Articles | Volume 21, issue 11
https://doi.org/10.5194/hess-21-5663-2017
https://doi.org/10.5194/hess-21-5663-2017
Research article
 | 
15 Nov 2017
Research article |  | 15 Nov 2017

Identifying the connective strength between model parameters and performance criteria

Björn Guse, Matthias Pfannerstill, Abror Gafurov, Jens Kiesel, Christian Lehr, and Nicola Fohrer

Related authors

How well do hydrological models learn from limited discharge data? A comparison of process- and data-driven models
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076,https://doi.org/10.5194/egusphere-2025-1076, 2025
Short summary
CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024,https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
It could have been much worse: spatial counterfactuals of the July 2021 flood in the Ahr valley, Germany
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-97,https://doi.org/10.5194/nhess-2024-97, 2024
Revised manuscript accepted for NHESS
Short summary
What controls the tail behaviour of flood series: rainfall or runoff generation?
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024,https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Quantification of meteorological conditions for rockfall triggers in Germany
Katrin M. Nissen, Stefan Rupp, Thomas M. Kreuzer, Björn Guse, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 22, 2117–2130, https://doi.org/10.5194/nhess-22-2117-2022,https://doi.org/10.5194/nhess-22-2117-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: How many models do we need to simulate hydrologic processes across large geographical domains?
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025,https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
CONCN: a high-resolution, integrated surface water–groundwater ParFlow modeling platform of continental China
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025,https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Evaluating the effects of topography and land use change on hydrological signatures: a comparative study of two adjacent watersheds
Haifan Liu, Haochen Yan, and Mingfu Guan
Hydrol. Earth Syst. Sci., 29, 2109–2132, https://doi.org/10.5194/hess-29-2109-2025,https://doi.org/10.5194/hess-29-2109-2025, 2025
Short summary
Technical note: What does the Standardized Streamflow Index actually reflect? Insights and implications for hydrological drought analysis
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025,https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary

Cited articles

Abebe, N. A., Ogden, F. L., and Pradhan, N. R.: Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: Implications for parameter estimation, J. Hydrol., 389, 301–310, 2010.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: model development, J. Am. Water Resour. As., 34, 73–89, 1998.
Atkinson, S. E., Woods, R. A., and Sivapalan, M.: Climate and landscape controls on water balance model complexity over changing timescales, Water Resour. Res., 38, 1314, https://doi.org/10.1029/2002WR001487, 2002.
Boyle, D. P., Gupta, H. V., Sorooshian, S., Koren, V., Zhang, Z., and Smith, M.: Toward improved streamflow forecasts: Value of semidistributed modeling, Water Resour. Res., 37, 2749–2759, 2001.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.: Classification and Regression Trees, CRC Press, Wadsworth, Belmont, CA, 1984.
Download
Short summary
Performance measures are used to evaluate the representation of hydrological processes in parameters of hydrological models. In this study, we investigated how strongly model parameters and performance measures are connected. It was found that relationships are different for varying flow conditions, indicating that precise parameter identification requires multiple performance measures. The suggested approach contributes to a better handling of parameters in hydrological modelling.
Share