Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-441-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-441-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Have precipitation extremes and annual totals been increasing in the world's dry regions over the last 60 years?
Max Planck Institute for Biogeochemistry, Jena, Germany
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Jakob Zscheischler
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Martin Heimann
Max Planck Institute for Biogeochemistry, Jena, Germany
Holger Lange
Norwegian Institute of Bioeconomy Research, Ås, Norway
Miguel D. Mahecha
Max Planck Institute for Biogeochemistry, Jena, Germany
German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
Michael Stifel Center Jena for Data-Driven and Simulation Science, Jena, Germany
Geert Jan van Oldenborgh
Weather and Climate Modeling, Koninklijk Nederlands Meteorologisch Instituut, De Bilt, the Netherlands
Friederike E. L. Otto
Environmental Change Institute, University of Oxford, South Parks Road, Oxford, UK
Markus Reichstein
Max Planck Institute for Biogeochemistry, Jena, Germany
German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
Michael Stifel Center Jena for Data-Driven and Simulation Science, Jena, Germany
Related authors
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023, https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary
Short summary
Precipitation change is an important consequence of climate change, but it is hard to detect and quantify. Our intuitive method yields robust and interpretable detection of forced precipitation change in three observational datasets for global mean and extreme precipitation, but the different observational datasets show different magnitudes of forced change. Assessment and reduction of uncertainties surrounding forced precipitation change are important for future projections and adaptation.
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Short summary
Quantifying the imprint of large-scale atmospheric circulation dynamics and associated carbon cycle responses is key to improving our understanding of carbon cycle dynamics. Using a statistical model that relies on spatiotemporal sea level pressure as a proxy for large-scale atmospheric circulation, we quantify the fraction of interannual variability in atmospheric CO2 growth rate and the land CO2 sink that are driven by atmospheric circulation variability.
Christina Heinze-Deml, Sebastian Sippel, Angeline G. Pendergrass, Flavio Lehner, and Nicolai Meinshausen
Geosci. Model Dev., 14, 4977–4999, https://doi.org/10.5194/gmd-14-4977-2021, https://doi.org/10.5194/gmd-14-4977-2021, 2021
Short summary
Short summary
Quantifying dynamical and thermodynamical components of regional precipitation change is a key challenge in climate science. We introduce a novel statistical model (Latent Linear Adjustment Autoencoder) that combines the flexibility of deep neural networks with the robustness advantages of linear regression. The method enables estimation of the contribution of a coarse-scale atmospheric circulation proxy to daily precipitation at high resolution and in a spatially coherent manner.
Milan Flach, Alexander Brenning, Fabian Gans, Markus Reichstein, Sebastian Sippel, and Miguel D. Mahecha
Biogeosciences, 18, 39–53, https://doi.org/10.5194/bg-18-39-2021, https://doi.org/10.5194/bg-18-39-2021, 2021
Short summary
Short summary
Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. We study the impact of droughts and heatwaves on the uptake of CO2 of different vegetation types at the global scale. We find that agricultural areas are generally strongly affected. Forests instead are not particularly sensitive to the events under scrutiny. This implies different water management strategies of forests but also a lack of sensitivity to remote-sensing-derived vegetation activity.
Hendrik Andersen, Jan Cermak, Julia Fuchs, Peter Knippertz, Marco Gaetani, Julian Quinting, Sebastian Sippel, and Roland Vogt
Atmos. Chem. Phys., 20, 3415–3438, https://doi.org/10.5194/acp-20-3415-2020, https://doi.org/10.5194/acp-20-3415-2020, 2020
Short summary
Short summary
Fog and low clouds (FLCs) are an essential but poorly understood element of Namib regional climate. Here, a satellite-based data set of FLCs in central Namib, reanalysis data, and back trajectories are used to systematically analyze conditions when FLCs occur. Synoptic-scale mechanisms are identified that influence the formation of FLCs and the onshore advection of marine boundary-layer air masses. The findings lead to a new conceptual model of mechanisms that drive FLC variability in the Namib.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
Geosci. Model Dev., 10, 3519–3545, https://doi.org/10.5194/gmd-10-3519-2017, https://doi.org/10.5194/gmd-10-3519-2017, 2017
Short summary
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
Sebastian Sippel, Jakob Zscheischler, Miguel D. Mahecha, Rene Orth, Markus Reichstein, Martha Vogel, and Sonia I. Seneviratne
Earth Syst. Dynam., 8, 387–403, https://doi.org/10.5194/esd-8-387-2017, https://doi.org/10.5194/esd-8-387-2017, 2017
Short summary
Short summary
The present study (1) evaluates land–atmosphere coupling in the CMIP5 multi-model ensemble against an ensemble of benchmarking datasets and (2) refines the model ensemble using a land–atmosphere coupling diagnostic as constraint. Our study demonstrates that a considerable fraction of coupled climate models overemphasize warm-season
moisture-limitedclimate regimes in midlatitude regions. This leads to biases in daily-scale temperature extremes, which are alleviated in a constrained ensemble.
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Francesco Martinuzzi, Miguel D. Mahecha, Gustau Camps-Valls, David Montero, Tristan Williams, and Karin Mora
Nonlin. Processes Geophys., 31, 535–557, https://doi.org/10.5194/npg-31-535-2024, https://doi.org/10.5194/npg-31-535-2024, 2024
Short summary
Short summary
We investigated how machine learning can forecast extreme vegetation responses to weather. Examining four models, no single one stood out as the best, though "echo state networks" showed minor advantages. Our results indicate that while these tools are able to generally model vegetation states, they face challenges under extreme conditions. This underlines the potential of artificial intelligence in ecosystem modeling, also pinpointing areas that need further research.
Friederike E. L. Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, and Robert Vautard
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 159–171, https://doi.org/10.5194/ascmo-10-159-2024, https://doi.org/10.5194/ascmo-10-159-2024, 2024
Short summary
Short summary
To assess the role of climate change in individual weather events, different lines of evidence need to be combined in order to draw robust conclusions about whether observed changes can be attributed to anthropogenic climate change. Here we present a transparent method, developed over 8 years, to combine such lines of evidence in a single framework and draw conclusions about the overarching role of human-induced climate change in individual weather events.
Anca Anghelea, Ewelina Dobrowolska, Gunnar Brandt, Martin Reinhardt, Miguel Mahecha, Tejas Morbagal Harish, and Stephan Meissl
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 13–18, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-13-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-13-2024, 2024
Mélanie Weynants, Chaonan Ji, Nora Linscheid, Ulrich Weber, Miguel D. Mahecha, and Fabian Gans
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-396, https://doi.org/10.5194/essd-2024-396, 2024
Preprint under review for ESSD
Short summary
Short summary
Climate extremes are intensifying. The impacts of heatwaves and droughts can be made worse when they happen at the same time. Dheed is a global database of dry and hot compound extreme events from 1950 to 2022. It can be combined with other data to study the impacts of those events on terrestrial ecosystems, specific species or human societies. Dheed's analysis confirms that extremely dry and hot days have become more common on all continents in recent decades, especially in Europe and Africa.
Laura Dénise Nadolski, Tarek Sebastian El Madany, Jacob Allen Nelson, Arnaud Carrara, Gerardo Moreno, Richard K. F. Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-3190, https://doi.org/10.5194/egusphere-2024-3190, 2024
Short summary
Short summary
Semi-arid ecosystems are crucial for Earth's carbon balance and are sensitive to changes in nitrogen (N) and phosphorus (P) levels. Their carbon dynamics are complex and not fully understood. We studied how long-term nutrient changes affect carbon exchange. In summer, N+P changed plant composition and productivity. In transitional seasons, carbon exchange was less weather-dependent with N. Adding N and N+P are increasing carbon exchange variability, driven by grass greenness.
Basil Kraft, Jacob A. Nelson, Sophia Walther, Fabian Gans, Ulrich Weber, Gregory Duveiller, Markus Reichstein, Weijie Zhang, Marc Rußwurm, Devis Tuia, Marco Körner, Zayd Mahmoud Hamdi, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2896, https://doi.org/10.5194/egusphere-2024-2896, 2024
Short summary
Short summary
Global evapotranspiration (ET) can be estimated using machine learning (ML) models optimized on local data and applied to global data. This study explores whether sequential neural networks, which consider past data, perform better than models that do not. The findings show that sequential models struggle with global upscaling, likely due to their sensitivity to data shifts from local to global scales. To improve ML-based upscaling, additional data or integration of physical knowledge is needed.
Lou Brett, Christopher J. White, Daniela I.V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-182, https://doi.org/10.5194/nhess-2024-182, 2024
Preprint under review for NHESS
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events and compounding flooding. The review also highlights opportunities for research in the coming years.
