the TOPMODEL con-
cept (Beven and Kirkby, 1979). Soil moisture storage in the
CLM is modeled after removing surface runoff, infiltration,
and evaporation from surface storage. The basic difference
in the CLM from the VIC and Noah is that the CLM has a
representation of a groundwater table which is updated dy-
namically (Niu et al., 2007). The atmospheric forcings re-
quired for the CLM are daily precipitation, air temperatures
(maximum and minimum), wind speed, specific humidity, in-
cident solar radiation, long-wave radiation, and surface pres-
sure. Land cover used in the CLM is represented by 17 plant
functional types (PFTs), which were derived from MODIS
and are classified using the IGBP scheme similar to Bonan
et al. (2002), while the soil textures (Fig. S2) used in the
CLM are derived from FAO datasets. We calibrated the soil
thickness parameter for the CLM model similarly to the VIC
model. A detailed comparison of input parameters is pro-
vided in Table S1. All three LSMs were run without consid-
ering irrigation and groundwater extraction as our aim was
to understand the role of atmospheric forcing in root-zone
(60 cm depth) soil moisture drought uncertainty.

2.3 Drought indices

We used the Standardized Precipitation Index (hereafter SPI;
McKee et al., 1993) and the Standardized Soil moisture In-
dex (SSI; Hao and AghaKouchak, 2013) to represent mete-
orological and soil moisture (agriculture) droughts, respec-

tively. We used 60 cm soil depth as a representative of root-
zone soil moisture (Shah and Mishra, 2015). Since depths of
root-zone and soil layers are different in all three LSMs (Ta-
ble S1), we estimated 60 cm soil moisture for each grid cell
and for each LSM, separately. A parametric (Gamma) dis-
tribution was fitted to precipitation and root-zone soil mois-
ture to estimate SPI and SSI, respectively. For both SPI and
SSI, the cumulative distribution functions obtained by fitting
the Gamma distribution were mapped onto the normal dis-
tribution functions to represent a dimensionless index and
to derive drought indices (see Shah and Mishra, 2015, and
Appendix A for more details). We note that there are other
approaches for estimating the soil moisture drought index –
for example a non-parametric percentile-based drought index
(Samaniego et al., 2013), but in this study we used a para-
metric (Gamma) distribution for estimating SSI so as to be
consistent with the precipitation-based drought index (SPI).

2.4 Intensity–areal extent–frequency curves

Intensity–areal extent–frequency (IAF) curves for drought
events were constructed to understand the frequency and
severity of droughts in India for the period 1951–2015.
The IAF curves were estimated using the root-zone soil
moisture from the three LSMs (i.e. VIC, Noah, and CLM).
We estimated drought severity using the 4-month SSI at
the end of the monsoon and Rabi seasons (so as to repre-
sent the entire season) for the whole of India and for the
Indo-Gangetic Plain region (longitude 75–90◦ E and latitude
23–30◦ N; Fig. S1) considering the climatological period
of 1951–2015. The method to construct IAF curves has been
described in detail in Mishra et al. (2016) and Mishra and
Cherkauer (2010). IAF curves were estimated using the fol-
lowing steps: (i) for each year, the mean 4-month SSI value
was estimated for all the grids for areal extents of 2, 5, 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100 %; (ii) for each thresh-
old of areal extent, mean severity of root-zone soil mois-
ture drought was estimated for each year during the 1951–
2015 period; (iii) the Generalized Extreme Value (GEV) dis-
tribution was fitted to the mean severity for the selected areal
extents and parameters (shape, location, and scale) were es-
timated using the maximum likelihood method; (iv) drought
severity was estimated for the selected return periods of 2, 5,
10, 20, 25, 50, 100, 200, and 500 years for each areal-extent
threshold to construct IAF. Using IAF curves, mean intensity
of drought can be estimated or for a given areal extent and
frequency of drought. We evaluated the goodness of fit of the
GEV distribution using QQ plots and a Chi-square goodness
of fit test (Figs. S15–S17 and Tables S11–S13).
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Figure 1. Correlation of weekly 60 cm simulated soil moisture with IMD gauge-based soil moisture (∼ 60 cm) during the monsoon season,
2009–2013. (a–c) Correlation for control (default or uncalibrated) setup for the VIC, NOAH, and CLM, respectively. (d–f) show differences
(calibrated–uncalibrated) in the correlation coefficient.

