Articles | Volume 21, issue 11
https://doi.org/10.5194/hess-21-5663-2017
https://doi.org/10.5194/hess-21-5663-2017
Research article
 | 
15 Nov 2017
Research article |  | 15 Nov 2017

Identifying the connective strength between model parameters and performance criteria

Björn Guse, Matthias Pfannerstill, Abror Gafurov, Jens Kiesel, Christian Lehr, and Nicola Fohrer

Related authors

CAMELS-DE: hydro-meteorological time series and attributes for 1555 catchments in Germany
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-318,https://doi.org/10.5194/essd-2024-318, 2024
Revised manuscript accepted for ESSD
Short summary
It could have been much worse: spatial counterfactuals of the July 2021 flood in the Ahr valley, Germany
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-97,https://doi.org/10.5194/nhess-2024-97, 2024
Revised manuscript under review for NHESS
Short summary
What controls the tail behaviour of flood series: rainfall or runoff generation?
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024,https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Quantification of meteorological conditions for rockfall triggers in Germany
Katrin M. Nissen, Stefan Rupp, Thomas M. Kreuzer, Björn Guse, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 22, 2117–2130, https://doi.org/10.5194/nhess-22-2117-2022,https://doi.org/10.5194/nhess-22-2117-2022, 2022
Short summary
Climate change impacts model parameter sensitivity – implications for calibration strategy and model diagnostic evaluation
Lieke Anna Melsen and Björn Guse
Hydrol. Earth Syst. Sci., 25, 1307–1332, https://doi.org/10.5194/hess-25-1307-2021,https://doi.org/10.5194/hess-25-1307-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Simulation-based inference for parameter estimation of complex watershed simulators
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024,https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024,https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024,https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024,https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Karst aquifer discharge response to rainfall interpreted as anomalous transport
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024,https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary

Cited articles

Abebe, N. A., Ogden, F. L., and Pradhan, N. R.: Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: Implications for parameter estimation, J. Hydrol., 389, 301–310, 2010.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: model development, J. Am. Water Resour. As., 34, 73–89, 1998.
Atkinson, S. E., Woods, R. A., and Sivapalan, M.: Climate and landscape controls on water balance model complexity over changing timescales, Water Resour. Res., 38, 1314, https://doi.org/10.1029/2002WR001487, 2002.
Boyle, D. P., Gupta, H. V., Sorooshian, S., Koren, V., Zhang, Z., and Smith, M.: Toward improved streamflow forecasts: Value of semidistributed modeling, Water Resour. Res., 37, 2749–2759, 2001.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.: Classification and Regression Trees, CRC Press, Wadsworth, Belmont, CA, 1984.
Download
Short summary
Performance measures are used to evaluate the representation of hydrological processes in parameters of hydrological models. In this study, we investigated how strongly model parameters and performance measures are connected. It was found that relationships are different for varying flow conditions, indicating that precise parameter identification requires multiple performance measures. The suggested approach contributes to a better handling of parameters in hydrological modelling.