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
EGUsphere, https://doi.org/10.5194/egusphere-2024-2044, https://doi.org/10.5194/egusphere-2024-2044, 2024
Short summary
Short summary
We use an innovative approach to study the Earth's water cycle by blending advanced computer learning techniques with a traditional water cycle model. We developed a model that learns from meteorological data, with a special focus on understanding how vegetation influences water movement. Our model closely aligns with real-world observations, yet there are areas that need improvement. This study opens up new possibilities to better understand the water cycle and its interactions with vegetation.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Miguel D. Mahecha, Guido Kraemer, and Fabio Crameri
Earth Syst. Dynam., 15, 1153–1159, https://doi.org/10.5194/esd-15-1153-2024, https://doi.org/10.5194/esd-15-1153-2024, 2024
Short summary
Short summary
Our paper examines the visual representation of the planetary boundary concept, which helps convey Earth's capacity to sustain human life. We identify three issues: exaggerated impact sizes, confusing color patterns, and inaccessibility for colour-vision deficiency. These flaws can lead to overstating risks. We suggest improving these visual elements for more accurate and accessible information for decision-makers.
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024, https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Short summary
We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents.
Friedrich J. Bohn, Ana Bastos, Romina Martin, Anja Rammig, Niak Sian Koh, Giles B. Sioen, Bram Buscher, Louise Carver, Fabrice DeClerck, Moritz Drupp, Robert Fletcher, Matthew Forrest, Alexandros Gasparatos, Alex Godoy-Faúndez, Gregor Hagedorn, Martin Hänsel, Jessica Hetzer, Thomas Hickler, Cornelia B. Krug, Stasja Koot, Xiuzhen Li, Amy Luers, Shelby Matevich, H. Damon Matthews, Ina C. Meier, Awaz Mohamed, Sungmin O, David Obura, Ben Orlove, Rene Orth, Laura Pereira, Markus Reichstein, Lerato Thakholi, Peter Verburg, and Yuki Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-2551, https://doi.org/10.5194/egusphere-2024-2551, 2024
Short summary
Short summary
An interdisciplinary collaboration of 35 international researchers from 34 institutions highlighting nine recent findings in biosphere research. Within these themes, they discuss issues arising from climate change and other anthropogenic stressors, and highlight the co-benefits of nature-based solutions and ecosystem services. They discuss recent findings in the context of global trade and international policy frameworks, and highlight lessons for local implementation of nature-based solutions.
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024, https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Short summary
The evaluation of model performance is essential for hydrological modeling. Using performance criteria requires a deep understanding of their properties. We focus on a counterintuitive aspect of the Nash–Sutcliffe efficiency (NSE) and show that if we divide the data into multiple parts, the overall performance can be higher than all the evaluations of the subsets. Although this follows from the definition of the NSE, the resulting behavior can have unintended consequences in practice.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Theertha Kariyathan, Ana Bastos, Markus Reichstein, Wouter Peters, and Julia Marshall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1382, https://doi.org/10.5194/egusphere-2024-1382, 2024
Short summary
Short summary
The carbon uptake period (CUP) refers to the time of the year when there is net absorption of CO2 from the atmosphere to the land. Several studies have assessed changes in CUP based on seasonal metrics from CO2 mole fraction measurements to understand the response of terrestrial biosphere to climate variations. However, we find that the CUP derived from CO2 mole fraction measurements are not likely to provide an accurate magnitude of the actual changes occurring over the surface.
Francesco Martinuzzi, Miguel D. Mahecha, David Montero, Lazaro Alonso, and Karin Mora
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 89–95, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024, 2024
David Montero, Miguel D. Mahecha, César Aybar, Clemens Mosig, and Sebastian Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 105–112, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024, 2024
Jasper M. C. Denissen, Adriaan J. Teuling, Sujan Koirala, Markus Reichstein, Gianpaolo Balsamo, Martha M. Vogel, Xin Yu, and René Orth
Earth Syst. Dynam., 15, 717–734, https://doi.org/10.5194/esd-15-717-2024, https://doi.org/10.5194/esd-15-717-2024, 2024
Short summary
Short summary
Heat extremes have severe implications for human health and ecosystems. Heat extremes are mostly introduced by large-scale atmospheric circulation but can be modulated by vegetation. Vegetation with access to water uses solar energy to evaporate water into the atmosphere. Under dry conditions, water may not be available, suppressing evaporation and heating the atmosphere. Using climate projections, we show that regionally less water is available for vegetation, intensifying future heat extremes.
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024, https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
Short summary
We delved into the socio-economic impacts of the 2018–2022 drought in Germany. We derived a dataset covering the impacts of droughts in Germany between 2000 and 2022 on sectors such as agriculture and forestry based on newspaper articles. Notably, our study illustrated that the longer drought had a wider reach and more varied effects. We show that dealing with longer droughts requires different plans compared to shorter ones, and it is crucial to be ready for the challenges they bring.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Derrick Muheki, Axel A. J. Deijns, Emanuele Bevacqua, Gabriele Messori, Jakob Zscheischler, and Wim Thiery
Earth Syst. Dynam., 15, 429–466, https://doi.org/10.5194/esd-15-429-2024, https://doi.org/10.5194/esd-15-429-2024, 2024
Short summary
Short summary
Climate change affects the interaction, dependence, and joint occurrence of climate extremes. Here we investigate the joint occurrence of pairs of river floods, droughts, heatwaves, crop failures, wildfires, and tropical cyclones in East Africa under past and future climate conditions. Our results show that, across all future warming scenarios, the frequency and spatial extent of these co-occurring extremes will increase in this region, particularly in areas close to the Nile and Congo rivers.
Martin Jung, Jacob Nelson, Mirco Migliavacca, Tarek El-Madany, Dario Papale, Markus Reichstein, Sophia Walther, and Thomas Wutzler
Biogeosciences, 21, 1827–1846, https://doi.org/10.5194/bg-21-1827-2024, https://doi.org/10.5194/bg-21-1827-2024, 2024
Short summary
Short summary
We present a methodology to detect inconsistencies in perhaps the most important data source for measurements of ecosystem–atmosphere carbon, water, and energy fluxes. We expect that the derived consistency flags will be relevant for data users and will help in improving our understanding of and our ability to model ecosystem–climate interactions.
Rosa Pietroiusti, Inne Vanderkelen, Friederike E. L. Otto, Clair Barnes, Lucy Temple, Mary Akurut, Philippe Bally, Nicole P. M. van Lipzig, and Wim Thiery
Earth Syst. Dynam., 15, 225–264, https://doi.org/10.5194/esd-15-225-2024, https://doi.org/10.5194/esd-15-225-2024, 2024
Short summary
Short summary
Heavy rainfall in eastern Africa between late 2019 and mid 2020 caused devastating floods and landslides and drove the levels of Lake Victoria to a record-breaking maximum in May 2020. In this study, we characterize the spatial extent and impacts of the floods in the Lake Victoria basin and investigate how human-induced climate change influenced the probability and intensity of the record-breaking lake levels and flooding by applying a multi-model extreme event attribution methodology.
Samuel Upton, Markus Reichstein, Fabian Gans, Wouter Peters, Basil Kraft, and Ana Bastos
Atmos. Chem. Phys., 24, 2555–2582, https://doi.org/10.5194/acp-24-2555-2024, https://doi.org/10.5194/acp-24-2555-2024, 2024
Short summary
Short summary
Data-driven eddy-covariance upscaled estimates of the global land–atmosphere net CO2 exchange (NEE) show important mismatches with regional and global estimates based on atmospheric information. To address this, we create a model with a dual constraint based on bottom-up eddy-covariance data and top-down atmospheric inversion data. Our model overcomes shortcomings of each approach, producing improved NEE estimates from local to global scale, helping to reduce uncertainty in the carbon budget.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Marleen Pallandt, Marion Schrumpf, Holger Lange, Markus Reichstein, Lin Yu, and Bernhard Ahrens
EGUsphere, https://doi.org/10.5194/egusphere-2024-186, https://doi.org/10.5194/egusphere-2024-186, 2024
Short summary
Short summary
As soils get warmer due to climate change, SOC decomposes faster because of higher microbial activity, but only with sufficient soil moisture. We modelled how microbes decompose plant litter and microbial residues at different soil depths. We found that deep soil layers are more sensitive than topsoils. SOC is lost from the soil with warming, but this can be mitigated or worsened depending on the type of litter and its sensitivity to temperature. Droughts can reduce warming-induced SOC losses.