3 Results

3.1 Calibration and evaluation of land-surface
models (LSMs)

The three land-surface model (VIC, Noah, and CLM) param-
eterizations were manually constrained (calibrated) against
observed streamflow across a set of 18 major river basins
covering approximately the entire landmass of India (see
Fig. S1 and Table S2). The performance of the LSMs in cap-
turing the temporal dynamics of monthly streamflow dur-
ing calibration and validation periods is quite satisfactory
for most of the river basins (Table S2). The median cor-
relation r (and Nash–Sutcliffe efficiency, NS) values esti-
mated across these basins during the calibration period are
around 0.91 (0.78), 0.90 (0.70), and 0.90 (0.70) for the VIC,
Noah, and CLM, respectively. A similar level of (median)
skill is also observed during the validation period (Table S2).
The skill of the multi-model averaged streamflow of the three
LSMs is comparatively better than that of individual models
– with an overall median r (and NS) value estimated across
all basins of 0.91 (0.80) and 0.94 (0.77) during the calibra-
tion and validation periods, respectively. The ensemble mean
of simulated streamflow from the three LSMs performed bet-
ter against the observations. We also notice a relatively poor
skill for all three LSMs and the ensemble mean in the coastal
basins (e.g., Cauvery and eastern coast basins – Table S2),
which could be attributed to a number of factors including er-
rors in forcing data and model parameterizations. Neverthe-

less, considering the wide range of hydro-climatic gradients
across India, the efficiency of the three LSMs for capturing
the observed streamflow can be considered reasonable.

Next we evaluated the skill of each model in capturing the
observed dynamics of near-surface and 60 cm soil moisture
(Figs. 1 and S3–S4). We used three different sources of soil
moisture observations for this comparison purpose. The first
set consisted of the weekly soil moisture observations taken
at 18 IMD-based stations during the monsoon (JJAS) season
for the period 2009–2013 (Unnikrishnan et al., 2013). The
model simulated 60 cm soil moisture dynamics were com-
pared against observations, which generally revealed a good
skill for all three models (Fig. 1). Model simulated soil mois-
ture showed a relatively higher correlation with observations
in the northern and western regions as compared to those lo-
cated in the southern coastal belt. Among models, the Noah
simulated soil moisture exhibited higher correlation as com-
pared to other two LSMs. For this setup, we also compared
the calibrated vs. uncalibrated model runs to understand what
improvements (if any) could be achieved by the parameter
calibration of simulation of soil moisture anomalies. We find
limited benefits of the model calibration in this case – only
the VIC model benefited from the model calibration, mainly
in the northern region locations and a few of the southern
locations.

The second set of evaluations considered the continuous
soil moisture observation datasets at an IIT Kanpur site avail-
able from the International Soil Moisture Network (ISMN:
Dorigo et al., 2011). Although all three models exhibited
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a general bias in capturing absolute values of the observed
soil moisture, their daily variability observed over the course
of the year is well captured by all three models (Fig. S5).
Moreover, the Noah and CLM models show improvements
in terms of reducing overall bias as a result of model calibra-
tion.

Finally, our third set of model evaluations considered an
assessment of the model skill for capturing the remote-
sensing-based soil moisture available from the ESA-CCI
product (Dorigo et al., 2012). Here we used the modeled top-
layer (10–30 cm) annual soil moisture over the period 1979–
2012 for the comparison; however, the ESA-CCI soil mois-
ture product is more reliable after 2001 (Dorigo et al., 2017)
(Fig. S6). Despite the limitation that the ESA-CCI soil mois-
ture inference is for the top few centimeters of the earth’s sur-
face, we find a positive correlation with modeled soil mois-
ture for all three models across a large part of India. A rel-
atively higher correlation (more than 0.6) can be noticed for
regions in the northwestern and southern peninsular parts of
India.

We also evaluated the skills of LSMs for the terrestrial
water storage (TWS) anomalies from the Gravity Recovery
and Climate Experiment (GRACE – release v5.0; Landerer
and Swenson, 2012) derived products (1◦× 1◦) for the pe-
riod 2002–2015. We used the ensemble mean of three avail-
able GRACE-TWS products (GeoForschungsZentrum, GFZ,
Potsdam, Germany, Centre for Space Research at the Uni-
versity of Texas at Austin, USA, and Jet Propulsion Labo-
ratory, USA) to reduce the noise (and scatter) among differ-
ent TWS products. We compared ensemble mean GRACE-
TWS against the monthly anomalies of modeled total col-
umn soil moisture from each of the three LSMs and their
ensemble mean. The modeled total column soil moisture
was aggregated to 1◦ spatial resolution to match the (coarse)
resolution of the GRACE-TWS product. Overall, all three
LSMs are able to capture the temporal dynamics of GRACE-
TWS anomalies reasonably well across a large part of In-
dia (Fig. S7). The median correlation estimated across the
modeled grid cells is more than 0.6 for all three LSMs –
and the ensemble mean of simulated total column soil mois-
ture anomalies showed an overall best (median) skill. All
three LSMs (and the ensemble mean) exhibited a system-
atically lower performance in the northwestern part of In-
dia (Fig. S7), which is most probably related to ground-
water pumping effects that are not modeled in LSMs but
are captured in GRACE datasets (Asoka et al., 2017). Each
LSM shows a slightly different area (grid cells) with the best
skill score that motivates the use of a multi-model ensemble
mean to capture the (GRACE-based) water storage anoma-
lies across a large part of India.

3.2 Multi-model ensemble droughts in India

We estimated areal extent of severe to exceptional droughts
(SPI<−1.3) based on the 4-month SPI at the end of the
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Figure 2. Uncertainty in areal extent (%) of 60 cm soil mois-
ture drought simulated using the three LSMs (i.e. VIC, Noah, and
CLM). (a) Multi-model ensemble (brown) mean 4-month Standard-
ized Soil Moisture Index (SSI) and inter-model variation (shaded)
estimated as 1 standard deviation for the monsoon season. The
black line in (a) shows the 4-month Standardized Precipitation In-
dex (SPI) at the end of the monsoon season (June through Septem-
ber), (b) and multi-model ensemble mean and uncertainty in the
4-month SSI estimated using the three LSMs for the Rabi season
(November through February). The light brown shaded area shows
uncertainty in severe-to-exceptional drought based on the model
simulated SSI (SSI<−1.3). The dark brown line shows areal extent
estimated based on the ensemble mean SSI for the three LSMs. The
grey line marks the top drought years based on area under drought.

monsoon season (representing accumulated precipitation for
the June to September period) for the period of 1951–2015
(Fig. 2a). The top five monsoon season (JJAS) drought
events occurred in 1987 (areal extent of severe to excep-
tional droughts: 35 %), 2002 (33.5 %), 1979 (27.7 %), 1972
(26.3 %), and 2009 (24.6 %) at the all-India level. The mon-
soon season droughts of 2015 (with an areal extent of 17.4 %)
and 2014 (14.4 %) ranked 8th and 10th during the period
of 1951–2015. Mishra et al. (2016) reported that the 2014–
2015 monsoon season drought in the Indo-Gangetic Plain
was the most severe during the history of 116 years, with
a return period of 542 years.

We find that uncertainty in simulated areal extent of soil
moisture drought (4-month SSI at the end of the monsoon
season) estimated based on three LSMs is moderate dur-
ing the monsoon season and has a year-to-year variabil-
ity (Fig. 2a). For example, the 1 standard deviation repre-
senting the uncertainty in the simulated areal drought ex-
tent is on average estimated to be around 1.6 %. However,
during the 1972 and 1979 monsoon seasons, uncertainty in
areal extent of drought is 8 and 14 %, respectively (Fig. 2a;
see also Table S3). We estimated the ensemble mean (ENS-
SSI) areal extent of 60 cm soil moisture drought from the
three LSMs for the monsoon season and found that 1987
(36.7 %), 2002 (35.9 %), 2009 (31.5 %), 1972 (29.8 %), and
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Figure 3. Uncertainty in persistence in root-zone soil moisture (60 cm). Seasonal cycle of all-India averaged (a) precipitation, (b) mean air
temperature, and (c) 60 cm soil moisture simulated using the VIC (blue), the Noah (green), and the CLM (red). (d–f) Autocorrelation in
60 cm soil moisture at a 4-month lag simulated using the VIC, Noah, and CLM, respectively. (g) All-India median autocorrelation (4-month
lag) in the 60 cm soil moisture from the three LSMs.

1965 (23.4 %) are the top 5 drought years during the period
of 1951–2015 (Fig. 2a). We notice that 1979 (areal extent:
20 %) ranked 6th on record, while 2015 (16.5 %) and 2014
(7.13 %) ranked 8th and 15th, respectively, based on ENS-
SSI areal extent of the simulated 60 cm soil moisture drought
during the monsoon season.

Since the Rabi season (NDJF) is the key crop-growing sea-
son in India, we estimated areal extents of 60 cm soil mois-
ture drought from the three LSMs for the period of 1951–
2015 (Fig. 2b). While year-to-year variability in the un-
certainty of areal extent of droughts was found, the uncer-
tainty in 60 cm soil moisture based on the areal extent of
droughts was substantially higher (∼ 5 %) during the last
decade of 1951–2015, which might be associated with fre-
quent drought events during this period. We found a high
uncertainty (∼ 7 %) in the areal extent of soil moisture
drought in 2011 (Fig. 2b). Based on the ENS-SSI areal ex-
tent of 60 cm soil moisture drought, the top 5 drought years
were 2003 (areal extent 30 %, uncertainty 9.6 %), 2001 (27.6,
12.0 %), 1966 (22.6, 4.7 %), 1973 (20.7, 8.9 %), and 1988
(20.6, 6.1 %). Droughts in the Rabi season can be driven by
both monsoon season precipitation deficit and positive tem-
perature anomalies during this season. Uncertainty in the top
five drought events in the Rabi season was substantial (5–

12 %), which underscores the need for multi-model drought
assessment in the growing season.