Richard Nair, Yunpeng Luo, Tarek El-Madany, Victor Rolo, Javier Pacheco-Labrador, Silvia Caldararu, Kendalynn A. Morris, Marion Schrumpf, Arnaud Carrara, Gerardo Moreno, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2434, https://doi.org/10.5194/egusphere-2023-2434, 2023
Preprint archived
Short summary
Short summary
We studied a Mediterranean ecosystem to understand carbon uptake efficiency and its controls. These ecosystems face potential nitrogen-phosphorus imbalances due to pollution. Analysing six years of carbon data, we assessed controls at different timeframes. This is crucial for predicting such vulnerable regions. Our findings revealed N limitation on C uptake, not N:P imbalance, and strong influence of water availability. whether drought or wetness promoted net C uptake depended on timescale.
Theertha Kariyathan, Ana Bastos, Julia Marshall, Wouter Peters, Pieter Tans, and Markus Reichstein
Atmos. Meas. Tech., 16, 3299–3312, https://doi.org/10.5194/amt-16-3299-2023, https://doi.org/10.5194/amt-16-3299-2023, 2023
Short summary
Short summary
The timing and duration of the carbon uptake period (CUP) are sensitive to the occurrence of major phenological events, which are influenced by recent climate change. This study presents an ensemble-based approach for quantifying the timing and duration of the CUP and their uncertainty when derived from atmospheric CO2 measurements with noise and gaps. The CUP metrics derived with the approach are more robust and have less uncertainty than when estimated with the conventional methods.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023, https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary
Short summary
Precipitation change is an important consequence of climate change, but it is hard to detect and quantify. Our intuitive method yields robust and interpretable detection of forced precipitation change in three observational datasets for global mean and extreme precipitation, but the different observational datasets show different magnitudes of forced change. Assessment and reduction of uncertainties surrounding forced precipitation change are important for future projections and adaptation.
Shijie Jiang, Emanuele Bevacqua, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 26, 6339–6359, https://doi.org/10.5194/hess-26-6339-2022, https://doi.org/10.5194/hess-26-6339-2022, 2022
Short summary
Short summary
Using a novel explainable machine learning approach, we investigated the contributions of precipitation, temperature, and day length to different peak discharges, thereby uncovering three primary flooding mechanisms widespread in European catchments. The results indicate that flooding mechanisms have changed in numerous catchments over the past 70 years. The study highlights the potential of artificial intelligence in revealing complex changes in extreme events related to climate change.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Short summary
Quantifying the imprint of large-scale atmospheric circulation dynamics and associated carbon cycle responses is key to improving our understanding of carbon cycle dynamics. Using a statistical model that relies on spatiotemporal sea level pressure as a proxy for large-scale atmospheric circulation, we quantify the fraction of interannual variability in atmospheric CO2 growth rate and the land CO2 sink that are driven by atmospheric circulation variability.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
D. Montero, C. Aybar, M. D. Mahecha, and S. Wieneke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 301–306, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, 2022
Daniel M. Gilford, Andrew Pershing, Benjamin H. Strauss, Karsten Haustein, and Friederike E. L. Otto
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, https://doi.org/10.5194/ascmo-8-135-2022, https://doi.org/10.5194/ascmo-8-135-2022, 2022
Short summary
Short summary
We developed a framework to produce global real-time estimates of how human-caused climate change affects the likelihood of daily weather events. A multi-method approach provides ensemble attribution estimates accompanied by confidence intervals, creating new opportunities for climate change communication. Methodological efficiency permits daily analysis using forecasts or observations. Applications with daily maximum temperature highlight the framework's capacity on daily and global scales.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Christina Heinze-Deml, Sebastian Sippel, Angeline G. Pendergrass, Flavio Lehner, and Nicolai Meinshausen
Geosci. Model Dev., 14, 4977–4999, https://doi.org/10.5194/gmd-14-4977-2021, https://doi.org/10.5194/gmd-14-4977-2021, 2021
Short summary
Short summary
Quantifying dynamical and thermodynamical components of regional precipitation change is a key challenge in climate science. We introduce a novel statistical model (Latent Linear Adjustment Autoencoder) that combines the flexibility of deep neural networks with the robustness advantages of linear regression. The method enables estimation of the contribution of a coarse-scale atmospheric circulation proxy to daily precipitation at high resolution and in a spatially coherent manner.
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021, https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
Short summary
Climate hazards may be caused by events which have multiple drivers. Here we present a method to break down climate model biases in hazard indicators down to the bias caused by each driving variable. Using simplified fire and heat stress indicators driven by temperature and relative humidity as examples, we show how multivariate indicators may have complex biases and that the relationship between driving variables is a source of bias that must be considered in climate model bias corrections.
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
Jun Li, Zhaoli Wang, Xushu Wu, Jakob Zscheischler, Shenglian Guo, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 1587–1601, https://doi.org/10.5194/hess-25-1587-2021, https://doi.org/10.5194/hess-25-1587-2021, 2021
Short summary
Short summary
We introduce a daily-scale index, termed the standardized compound drought and heat index (SCDHI), to measure the key features of compound dry-hot conditions. SCDHI can not only monitor the long-term compound dry-hot events, but can also capture such events at sub-monthly scale and reflect the related vegetation activity impacts. The index can provide a new tool to quantify sub-monthly characteristics of compound dry-hot events, which are vital for releasing early and timely warning.
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021, https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary
Short summary
Marine ecosystems could suffer severe damage from the co-occurrence of a marine heat wave with extremely low chlorophyll concentration. Here, we provide a first assessment of compound marine heat wave and
low-chlorophyll events in the global ocean from 1998 to 2018. We reveal hotspots of these compound events in the equatorial Pacific and in the Arabian Sea and show that they mostly occur in summer at high latitudes and their frequency is modulated by large-scale modes of climate variability.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Jan Pisek, Angela Erb, Lauri Korhonen, Tobias Biermann, Arnaud Carrara, Edoardo Cremonese, Matthias Cuntz, Silvano Fares, Giacomo Gerosa, Thomas Grünwald, Niklas Hase, Michal Heliasz, Andreas Ibrom, Alexander Knohl, Johannes Kobler, Bart Kruijt, Holger Lange, Leena Leppänen, Jean-Marc Limousin, Francisco Ramon Lopez Serrano, Denis Loustau, Petr Lukeš, Lars Lundin, Riccardo Marzuoli, Meelis Mölder, Leonardo Montagnani, Johan Neirynck, Matthias Peichl, Corinna Rebmann, Eva Rubio, Margarida Santos-Reis, Crystal Schaaf, Marius Schmidt, Guillaume Simioni, Kamel Soudani, and Caroline Vincke
Biogeosciences, 18, 621–635, https://doi.org/10.5194/bg-18-621-2021, https://doi.org/10.5194/bg-18-621-2021, 2021
Short summary
Short summary
Understory vegetation is the most diverse, least understood component of forests worldwide. Understory communities are important drivers of overstory succession and nutrient cycling. Multi-angle remote sensing enables us to describe surface properties by means that are not possible when using mono-angle data. Evaluated over an extensive set of forest ecosystem experimental sites in Europe, our reported method can deliver good retrievals, especially over different forest types with open canopies.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Milan Flach, Alexander Brenning, Fabian Gans, Markus Reichstein, Sebastian Sippel, and Miguel D. Mahecha
Biogeosciences, 18, 39–53, https://doi.org/10.5194/bg-18-39-2021, https://doi.org/10.5194/bg-18-39-2021, 2021
Short summary
Short summary
Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. We study the impact of droughts and heatwaves on the uptake of CO2 of different vegetation types at the global scale. We find that agricultural areas are generally strongly affected. Forests instead are not particularly sensitive to the events under scrutiny. This implies different water management strategies of forests but also a lack of sensitivity to remote-sensing-derived vegetation activity.
Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, Fraser Lott, Julie Arrighi, Roop Singh, and Maarten van Aalst
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, https://doi.org/10.5194/ascmo-6-177-2020, 2020
Short summary
Short summary
Event attribution studies can now be performed at short notice. We document a protocol developed by the World Weather Attribution group. It includes choices of which events to analyse, the event definition, observational analysis, model evaluation, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis, and communication procedures. The protocol will be useful for future event attribution studies and as a basis for an operational attribution service.
Naixin Fan, Sujan Koirala, Markus Reichstein, Martin Thurner, Valerio Avitabile, Maurizio Santoro, Bernhard Ahrens, Ulrich Weber, and Nuno Carvalhais
Earth Syst. Sci. Data, 12, 2517–2536, https://doi.org/10.5194/essd-12-2517-2020, https://doi.org/10.5194/essd-12-2517-2020, 2020
Short summary
Short summary
The turnover time of terrestrial carbon (τ) controls the global carbon cycle–climate feedback. In this study, we provide a new, updated ensemble of diagnostic terrestrial carbon turnover times and associated uncertainties on a global scale. Despite the large variation in both magnitude and spatial patterns of τ, we identified robust features in the spatial patterns of τ which could contribute to uncertainty reductions in future projections of the carbon cycle–climate feedback.
Andreia Filipa Silva Ribeiro, Ana Russo, Célia Marina Gouveia, Patrícia Páscoa, and Jakob Zscheischler
Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, https://doi.org/10.5194/bg-17-4815-2020, 2020
Short summary
Short summary
This study investigates the impacts of compound dry and hot extremes on crop yields, namely wheat and barley, over two regions in Spain dominated by rainfed agriculture. We provide estimates of the conditional probability of crop loss under compound dry and hot conditions, which could be an important tool for responsible authorities to mitigate the impacts magnified by the interactions between the different hazards.
B. Kraft, M. Jung, M. Körner, and M. Reichstein
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1537–1544, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1537-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1537-2020, 2020
Daniel E. Pabon-Moreno, Talie Musavi, Mirco Migliavacca, Markus Reichstein, Christine Römermann, and Miguel D. Mahecha
Biogeosciences, 17, 3991–4006, https://doi.org/10.5194/bg-17-3991-2020, https://doi.org/10.5194/bg-17-3991-2020, 2020
Short summary
Short summary
Ecosystem CO2 uptake changes in time depending on climate conditions. In this study, we analyze how different climate variables affect the timing when CO2 uptake is at a maximum (DOYGPPmax). We found that the joint effects of radiation, temperature, and vapor pressure deficit are the most relevant controlling factors of DOYGPPmax and that if they increase, DOYGPPmax will happen earlier. These results help us to better understand how CO2 uptake could be affected by climate change.
René Orth, Georgia Destouni, Martin Jung, and Markus Reichstein
Biogeosciences, 17, 2647–2656, https://doi.org/10.5194/bg-17-2647-2020, https://doi.org/10.5194/bg-17-2647-2020, 2020
Short summary
Short summary
Drought duration is a key control of the large-scale biospheric drought response.
Thereby, the vegetation responds linearly to drought duration at large spatial scales.
The slope of the linear relationship between the vegetation drought response and drought duration is steeper in drier climates.
Guido Kraemer, Gustau Camps-Valls, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 17, 2397–2424, https://doi.org/10.5194/bg-17-2397-2020, https://doi.org/10.5194/bg-17-2397-2020, 2020
Short summary
Short summary
To closely monitor the state of our planet, we require systems that can monitor
the observation of many different properties at the same time. We create
indicators that resemble the behavior of many different simultaneous
observations. We apply the method to create indicators representing the
Earth's biosphere. The indicators show a productivity gradient and a water
gradient. The resulting indicators can detect a large number of changes and
extremes in the Earth system.
Hendrik Andersen, Jan Cermak, Julia Fuchs, Peter Knippertz, Marco Gaetani, Julian Quinting, Sebastian Sippel, and Roland Vogt
Atmos. Chem. Phys., 20, 3415–3438, https://doi.org/10.5194/acp-20-3415-2020, https://doi.org/10.5194/acp-20-3415-2020, 2020
Short summary
Short summary
Fog and low clouds (FLCs) are an essential but poorly understood element of Namib regional climate. Here, a satellite-based data set of FLCs in central Namib, reanalysis data, and back trajectories are used to systematically analyze conditions when FLCs occur. Synoptic-scale mechanisms are identified that influence the formation of FLCs and the onshore advection of marine boundary-layer air masses. The findings lead to a new conceptual model of mechanisms that drive FLC variability in the Namib.
Martin Jung, Christopher Schwalm, Mirco Migliavacca, Sophia Walther, Gustau Camps-Valls, Sujan Koirala, Peter Anthoni, Simon Besnard, Paul Bodesheim, Nuno Carvalhais, Frédéric Chevallier, Fabian Gans, Daniel S. Goll, Vanessa Haverd, Philipp Köhler, Kazuhito Ichii, Atul K. Jain, Junzhi Liu, Danica Lombardozzi, Julia E. M. S. Nabel, Jacob A. Nelson, Michael O'Sullivan, Martijn Pallandt, Dario Papale, Wouter Peters, Julia Pongratz, Christian Rödenbeck, Stephen Sitch, Gianluca Tramontana, Anthony Walker, Ulrich Weber, and Markus Reichstein
Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, https://doi.org/10.5194/bg-17-1343-2020, 2020
Short summary
Short summary
We test the approach of producing global gridded carbon fluxes based on combining machine learning with local measurements, remote sensing and climate data. We show that we can reproduce seasonal variations in carbon assimilated by plants via photosynthesis and in ecosystem net carbon balance. The ecosystem’s mean carbon balance and carbon flux trends require cautious interpretation. The analysis paves the way for future improvements of the data-driven assessment of carbon fluxes.
Christopher Krich, Jakob Runge, Diego G. Miralles, Mirco Migliavacca, Oscar Perez-Priego, Tarek El-Madany, Arnaud Carrara, and Miguel D. Mahecha
Biogeosciences, 17, 1033–1061, https://doi.org/10.5194/bg-17-1033-2020, https://doi.org/10.5194/bg-17-1033-2020, 2020
Short summary
Short summary
Causal inference promises new insight into biosphere–atmosphere interactions using time series only. To understand the behaviour of a specific method on such data, we used artificial and observation-based data. The observed structures are very interpretable and reveal certain ecosystem-specific behaviour, as only a few relevant links remain, in contrast to pure correlation techniques. Thus, causal inference allows to us gain well-constrained insights into processes and interactions.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Nora Linscheid, Lina M. Estupinan-Suarez, Alexander Brenning, Nuno Carvalhais, Felix Cremer, Fabian Gans, Anja Rammig, Markus Reichstein, Carlos A. Sierra, and Miguel D. Mahecha
Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, https://doi.org/10.5194/bg-17-945-2020, 2020
Short summary
Short summary
Vegetation typically responds to variation in temperature and rainfall within days. Yet seasonal changes in meteorological conditions, as well as decadal climate variability, additionally shape the state of ecosystems. It remains unclear how vegetation responds to climate variability on these different timescales. We find that the vegetation response to climate variability depends on the timescale considered. This scale dependency should be considered for modeling land–atmosphere interactions.
Javier Pacheco-Labrador, Tarek S. El-Madany, M. Pilar Martin, Rosario Gonzalez-Cascon, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Tiana Hammer, Heiko Moossen, Kathrin Henkel, Olaf Kolle, David Martini, Vicente Burchard, Christiaan van der Tol, Karl Segl, Markus Reichstein, and Mirco Migliavacca
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-501, https://doi.org/10.5194/bg-2019-501, 2020
Revised manuscript not accepted
Short summary
Short summary
The new generation of sensors on-board satellites have the potential to provide richer information about the function of vegetation than before. This information, nowadays missing, is fundamental to improve our understanding and prediction of carbon and water cycles, and therefore to anticipate effects and responses to Climate Change. In this manuscript we propose a method to exploit the data provided by these satellites to successfully obtain this information key to face Climate Change.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Inne Vanderkelen, Jakob Zschleischler, Lukas Gudmundsson, Klaus Keuler, Francois Rineau, Natalie Beenaerts, Jaco Vangronsveld, and Wim Thiery
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-267, https://doi.org/10.5194/bg-2019-267, 2019
Manuscript not accepted for further review
Sven Boese, Martin Jung, Nuno Carvalhais, Adriaan J. Teuling, and Markus Reichstein
Biogeosciences, 16, 2557–2572, https://doi.org/10.5194/bg-16-2557-2019, https://doi.org/10.5194/bg-16-2557-2019, 2019
Short summary
Short summary
This study examines how limited water availability during droughts affects water-use efficiency. This metric describes how much carbon an ecosystem can assimilate for each unit of water lost by transpiration. We test how well different water-use efficiency models can capture the dynamics of transpiration decrease due to increased soil-water limitation. Accounting for the interacting effects of radiation and water limitation is necessary to accurately predict transpiration during these periods.
Richard K. F. Nair, Kendalynn A. Morris, Martin Hertel, Yunpeng Luo, Gerardo Moreno, Markus Reichstein, Marion Schrumpf, and Mirco Migliavacca
Biogeosciences, 16, 1883–1901, https://doi.org/10.5194/bg-16-1883-2019, https://doi.org/10.5194/bg-16-1883-2019, 2019
Short summary
Short summary
We investigated how nutrient availability affects seasonal timing of root growth and death in a Spanish savanna, adapted to a long summer drought. We found that nitrogen (N) additions led to more root biomass but number of roots was higher with N and phosphorus together. These effects were strongly affected by the time of year. In autumn root growth occurred after leaf production. This has implications for how we understand biomass production and carbon uptake in these systems.