The VIC, Noah, and CLM show an all-India median auto-
correlation of 0.23, 0.37, and 0.71, respectively, at a 4-month
lag (Fig. 3), indicating that the CLM has the highest persis-
tence in the 60 cm soil moisture. Spatial differences in soil
moisture persistence were also observed (Fig. 3). Our results
are in agreement with the findings of Wang et al. (2009), who
reported higher persistence for CLM modeled soil moisture,
which can be attributed to its higher water holding capac-
ity and thicker soil column (Fig. S2). Figure S2 shows that
though there is not much difference in soil texture provided
as input to three LSMs, the available water in the total col-
umn is much higher for the CLM. We find that soil layer
thickness is strongly related to soil moisture persistence re-
gardless of model calibration (Fig. S8). The same thing can
be noted even considering the first three soil layers which
cover a 60 cm soil column for all three LSMs, the soil-layer
thickness of the CLM dominates over another two LSMs
(Fig. S9).

Furthermore we find that all-India averaged mean monthly
soil moisture is highest during July in the VIC and Noah
LSMs, which is consistent with the seasonal cycle of all-
India averaged precipitation (Fig. 3a–c). However, all-India
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averaged mean monthly 60 cm soil moisture reaches the
highest level in the month of August in the CLM model
(Fig. 3a–c). The 1-month lag between peak precipitation and
peak 60 cm soil moisture from the CLM can be due to a
relatively deeper soil column (Fig. S8) and higher total col-
umn water holding capacity, a higher number of soil layers,
and differences in processes related to soil hydrology as dis-
cussed in Wang et al. (2009) and Xia et al. (2012).

To understand the relationship between meteorological
and agricultural droughts, lagged correlation analysis was
performed between the 4-month SPI at the end of the mon-
soon season and the 4-month SSI (at the end of JJAS, JASO,
ASON, and so on). We find that the 4-month SSI at the end
of the monsoon season for the VIC model showed the high-
est correlation with the 4-month SPI (JJAS), while the 4-
month SSI from the Noah model showed the lowest corre-
lation (Fig. S10a). These results indicate that the 60 cm soil
moisture from the VIC model responds faster to the monsoon
season precipitation than the other two LSMs, which can be
associated with soil moisture persistence and model param-
eterization (Van Loon et al., 2012; Wang et al., 2009; Xia et
al., 2012). However, we notice that the correlation between
the 4-month SPI at the end of the monsoon season and the
4-month SSI declines rapidly after October (ONDJ, NDJF,
and so on) for the VIC and Noah models (Fig. S10a). On the
other hand, the CLM shows substantially higher persistence
even for the March–June 60 cm soil moisture, which can be
attributed to a deeper soil column and differences in the other
processes related to soil hydrology. These results also indi-
cate that the anomalous precipitation during the monsoon
season can last longer and have a substantial influence on
agriculture drought estimated using the 60 cm soil moisture
from the CLM as reflected by the strength of the relationship
between the 12-month SPI and 12-month SSI in the CLM
(Fig. S10b).

Areal extent and severity of agricultural droughts esti-
mated using the 60 cm soil moisture show a considerable
uncertainty mainly due to the differences in soil moisture
persistence characteristics among three LSMs (Fig. 3). We
estimated areal extent of agriculture drought from the three
LSMs considering the period that showed maximum correla-
tion against the monsoon season precipitation (Fig. S10c).
For instance, 4-month SSI at the end of October (JASO)
showed the highest correlation with 4-month SPI at the
end of September (JJAS) for the VIC and Noah models
(Fig. S10a). On the other hand, the 4-month SSI at the end of
November (ASON) showed the highest correlation with the
4-month SPI at the end of September (JJAS) for the CLM.
Therefore, we considered root-zone soil moisture for JASO,
JASO, and ASON periods from the VIC, Noah, and CLM, re-
spectively (Fig. S10c) to understand the response of the mon-
soon season deficit in precipitation on agricultural drought.
We find that the uncertainty in the areal extent of agricultural
drought is substantially reduced considering the lagged re-
sponse of the monsoon season precipitation and soil moisture

(Fig. S10c and Table S3), indicating that the major source
of uncertainty in areal extent of agricultural droughts is soil
moisture persistence in the LSMs.

3.3 Reconstruction of major droughts

We reconstructed major monsoon season drought events over
India using 60 cm soil moisture from the three LSMs for the
period of 1951–2015 (Fig. 4). The meteorological and agri-
cultural droughts were represented using the 4-month SPI
and 4-month SSI, respectively, at the end of the monsoon
season. We estimated the ensemble mean 4-month SSI from
the three LSMs to understand whether the individual LSMs
show a larger difference from the ensemble mean. Based on
the 4-month SPI at the end of the monsoon season, we se-
lected the top two most widespread drought events that oc-
curred in 1987 and 2002 (Figs. 2a and 4). Moreover, we also
selected a recent drought event (2015) that caused an enor-
mous water crisis in the Indo-Gangetic Plain (Mishra et al.,
2016). For all three major droughts (1987, 2002, and 2015)
in the monsoon season, we compared areal extents of 60 cm
soil moisture drought in the monsoon season estimated from
the three LSMs.

Areal extents of the monsoon season droughts (meteoro-
logical and agricultural) in 1987, 2002, and 2015 show that
droughts were mainly caused by the monsoon season precip-
itation deficits (Fig. 4). We notice positive air temperature
anomalies in all 3 years (1987, 2002, and 2015); however,
patterns of agricultural and meteorological droughts were
largely similar (Fig. 4). Among the three drought events,
the monsoon season air temperature anomaly (positive) was
strongest in the 2015 monsoon season. Uncertainty in areal
extent of agricultural droughts estimated using the 60 cm soil
moisture is presented in supplemental Table S3. We notice
large uncertainty in the areal extent of drought simulated
from the three LSMs for the 2015 event (Table S3). The VIC
model simulated areal extent of soil moisture drought was
14 % during the 2015 monsoon season, while the areal extent
of drought simulated from Noah and the CLM was 21.2 and
18.1 %, respectively (Table S3).

Similar to the monsoon season droughts, we compared the
spatial pattern of droughts simulated by the three LSMs for
major droughts in the Rabi season, which occurred in 1966,
1973, 2001, and 2003 (Fig. S11). We notice that major
droughts in the Rabi season were also largely driven by the
precipitation deficit, and the role of positive air temperature
anomalies was relatively minor (Fig. S11). Overall, the VIC
model shows the lesser intensity of drought during the Rabi
season as compared to the Noah and CLM for all the years,
which can be attributed to differences in soil moisture per-
sistence in the three LSMs (Fig. 3a). We find higher uncer-
tainty in areal extent of drought during the 2001 Rabi season
(Fig. S11) than other years of major drought events, which
may be due to higher impacts of air temperature on drought
during 2001. The overall uncertainty in the areal extent of
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Figure 4. Reconstruction of monsoon season drought events of (a–f) 1987, (g–l) 2002, and (m–r) 2015, estimated based on (a, g, k) the
4-month SPI at the end of the monsoon season, (c, i, o) the 4-month SSI at the end of the monsoon season simulated using the VIC model,
(d, j, p) same as (c, i, o) but for the Noah model, and (e, k, q) same as (c, i, o) but for the CLM. (f, l, r) Ensemble mean 4-month SSI
simulated using the VIC, Noah, and CLM. (b, h, n) Air temperature anomaly during the monsoon season for the selected drought years.

agricultural droughts estimated using the 60 cm soil moisture
estimated from the three models is presented in supplemental
Table S4. In 2001, the areal extent of droughts simulated by
the VIC, Noah, CLM, and their ensemble mean were 17.2,
40.7, 24.7, and 26.1 %, respectively (Table S4). Large differ-
ences in the areal extent of 60 cm soil moisture drought simu-
lated from the three LSMs were also noted for the years 1966,
1973, 2001, and 2003 (Table S4).

3.4 Intensity–areal extent–frequency (IAF) of droughts

Uncertainty in the multi-model drought estimates was evalu-
ated using IAF curves (Fig. 5). Drought intensity associated
with the selected areal extent thresholds was estimated for the
return periods of 10, 20, 50, 100, 200, and 500 years (Fig. 5).
We find that multi-model-based drought intensity for a se-
lected areal extent has a much larger uncertainty when the
95 % confidence interval of the GEV parameters was consid-
ered (Table S6). However, uncertainty in drought intensity
was lower when only mean values of the GEV parameters for
drought intensity and areal extents were considered. Uncer-
tainty in drought intensity appeared to grow with an increase
in the return period (Fig. 5). Based on the IAF curves, we find
that the 2002 monsoon season drought has a return period of
50 years. Moreover, uncertainty in drought intensity from the
three LSMs was larger for smaller areal extents (Fig. 5). For

instance, a drought of 50 % areal extent and 50-year return
period has intensities of −1.66, −1.91, and −1.53 simulated
from the VIC, Noah, and CLM, respectively (Table S5). On
the other hand, a drought of 5 % areal extent and 50-year re-
turn period has intensities of−2.89,−3.79, and−3.09 simu-
lated from the VIC, Noah, and CLM, respectively (Table S5).
Most of the return periods and areal-extent drought intensi-
ties were higher for the Noah model and lower for the VIC
model (Table S5), which can be associated with the differ-
ences in 60 cm soil moisture persistence in the three LSMs.