Robert Vautard, Geert Jan van Oldenborgh, Friederike E. L. Otto, Pascal Yiou, Hylke de Vries, Erik van Meijgaard, Andrew Stepek, Jean-Michel Soubeyroux, Sjoukje Philip, Sarah F. Kew, Cecilia Costella, Roop Singh, and Claudia Tebaldi
Earth Syst. Dynam., 10, 271–286, https://doi.org/10.5194/esd-10-271-2019, https://doi.org/10.5194/esd-10-271-2019, 2019
Short summary
Short summary
The effect of human activities on the probability of winter wind storms like the ones that occurred in Western Europe in January 2018 is analysed using multiple model ensembles. Despite a significant probability decline in observations, we find no significant change in probabilities due to human influence on climate so far. However, such extreme events are likely to be slightly more frequent in the future. The observed decrease in storminess is likely to be due to increasing roughness.
Sjoukje Philip, Sarah Sparrow, Sarah F. Kew, Karin van der Wiel, Niko Wanders, Roop Singh, Ahmadul Hassan, Khaled Mohammed, Hammad Javid, Karsten Haustein, Friederike E. L. Otto, Feyera Hirpa, Ruksana H. Rimi, A. K. M. Saiful Islam, David C. H. Wallom, and Geert Jan van Oldenborgh
Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, https://doi.org/10.5194/hess-23-1409-2019, 2019
Short summary
Short summary
In August 2017 Bangladesh faced one of its worst river flooding events in recent history. For the large Brahmaputra basin, using precipitation alone as a proxy for flooding might not be appropriate. In this paper we explicitly test this assumption by performing an attribution of both precipitation and discharge as a flooding-related measure to climate change. We find the change in risk to be of similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach.
Xiaolu Tang, Nuno Carvalhais, Catarina Moura, Bernhard Ahrens, Sujan Koirala, Shaohui Fan, Fengying Guan, Wenjie Zhang, Sicong Gao, Vincenzo Magliulo, Pauline Buysse, Shibin Liu, Guo Chen, Wunian Yang, Zhen Yu, Jingjing Liang, Leilei Shi, Shenyan Pu, and Markus Reichstein
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-37, https://doi.org/10.5194/bg-2019-37, 2019
Preprint withdrawn
Short summary
Short summary
Vegetation CUE is a key measure of carbon transfer from the atmosphere to terrestrial biomass. This study modelled global CUE with published observations using random forest. CUE varied with ecosystem types and spatially decreased with latitude, challenging the previous conclusion that CUE was independent of environmental controls. Our results emphasize a better understanding of environmental controls on CUE to reduce uncertainties in prognostic land-process model simulations.
Jakob Zscheischler, Erich M. Fischer, and Stefan Lange
Earth Syst. Dynam., 10, 31–43, https://doi.org/10.5194/esd-10-31-2019, https://doi.org/10.5194/esd-10-31-2019, 2019
Short summary
Short summary
Many climate models have biases in different variables throughout the world. Adjusting these biases is necessary for estimating climate impacts. Here we demonstrate that widely used univariate bias adjustment methods do not work well for multivariate impacts. We illustrate this problem using fire risk and heat stress as impact indicators. Using an approach that adjusts not only biases in the individual climate variables but also biases in the correlation between them can resolve these problems.
Milan Flach, Sebastian Sippel, Fabian Gans, Ana Bastos, Alexander Brenning, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 15, 6067–6085, https://doi.org/10.5194/bg-15-6067-2018, https://doi.org/10.5194/bg-15-6067-2018, 2018
Short summary
Short summary
Northern forests enhanced their productivity during and before the 2010 Russian mega heatwave. We scrutinize this issue with a novel type of multivariate extreme event detection approach. Forests compensate for 54 % of the carbon losses in agricultural ecosystems due to vulnerable conditions in spring and better water management in summer. The findings highlight the importance of forests in mitigating climate change, while not alleviating the consequences of extreme events for food security.
Martha M. Vogel, Jakob Zscheischler, and Sonia I. Seneviratne
Earth Syst. Dynam., 9, 1107–1125, https://doi.org/10.5194/esd-9-1107-2018, https://doi.org/10.5194/esd-9-1107-2018, 2018
Short summary
Short summary
Climate change projections of temperature extremes are particularly uncertain in central Europe. We demonstrate that varying soil moisture–atmosphere feedbacks in current climate models leads to an enhancement of model differences; thus, they can explain the large uncertainties in extreme temperature projections. Using an observation-based constraint, we show that the strong drying and large increase in temperatures exhibited by models on the hottest day in central Europe are highly unlikely.
Thomas Wutzler, Antje Lucas-Moffat, Mirco Migliavacca, Jürgen Knauer, Kerstin Sickel, Ladislav Šigut, Olaf Menzer, and Markus Reichstein
Biogeosciences, 15, 5015–5030, https://doi.org/10.5194/bg-15-5015-2018, https://doi.org/10.5194/bg-15-5015-2018, 2018
Short summary
Short summary
Net fluxes of carbon dioxide at the ecosystem level measured by eddy covariance are a main source for understanding biosphere–atmosphere interactions. However, there is a need for more usable and extensible tools for post-processing steps of the half-hourly flux data. Therefore, we developed the REddyProc package, providing data filtering, gap filling, and flux partitioning. The extensible functions are compatible with state-of-the-art tools but allow easier integration in extended analysis.
Paul Bodesheim, Martin Jung, Fabian Gans, Miguel D. Mahecha, and Markus Reichstein
Earth Syst. Sci. Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, https://doi.org/10.5194/essd-10-1327-2018, 2018
Short summary
Short summary
We provide continuous half-hourly carbon and energy fluxes for 2001 to 2014 at 0.5° spatial resolution, which allows for analyzing diurnal cycles globally. The data set contains four fluxes: gross primary production (GPP), net ecosystem exchange (NEE), latent heat (LE), and sensible heat (H). In addition, we provide a derived product that only contains monthly average diurnal cycles but which also enables us to study the important characteristics of subdaily patterns at a global scale.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Jacob A. Nelson, Nuno Carvalhais, Mirco Migliavacca, Markus Reichstein, and Martin Jung
Biogeosciences, 15, 2433–2447, https://doi.org/10.5194/bg-15-2433-2018, https://doi.org/10.5194/bg-15-2433-2018, 2018
Short summary
Short summary
Plants have typical daily carbon uptake and water loss cycles. However, these cycles may change under periods of duress, such as water limitation. Here we identify two types of patterns in response to water limitations: a tendency to lose more water in the morning than afternoon and a decoupling of the carbon and water cycles. The findings show differences in responses by trees and grasses and suggest that morning shifts may be more efficient at gaining carbon per unit water used.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Geert Jan van Oldenborgh, Sjoukje Philip, Sarah Kew, Michiel van Weele, Peter Uhe, Friederike Otto, Roop Singh, Indrani Pai, Heidi Cullen, and Krishna AchutaRao
Nat. Hazards Earth Syst. Sci., 18, 365–381, https://doi.org/10.5194/nhess-18-365-2018, https://doi.org/10.5194/nhess-18-365-2018, 2018
Short summary
Short summary
On 19 May 2016 a temperature of 51.0 °C in Phalodi (northwest India) set a new Indian record. In 2015 a very lethal heat wave had occurred in the southeast. We find that in India the trend in extreme temperatures due to greenhouse gases is largely cancelled by increasing air pollution and irrigation. The health impacts of heat waves do increase due to higher humidity and air pollution. This implies that we expect heat waves to become much hotter as soon as air pollution is brought under control.
Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
Geosci. Model Dev., 10, 3519–3545, https://doi.org/10.5194/gmd-10-3519-2017, https://doi.org/10.5194/gmd-10-3519-2017, 2017
Short summary
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
Jakob Zscheischler, Rene Orth, and Sonia I. Seneviratne
Biogeosciences, 14, 3309–3320, https://doi.org/10.5194/bg-14-3309-2017, https://doi.org/10.5194/bg-14-3309-2017, 2017
Short summary
Short summary
We use newly established methods to compute bivariate return periods of temperature and precipitation and relate those to crop yield variability in Europe. Most often, crop yields are lower when it is hot and dry and higher when it is cold and wet. The variability in crop yields along a specific climate gradient can be captured well by return periods aligned with these gradients. This study provides new possibilities for investigating the relationship between crop yield variability and climate.