A considerably higher uncertainty in IAF curves during
the Rabi season was noticed (Fig. S12; Tables S7 and S8).
For instance, a drought of 50 % areal extent and a 50-year re-
turn period can have intensities of −1.23, −1.62, and −1.50
for 60 cm soil moisture obtained from the VIC, Noah, and
CLM, respectively (Fig. S12 and Table S7). A drought of
5 % areal extent and the 50-year return period have intensities
of −2.17, −3.71, and −3.25 simulated from the VIC, Noah,
and CLM, respectively (Table S7). Higher uncertainty in
drought intensities during the Rabi season can be attributed
to the response of soil moisture in the three LSMs to meteo-
rological forcing (precipitation and air temperature).

As the Indo-Gangetic Plain is one of the most inten-
sive crop-growing regions in the world, we evaluated the
uncertainty in the IAF curves constructed using the 60 cm
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Figure 5. Uncertainty in intensity–areal extent–frequency (IAF) curves for the monsoon season 60 cm soil moisture drought estimated using
the three LSMs. Dark brown color shade shows uncertainty in models without considering parameter uncertainty in the Generalized Extreme
Value (GEV) distribution, while light brown color shows uncertainty considering the 95 % confidence interval of the GEV parameters for
return periods (a) 10, (b) 20, (c) 50, (d) 100, (e) 200, and (f) 500 years. Black error bars indicate uncertainty for the 2002 monsoon season
drought using three LSMs.

soil moisture from the three LSMs (Fig. S13). We used the
12-month SSI at the end of December based on the areal
averaged mean annual 60 cm soil moisture over the Indo-
Gangetic Plain. Similar to IAF curves for the all-India aver-
aged 60 cm soil moisture, a large uncertainty was found due
to differences in the GEV parameters (Fig. S13, Tables S9
and S10). Moreover, uncertainty in IAF curves of the Indo-
Gangetic Plain increases with the return period and declines
with an increase in areal extent of droughts. For instance,
for an aerial extent of 5 % and a return period of 50 years,
drought intensities were −2.59, −3.06, and −2.48 for the
VIC, Noah, and CLM (Table S9). However, when areal ex-
tent increases to 50 %, drought intensities are −1.42, −1.49,
and −1.45 for the VIC, Noah, and CLM, respectively (Ta-
ble S9, Fig. S11). Overall, uncertainty in drought intensity
is higher for localized droughts that have higher return pe-
riods. These results further indicate that 60 cm soil mois-
ture drought characteristics can have large uncertainty arising
from different LSMs, which can be reduced by considering
the multi-model ensemble agricultural drought assessments.

3.5 Role of the monsoon season precipitation and Rabi
season air temperature

We evaluated the differences in the coupling of 60 cm soil
moisture (SSI) with monsoon season precipitation and air
temperature (Figs. 6 and S14). We find that a 4-month SSI

at the end of the monsoon season from the VIC model
is strongly coupled (correlation coefficient= 0.90) with the
monsoon season precipitation over India. On the other
hand, the 60 cm SSI showed correlation coefficients of 0.79
and 0.74 against the monsoon season precipitation for the
Noah and CLM, respectively (Fig. 6c and e). These re-
sults show differences in the response of 60 cm SSI against
changes in the monsoon season precipitation. However, the
all-India averaged 60 cm SSI showed stronger coupling with
the monsoon season air temperature for the Noah and CLM
models (correlation=−0.65 and−0.67) than that of the VIC
model (correlation=−0.53) (Fig. 6b, d and f). Interestingly,
the coupling between the 60 cm SSI for the Rabi and mon-
soon season precipitation is stronger for the CLM (correla-
tion= 0.76) and Noah (correlation= 0.66) than that of the
VIC model (correlation= 0.55). These results indicate that
the monsoon season precipitation deficit can have a larger
influence on the Rabi season drought in the CLM and Noah
models compared to that of the VIC model. Similarly, the
Rabi season air temperature showed a stronger relationship
with the 60 cm SSI for the CLM (correlation=−0.51) and
Noah (−0.37) than that of the VIC model (−0.31). Similar
differences in the Rabi and monsoon season 60 cm SSI for
the Indo-Gangetic Plain were observed for the three LSMs
(Fig. S14), indicating that the drought indices based on the
60 cm soil moisture may show different sensitivity to at-

Hydrol. Earth Syst. Sci., 22, 2269–2284, 2018 www.hydrol-earth-syst-sci.net/22/2269/2018/



V. Mishra et al.: Reconstruction of droughts in India using multiple land-surface models (1951–2015) 2279

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

SS
I

VIC

(a)
r=0.90

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

SS
I

r=0.55

(b)
r=−0.53
r=−0.31

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

SS
I

NOAH

(c)
r=0.79

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

SS
I

r=0.66

(d) 
r=−0.65
r=−0.37

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

SS
I

−20−15−10−5 0 5 10 15 20
Precipitation anomaly (%)

CLM

(e) 
r=0.74

−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

SS
I

−20−15−10−5 0 5 10 15 20
Precipitation anomaly (%)

r=0.76
−1.0 −0.5 0.0 0.5 1.0

Temperature anomaly (0C)

(f) 
r=−0.67

−1.0 −0.5 0.0 0.5 1.0
Temperature anomaly (0C)

r=−0.51

Figure 6. (a, c, e) Relationship between monsoon season precipita-
tion anomaly (%) and 4-month SSI at the end of the monsoon sea-
son, and (b, d, f) same as (a, c, e) but for the relationship between
4-month SSI and the air temperature anomaly of the monsoon sea-
son. Correlation coefficients are shown for all-India SSI (blue) and
4-month SSI over the Indo-Gangetic Plain (red).

mospheric forcing, which can show a substantial variation
across regions and seasons.

4 Discussion

We find that the three LSMs show major differences in agri-
cultural droughts during the monsoon and Rabi seasons. Un-
certainty in the intensity of droughts is higher in the Rabi
season than that of the monsoon season, which can be asso-
ciated with the role of air temperature in soil moisture. Also,
we found differences in soil moisture drought simulated in
response to precipitation and temperature deficits (Figs. 6
and S12). For instance, soil moisture from the VIC model
shows a quick response to precipitation deficit, whereas Noah
and the CLM show a delayed response. Moreover, local-
ized droughts have more uncertainty than that of widespread

droughts over India and the Indo-Gangetic Plain. The pri-
mary cause of the uncertainty in 60 cm soil moisture and
droughts is related to soil moisture persistence (Fig. S16),
which is associated with the soil water holding capacity as
reported in Wang et al. (2009). We found that persistence in
soil moisture is strongly linked with soil-layer thickness (see
Fig. S8), which in turn affects the soil water holding capac-
ity (available water, Fig. S16). Apart from the soil moisture
persistence, there can be several other factors that can in-
troduce uncertainty in 60 cm soil moisture simulations. For
instance, all three LSMs have different calibration parame-
ters, which do not cover the entire range of uncertainty due
to manual calibration (De Lannoy et al., 2006; Samaniego
et al., 2013). However, our results show that the model cal-
ibration has little impact on soil moisture anomalies, which
are largely driven by the climate forcing. Moreover, during
drought, there is a high degree of non-linearity; therefore,
calibration parameters estimated through global optimization
may also not yield the best results (De Lannoy et al., 2006).
The differences in vegetation parameters in the three LSMs
can also be attributed to uncertainty in 60 cm soil moisture
(Peters-Lidard et al., 2008). For instance, the Noah model
does not account for the sub-grid variability of vegetation,
unlike the CLM and VIC models, which use a mosaic-based
representation of vegetation. However, since we were inter-
ested in 60 cm soil moisture droughts, we assume that the
major uncertainty in soil moisture simulations is due to soil
hydraulic properties and different soil thickness in LSMs
(Peters-Lidard et al., 2008; Teuling et al., 2009). With re-
spect to the LSMs, we would like to note that the drought
uncertainty assessments conducted here are limited to only
three LSMs, which is comparatively a smaller size.

Disparities in soil moisture persistence in the three LSMs
can have implications for real-time drought monitoring and
forecast. For instance, Shukla et al. (2013) reported that hy-
drologic initial conditions play a major role in hydrological
prediction skills at a global scale. Similar findings were noted
by Shah et al. (2017), who found that hydrological initial
conditions play a vital role in prediction skills of soil mois-
ture droughts over India. Hydrologic prediction at short to
seasonal scales can be influenced by soil moisture persistence
and the LSMs with higher persistence can have more skill
contributed by the initial hydrologic conditions. This further
highlights a need for multi-model-based real-time drought
monitoring and prediction systems over India, as shown in
Wang et al. (2009). We found that the multi-model ensemble
mean performs better than individual LSMs for streamflow
and terrestrial water storage (TWS) from GRACE. Bohn et
al. (2010) reported that the multi-model ensemble average
may not always yield a higher prediction skill at seasonal
scales; however, at shorter lead times, it can provide bet-
ter confidence in prediction of soil moisture droughts due to
higher skill from hydrologic initial conditions (Shukla et al.,
2013; Shah et al., 2017). We also find disparities in coupling
between monsoon/Rabi season 60 cm soil moisture and pre-
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cipitation/air temperature. The differences in soil moisture
sensitivity to atmospheric forcings can have implications for
future projections of droughts from multiple LSMs. For in-
stance, Prudhomme et al. (2014) reported that uncertainty
in drought projections can be large, especially due to mod-
els that simulate the dynamic response of plants to climate.
Overall, we find that 60 cm soil moisture droughts have un-
certainty associated with their areal extent and severity. The
uncertainty in drought estimates is largely due to differences
in the soil moisture persistence. Uncertainty in drought esti-
mates during the crop-growing season can be reduced using
the multi-model ensemble mean, which can assist decision
makers in India.