Sven Boese, Martin Jung, Nuno Carvalhais, and Markus Reichstein
Biogeosciences, 14, 3015–3026, https://doi.org/10.5194/bg-14-3015-2017, https://doi.org/10.5194/bg-14-3015-2017, 2017
Short summary
Short summary
For plants, the ratio of carbon uptake to water loss by transpiration is usually thought to depend on characteristic properties (their adaption to water scarcity) and the dryness of the atmosphere at any given moment. We show that, on the ecosystem scale, radiation has an independent effect on this ratio that had not been previously considered. When including this variable in models, predictions of transpiration improve considerably.
Sebastian Sippel, Jakob Zscheischler, Miguel D. Mahecha, Rene Orth, Markus Reichstein, Martha Vogel, and Sonia I. Seneviratne
Earth Syst. Dynam., 8, 387–403, https://doi.org/10.5194/esd-8-387-2017, https://doi.org/10.5194/esd-8-387-2017, 2017
Short summary
Short summary
The present study (1) evaluates land–atmosphere coupling in the CMIP5 multi-model ensemble against an ensemble of benchmarking datasets and (2) refines the model ensemble using a land–atmosphere coupling diagnostic as constraint. Our study demonstrates that a considerable fraction of coupled climate models overemphasize warm-season
moisture-limitedclimate regimes in midlatitude regions. This leads to biases in daily-scale temperature extremes, which are alleviated in a constrained ensemble.
Benoit P. Guillod, Richard G. Jones, Andy Bowery, Karsten Haustein, Neil R. Massey, Daniel M. Mitchell, Friederike E. L. Otto, Sarah N. Sparrow, Peter Uhe, David C. H. Wallom, Simon Wilson, and Myles R. Allen
Geosci. Model Dev., 10, 1849–1872, https://doi.org/10.5194/gmd-10-1849-2017, https://doi.org/10.5194/gmd-10-1849-2017, 2017
Short summary
Short summary
The weather@home climate modelling system uses the computing power of volunteers around the world to generate a very large number of climate model simulations. This is particularly useful when investigating extreme weather events, notably for the attribution of these events to anthropogenic climate change. A new version of weather@home is presented and evaluated, which includes an improved representation of the land surface and increased horizontal resolution over Europe.
Pascal Yiou, Aglaé Jézéquel, Philippe Naveau, Frederike E. L. Otto, Robert Vautard, and Mathieu Vrac
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, https://doi.org/10.5194/ascmo-3-17-2017, 2017
Short summary
Short summary
The attribution of classes of extreme events, such as heavy precipitation or heatwaves, relies on the estimate of small probabilities (with and without climate change). Such events are connected to the large-scale atmospheric circulation. This paper links such probabilities with properties of the atmospheric circulation by using a Bayesian decomposition. We test this decomposition on a case of extreme precipitation in the UK, in January 2014.
Karin van der Wiel, Sarah B. Kapnick, Geert Jan van Oldenborgh, Kirien Whan, Sjoukje Philip, Gabriel A. Vecchi, Roop K. Singh, Julie Arrighi, and Heidi Cullen
Hydrol. Earth Syst. Sci., 21, 897–921, https://doi.org/10.5194/hess-21-897-2017, https://doi.org/10.5194/hess-21-897-2017, 2017
Short summary
Short summary
During August 2016, heavy precipitation led to devastating floods in south Louisiana, USA. Here, we analyze the climatological statistics of the precipitation event, as defined by its 3-day total over 12–14 August. Using observational data and high-resolution global coupled model experiments, we find for a comparable event on the central US Gulf Coast an average return period of about 30 years and the odds being increased by at least 1.4 since 1900 due to anthropogenic climate change.
Mitchell T. Black, David J. Karoly, Suzanne M. Rosier, Sam M. Dean, Andrew D. King, Neil R. Massey, Sarah N. Sparrow, Andy Bowery, David Wallom, Richard G. Jones, Friederike E. L. Otto, and Myles R. Allen
Geosci. Model Dev., 9, 3161–3176, https://doi.org/10.5194/gmd-9-3161-2016, https://doi.org/10.5194/gmd-9-3161-2016, 2016
Short summary
Short summary
This study presents a citizen science computing project, known as weather@home Australia–New Zealand, which runs climate models on thousands of home computers. By harnessing the power of volunteers' computers, this project is capable of simulating extreme weather events over Australia and New Zealand under different climate scenarios.
Gianluca Tramontana, Martin Jung, Christopher R. Schwalm, Kazuhito Ichii, Gustau Camps-Valls, Botond Ráduly, Markus Reichstein, M. Altaf Arain, Alessandro Cescatti, Gerard Kiely, Lutz Merbold, Penelope Serrano-Ortiz, Sven Sickert, Sebastian Wolf, and Dario Papale
Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, https://doi.org/10.5194/bg-13-4291-2016, 2016
Short summary
Short summary
We have evaluated 11 machine learning (ML) methods and two complementary drivers' setup to estimate the carbon dioxide (CO2) and energy exchanges between land ecosystems and atmosphere. Obtained results have shown high consistency among ML and high capability to estimate the spatial and seasonal variability of the target fluxes. The results were good for all the ecosystems, with limitations to the ones in the extreme environments (cold, hot) or less represented in the training data (tropics).
Geert Jan van Oldenborgh, Sjoukje Philip, Emma Aalbers, Robert Vautard, Friederike Otto, Karsten Haustein, Florence Habets, Roop Singh, and Heidi Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-308, https://doi.org/10.5194/hess-2016-308, 2016
Manuscript not accepted for further review
Short summary
Short summary
Extreme rain caused flooding in France and Germany at the end of May 2016. After such an event the question is always posed to what extent it can be attributed to anthropogenic climate change. Using observations and five model ensembles we give a first answer. For the 3-day precipitation extremes over the Seine and Loire basins that caused the flooding all methods agree that the probability has increased by a factor of about two. For 1-day precipitation extremes in Germany the methods disagree.
Bjorn-Gustaf J. Brooks, Ankur R. Desai, Britton B. Stephens, Anna M. Michalak, and Jakob Zscheischler
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-223, https://doi.org/10.5194/bg-2016-223, 2016
Manuscript not accepted for further review
Short summary
Short summary
CO2 is the primary greenhouse gas, and its abundance in the atmosphere tends to increase during disturbances like drought. This paper demonstrates how CO2 measurements are combined with models to determine not only how strongly different locations influence CO2 measurement stations, but also the capacity of those measurement stations to detect drought effects. Understanding detection sensitivity will help assess what kinds of changes and turnings points can be monitored using atmospheric CO2.
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
G. J. van Oldenborgh, F. E. L. Otto, K. Haustein, and H. Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-13197-2015, https://doi.org/10.5194/hessd-12-13197-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
On 4–6 December 2015, the storm 'Desmond' caused very heavy rainfall in northern England and Scotland, which led to widespread flooding. We provide an initial assessment of the influence of anthropogenic climate change on the likelihood of precipitation events like this. We use three independent methods of extreme event attribution based on observations and two climate models. All methods agree that the effect of climate change is positive, making events like this about 40% (5–80%) more likely.
J. M. Eden, G. J. van Oldenborgh, E. Hawkins, and E. B. Suckling
Geosci. Model Dev., 8, 3947–3973, https://doi.org/10.5194/gmd-8-3947-2015, https://doi.org/10.5194/gmd-8-3947-2015, 2015
Short summary
Short summary
Our paper reports on a simple regression-based system for producing probabilistic forecasts of seasonal climate. We discuss the physical motivation behind the statistical relationships underpinning our empirical model and provide a validation of hindcasts produced for the last half century. The generation of probabilistic forecasts on a global scale along with the use of the long-term trend as a source of skill constitutes a novel approach to empirical forecasting of seasonal climate.
O. Perez-Priego, J. Guan, M. Rossini, F. Fava, T. Wutzler, G. Moreno, N. Carvalhais, A. Carrara, O. Kolle, T. Julitta, M. Schrumpf, M. Reichstein, and M. Migliavacca
Biogeosciences, 12, 6351–6367, https://doi.org/10.5194/bg-12-6351-2015, https://doi.org/10.5194/bg-12-6351-2015, 2015
Short summary
Short summary
Sun-induced chlorophyll fluorescence and photochemical reflectance index revealed controls of climate and nutrient availability on photosynthesis (gross primary production, GPP). Meteo-driven models (MMs) were unable to describe nutrient-induced effects on GPP. Important implications can be derived from these results, and uncertainties in the prediction of global GPP still remain when MMs do not account for plant nutrient availability.