5 Conclusions

India has witnessed some of the most severe meteorolog-
ical and agricultural droughts during the period of 1951–
2015. The most wide-spread meteorological droughts during
the monsoon season occurred in 1987, 2002, 1972, 1979,
and 2009. During the Rabi season, the most wide-spread
agricultural droughts occurred in 2003, 2001, 1966, 1973,
and 1988. All three LSMs, as well as their ensemble mean,
identified major 60 cm soil moisture droughts between 1951
and 2015.

The three LSMs (e.g. VIC, Noah, and CLM) showed dif-
ferences in persistence of 60 cm soil moisture over India,
which was largely associated with soil water holding capac-
ity. The CLM showed the highest soil moisture persistence
among the three LSMs. Due to differences in the soil mois-
ture persistence, areal extent and intensity of droughts calcu-
lated by the three LSMs showed uncertainty. Using the IAF
curves, we found that the uncertainty in intensity was higher
for the localized droughts (with less areal extent). Uncer-
tainty increases with the return period of droughts, indicat-
ing that localized and rare drought events are more different
among the three LSMs.

All three LSMs showed differences in the coupling be-
tween 60 cm soil moisture and precipitation/air temperature,
suggesting that LSMs have disparities in soil moisture sen-
sitivity to precipitation and temperature anomalies in the
monsoon and Rabi seasons. Considering the differences in
drought characteristics simulated by the three models, multi-
model ensemble mean can be a better estimate of agricultural
droughts over India as demonstrated for streamflow and ter-
restrial water storage. Uncertainty in intensity and areal ex-
tent can be reduced substantially for the severe and localized
droughts that can affect agricultural production. Future stud-
ies should consider soil moisture simulations from a large
number of LSMs as well as other sources of uncertainty in
the historical reconstruction of agricultural droughts over In-
dia. Moreover, including the uncertainty due to choice of dif-
ferent precipitation datasets and other meteorological forcing
datasets can be important for regional drought impact assess-
ments.

Data availability. Gauge-based gridded precipitation and tem-
perature can be obtained from the India Meteorological De-
partment (http://www.imd.gov.in/WelcomeToIMD/Welcome.php).
Wind data were obtained from NCEP-NCAR reanalysis. Additional
datasets can be obtained by email from the corresponding author.
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Appendix A: Estimation of the Standardized
Precipitation Index and the Standardized Soil Moisture
Index

To estimate the Standardized Precipitation Index (SPI), the
gamma probability density function is fitted to precipitation
data accumulated to different timescales (e.g. 1-month, 4-
month, 12-month, and 24-month) in the same way as Ed-
wards and Mckee (1997) as shown in Eq. (A1):

g(x)=
1

βα0(α)
xα−1e−x/β for x > 0, (A1)

where α is a shape parameter (α > 0), β is a scale parameter
(β > 0), x is the precipitation amount (x > 0), and

0(α)=

∞∫
0

yα−1e−ydy

where 0(α) denotes the gamma function.
The shape parameter α and scale parameter β are esti-

mated using maximum likelihood following Edward and Mc-
kee (1997) for each grid and each timescale of interest as
follows:

α̂ =
1

4A

(
1+

√
1+

4A
3

)

β̂ =
x

α̂

where A= ln(x)− [
∑

ln(x)]/n, with n being the number of
precipitation events and x is mean precipitation.

After fitting the probability density function and identify-
ing shape and scale parameters, the cumulative density func-

tion cdf(x)=
P∫
0
xpdf(t) · dt is fitted.

Cumulative probability for a given rainfall amount,
H (PRE), is then estimated from the following mixed distri-
bution:

H(PRE)= (m/n)+ [1− (m/n)]cdf(PRE),

where m is the number of zeros in a dataset and n is the
sample size.

SPI is then estimated by applying equi-probability trans-
formation of the H (PRE) as described in Wu et al. (2007)
following Abramowitz and Stegun (1965).

SPI=−
[
t −

c0+ c1t + c2t
2

1+ d1t + d2t2+ d3t3

]
for 0<H(PRE)≤ 0.5,

SPI=+
[
t −

c0+ c1t + c2t
2

1+ d1t + d2t2+ d3t3

]
for 0.5<H(PRE) < 1,

where

t =

√(
ln
(

1
(H(PRE))2

))
for 0<H(PRE)≤ 0.5,

t =

√(
ln
(

1
(1−H(PRE))2

))
for 0.5<H(PRE) < 1,

c0 = 2.515517; c1 = 0.802853; c2 = 0.010328,
d1 = 1.432788; d2 = 0.189269; d3 = 0.001308.

For more details, refer to Mckee et al. (1993) and Lloyd-
Hughes and Sanders (2002). SSI was estimated in the same
way as SPI but using 60 cm soil moisture instead of precipi-
tation.
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