S. Hashimoto, N. Carvalhais, A. Ito, M. Migliavacca, K. Nishina, and M. Reichstein
Biogeosciences, 12, 4121–4132, https://doi.org/10.5194/bg-12-4121-2015, https://doi.org/10.5194/bg-12-4121-2015, 2015
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
X. Wu, F. Babst, P. Ciais, D. Frank, M. Reichstein, M. Wattenbach, C. Zang, and M. D. Mahecha
Biogeosciences, 11, 3057–3068, https://doi.org/10.5194/bg-11-3057-2014, https://doi.org/10.5194/bg-11-3057-2014, 2014
J. Zscheischler, M. Reichstein, S. Harmeling, A. Rammig, E. Tomelleri, and M. D. Mahecha
Biogeosciences, 11, 2909–2924, https://doi.org/10.5194/bg-11-2909-2014, https://doi.org/10.5194/bg-11-2909-2014, 2014
B. Ahrens, M. Reichstein, W. Borken, J. Muhr, S. E. Trumbore, and T. Wutzler
Biogeosciences, 11, 2147–2168, https://doi.org/10.5194/bg-11-2147-2014, https://doi.org/10.5194/bg-11-2147-2014, 2014
J. v. Buttlar, J. Zscheischler, and M. D. Mahecha
Nonlin. Processes Geophys., 21, 203–215, https://doi.org/10.5194/npg-21-203-2014, https://doi.org/10.5194/npg-21-203-2014, 2014
B. Badawy, C. Rödenbeck, M. Reichstein, N. Carvalhais, and M. Heimann
Biogeosciences, 10, 6485–6508, https://doi.org/10.5194/bg-10-6485-2013, https://doi.org/10.5194/bg-10-6485-2013, 2013
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
M. C. Braakhekke, T. Wutzler, C. Beer, J. Kattge, M. Schrumpf, B. Ahrens, I. Schöning, M. R. Hoosbeek, B. Kruijt, P. Kabat, and M. Reichstein
Biogeosciences, 10, 399–420, https://doi.org/10.5194/bg-10-399-2013, https://doi.org/10.5194/bg-10-399-2013, 2013
G. Lasslop, M. Migliavacca, G. Bohrer, M. Reichstein, M. Bahn, A. Ibrom, C. Jacobs, P. Kolari, D. Papale, T. Vesala, G. Wohlfahrt, and A. Cescatti
Biogeosciences, 9, 5243–5259, https://doi.org/10.5194/bg-9-5243-2012, https://doi.org/10.5194/bg-9-5243-2012, 2012
Related subject area
Subject: Global hydrology | Techniques and Approaches: Uncertainty analysis
Leveraging multi-variable observations to reduce and quantify the output uncertainty of a global hydrological model: evaluation of three ensemble-based approaches for the Mississippi River basin
Information content of soil hydrology in a west Amazon watershed as informed by GRACE
Diagnostic evaluation of river discharge into the Arctic Ocean and its impact on oceanic volume transports
The 63-year changes in annual streamflow volumes across Europe with a focus on the Mediterranean basin
Multivariable evaluation of land surface processes in forced and coupled modes reveals new error sources to the simulated water cycle in the IPSL (Institute Pierre Simon Laplace) climate model
Implications of model selection: a comparison of publicly available, conterminous US-extent hydrologic component estimates
Historical and future changes in global flood magnitude – evidence from a model–observation investigation
A global-scale evaluation of extreme event uncertainty in the eartH2Observe project
Assessment of precipitation error propagation in multi-model global water resource reanalysis
The potential of global reanalysis datasets in identifying flood events in Southern Africa
Hydrological assessment of atmospheric forcing uncertainty in the Euro-Mediterranean area using a land surface model
Global change in streamflow extremes under climate change over the 21st century
Sensitivity of future continental United States water deficit projections to general circulation models, the evapotranspiration estimation method, and the greenhouse gas emission scenario
Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use
Evaluating uncertainty in estimates of soil moisture memory with a reverse ensemble approach
Flood and drought hydrologic monitoring: the role of model parameter uncertainty
Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration
Climate change impacts on runoff in West Africa: a review
Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis
Disinformative data in large-scale hydrological modelling
The impact of climate mitigation on projections of future drought
Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data
Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias
Improving runoff estimates from regional climate models: a performance analysis in Spain
A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models
Error characterisation of global active and passive microwave soil moisture datasets
Assessment of soil moisture fields from imperfect climate models with uncertain satellite observations
Petra Döll, Howlader Mohammad Mehedi Hasan, Kerstin Schulze, Helena Gerdener, Lara Börger, Somayeh Shadkam, Sebastian Ackermann, Seyed-Mohammad Hosseini-Moghari, Hannes Müller Schmied, Andreas Güntner, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024, https://doi.org/10.5194/hess-28-2259-2024, 2024
Short summary
Short summary
Currently, global hydrological models do not benefit from observations of model output variables to reduce and quantify model output uncertainty. For the Mississippi River basin, we explored three approaches for using both streamflow and total water storage anomaly observations to adjust the parameter sets in a global hydrological model. We developed a method for considering the observation uncertainties to quantify the uncertainty of model output and provide recommendations.
Elias C. Massoud, A. Anthony Bloom, Marcos Longo, John T. Reager, Paul A. Levine, and John R. Worden
Hydrol. Earth Syst. Sci., 26, 1407–1423, https://doi.org/10.5194/hess-26-1407-2022, https://doi.org/10.5194/hess-26-1407-2022, 2022
Short summary
Short summary
The water balance on river basin scales depends on a number of soil physical processes. Gaining information on these quantities using observations is a key step toward improving the skill of land surface hydrology models. In this study, we use data from the Gravity Recovery and Climate Experiment (NASA-GRACE) to inform and constrain these hydrologic processes. We show that our model is able to simulate the land hydrologic cycle for a watershed in the Amazon from January 2003 to December 2012.
Susanna Winkelbauer, Michael Mayer, Vanessa Seitner, Ervin Zsoter, Hao Zuo, and Leopold Haimberger
Hydrol. Earth Syst. Sci., 26, 279–304, https://doi.org/10.5194/hess-26-279-2022, https://doi.org/10.5194/hess-26-279-2022, 2022
Short summary
Short summary
We evaluate Arctic river discharge using in situ observations and state-of-the-art reanalyses, inter alia the most recent Global Flood Awareness System (GloFAS) river discharge reanalysis version 3.1. Furthermore, we combine reanalysis data, in situ observations, ocean reanalyses, and satellite data and use a Lagrangian optimization scheme to close the Arctic's volume budget on annual and seasonal scales, resulting in one reliable and up-to-date estimate of every volume budget term.
Daniele Masseroni, Stefania Camici, Alessio Cislaghi, Giorgio Vacchiano, Christian Massari, and Luca Brocca
Hydrol. Earth Syst. Sci., 25, 5589–5601, https://doi.org/10.5194/hess-25-5589-2021, https://doi.org/10.5194/hess-25-5589-2021, 2021
Short summary
Short summary
We evaluate 63 years of changes in annual streamflow volume across Europe, using a data set of more than 3000 stations, with a special focus on the Mediterranean basin. The results show decreasing (increasing) volumes in the southern (northern) regions. These trends are strongly consistent with the changes in temperature and precipitation.
Hiroki Mizuochi, Agnès Ducharne, Frédérique Cheruy, Josefine Ghattas, Amen Al-Yaari, Jean-Pierre Wigneron, Vladislav Bastrikov, Philippe Peylin, Fabienne Maignan, and Nicolas Vuichard
Hydrol. Earth Syst. Sci., 25, 2199–2221, https://doi.org/10.5194/hess-25-2199-2021, https://doi.org/10.5194/hess-25-2199-2021, 2021
Samuel Saxe, William Farmer, Jessica Driscoll, and Terri S. Hogue
Hydrol. Earth Syst. Sci., 25, 1529–1568, https://doi.org/10.5194/hess-25-1529-2021, https://doi.org/10.5194/hess-25-1529-2021, 2021
Short summary
Short summary
We compare simulated values from 47 models estimating surface water over the USA. Results show that model uncertainty is substantial over much of the conterminous USA and especially high in the west. Applying the studied models to a simple water accounting equation shows that model selection can significantly affect research results. This paper concludes that multimodel ensembles help to best represent uncertainty in conclusions and suggest targeted research efforts in arid regions.
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
Short summary
We presented a global comparison between observed and simulated trends in a flood index over the 1971–2005 period using the Global Streamflow Indices and Metadata archive and six global hydrological models available through The Inter-Sectoral Impact Model Intercomparison Project. Streamflow simulations over 2006–2099 period robustly project high flood hazard in several regions. These high-flood-risk areas, however, are under-sampled by the current global streamflow databases.
Toby R. Marthews, Eleanor M. Blyth, Alberto Martínez-de la Torre, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 24, 75–92, https://doi.org/10.5194/hess-24-75-2020, https://doi.org/10.5194/hess-24-75-2020, 2020
Short summary
Short summary
Climate change impact modellers can only act on predictions of the occurrence of an extreme event in the Earth system if they know the uncertainty in that prediction and how uncertainty is attributable to different model components. Using eartH2Observe data, we quantify the balance between different sources of uncertainty in global evapotranspiration and runoff, making a crucial contribution to understanding the spatial distribution of water resources allocation deficiencies.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Jan Polcher, Clément Albergel, Emanuel Dutra, Gabriel Fink, Alberto Martínez-de la Torre, and Simon Munier
Hydrol. Earth Syst. Sci., 23, 1973–1994, https://doi.org/10.5194/hess-23-1973-2019, https://doi.org/10.5194/hess-23-1973-2019, 2019
Short summary
Short summary
This study investigates the propagation of precipitation uncertainty, and its interaction with hydrologic modeling, in global water resource reanalysis. Analysis is based on ensemble hydrologic simulations for a period of 11 years based on six global hydrologic models and five precipitation datasets. Results show that uncertainties in the model simulations are attributed to both uncertainty in precipitation forcing and the model structure.
Gaby J. Gründemann, Micha Werner, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 22, 4667–4683, https://doi.org/10.5194/hess-22-4667-2018, https://doi.org/10.5194/hess-22-4667-2018, 2018
Short summary
Short summary
Flooding in vulnerable and data-sparse regions such as the Limpopo basin in Southern Africa is a key concern. Data available to local flood managers are often limited, inconsistent or asymmetrically distributed. We demonstrate that freely available global datasets are well suited to provide essential information. Despite the poor performance of simulated discharges, these datasets hold potential in identifying damaging flood events, particularly for higher-resolution datasets and larger basins.
Emiliano Gelati, Bertrand Decharme, Jean-Christophe Calvet, Marie Minvielle, Jan Polcher, David Fairbairn, and Graham P. Weedon
Hydrol. Earth Syst. Sci., 22, 2091–2115, https://doi.org/10.5194/hess-22-2091-2018, https://doi.org/10.5194/hess-22-2091-2018, 2018
Short summary
Short summary
We compared land surface model simulations forced by several meteorological datasets with observations over the Euro-Mediterranean area, for the 1979–2012 period. Precipitation was the most uncertain forcing variable. The impacts of forcing uncertainty were larger on the mean and standard deviation rather than the timing, shape and inter-annual variability of simulated discharge. Simulated leaf area index and surface soil moisture were relatively insensitive to these uncertainties.
Behzad Asadieh and Nir Y. Krakauer
Hydrol. Earth Syst. Sci., 21, 5863–5874, https://doi.org/10.5194/hess-21-5863-2017, https://doi.org/10.5194/hess-21-5863-2017, 2017
Short summary
Short summary
Multi-model analysis of global streamflow extremes for the 20th and 21st centuries under two warming scenarios is performed. About 37 and 43 % of global land areas show potential for increases in flood and drought events. Nearly 10 % of global land areas, holding around 30 % of world’s population, reflect a potentially worsening hazard of flood and drought. A significant increase in streamflow of the regions near and above the Arctic Circle, and decrease in subtropical arid areas, is projected.
Seungwoo Chang, Wendy D. Graham, Syewoon Hwang, and Rafael Muñoz-Carpena
Hydrol. Earth Syst. Sci., 20, 3245–3261, https://doi.org/10.5194/hess-20-3245-2016, https://doi.org/10.5194/hess-20-3245-2016, 2016
Short summary
Short summary
Projecting water deficit depends on how researchers combine possible future climate scenarios such as general circulation models (GCMs), evapotranspiration estimation method (ET), and greenhouse gas emission scenarios. Using global sensitivity analysis, we found the relative contribution of each of these factors to projecting future water deficit and the choice of ET estimation method are as important as the choice of GCM, and greenhouse gas emission scenario is less influential than the others.
Hannes Müller Schmied, Linda Adam, Stephanie Eisner, Gabriel Fink, Martina Flörke, Hyungjun Kim, Taikan Oki, Felix Theodor Portmann, Robert Reinecke, Claudia Riedel, Qi Song, Jing Zhang, and Petra Döll
Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, https://doi.org/10.5194/hess-20-2877-2016, 2016
Short summary
Short summary
The assessment of water balance components of the global land surface by means of hydrological models is affected by large uncertainties, in particular related to meteorological forcing. We analyze the effect of five state-of-the-art forcings on water balance components at different spatial and temporal scales modeled with WaterGAP. Furthermore, the dominant effect (precipitation/human alteration) for long-term changes in river discharge is assessed.
Dave MacLeod, Hannah Cloke, Florian Pappenberger, and Antje Weisheimer
Hydrol. Earth Syst. Sci., 20, 2737–2743, https://doi.org/10.5194/hess-20-2737-2016, https://doi.org/10.5194/hess-20-2737-2016, 2016
Short summary
Short summary
Soil moisture memory is a key aspect of seasonal climate predictions, through feedback between the land surface and the atmosphere. Estimates have been made of the length of soil moisture memory; however, we show here how estimates of memory show large variation with uncertain model parameters. Explicit representation of model uncertainty may then improve the realism of simulations and seasonal climate forecasts.
N. W. Chaney, J. D. Herman, P. M. Reed, and E. F. Wood
Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, https://doi.org/10.5194/hess-19-3239-2015, 2015
Short summary
Short summary
Land surface modeling is playing an increasing role in global monitoring and prediction of extreme hydrologic events. However, uncertainties in parameter identifiability limit the reliability of model predictions. This study makes use of petascale computing to perform a comprehensive evaluation of land surface modeling for global flood and drought monitoring and suggests paths forward to overcome the challenges posed by parameter uncertainty.
H. Müller Schmied, S. Eisner, D. Franz, M. Wattenbach, F. T. Portmann, M. Flörke, and P. Döll
Hydrol. Earth Syst. Sci., 18, 3511–3538, https://doi.org/10.5194/hess-18-3511-2014, https://doi.org/10.5194/hess-18-3511-2014, 2014
P. Roudier, A. Ducharne, and L. Feyen
Hydrol. Earth Syst. Sci., 18, 2789–2801, https://doi.org/10.5194/hess-18-2789-2014, https://doi.org/10.5194/hess-18-2789-2014, 2014
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
A. Kauffeldt, S. Halldin, A. Rodhe, C.-Y. Xu, and I. K. Westerberg
Hydrol. Earth Syst. Sci., 17, 2845–2857, https://doi.org/10.5194/hess-17-2845-2013, https://doi.org/10.5194/hess-17-2845-2013, 2013
I. H. Taylor, E. Burke, L. McColl, P. D. Falloon, G. R. Harris, and D. McNeall
Hydrol. Earth Syst. Sci., 17, 2339–2358, https://doi.org/10.5194/hess-17-2339-2013, https://doi.org/10.5194/hess-17-2339-2013, 2013
H. Xie, L. Longuevergne, C. Ringler, and B. R. Scanlon
Hydrol. Earth Syst. Sci., 16, 3083–3099, https://doi.org/10.5194/hess-16-3083-2012, https://doi.org/10.5194/hess-16-3083-2012, 2012
F. Sienz, O. Bothe, and K. Fraedrich
Hydrol. Earth Syst. Sci., 16, 2143–2157, https://doi.org/10.5194/hess-16-2143-2012, https://doi.org/10.5194/hess-16-2143-2012, 2012
D. González-Zeas, L. Garrote, A. Iglesias, and A. Sordo-Ward
Hydrol. Earth Syst. Sci., 16, 1709–1723, https://doi.org/10.5194/hess-16-1709-2012, https://doi.org/10.5194/hess-16-1709-2012, 2012
S. N. Gosling, R. G. Taylor, N. W. Arnell, and M. C. Todd
Hydrol. Earth Syst. Sci., 15, 279–294, https://doi.org/10.5194/hess-15-279-2011, https://doi.org/10.5194/hess-15-279-2011, 2011
W. A. Dorigo, K. Scipal, R. M. Parinussa, Y. Y. Liu, W. Wagner, R. A. M. de Jeu, and V. Naeimi
Hydrol. Earth Syst. Sci., 14, 2605–2616, https://doi.org/10.5194/hess-14-2605-2010, https://doi.org/10.5194/hess-14-2605-2010, 2010
G. Schumann, D. J. Lunt, P. J. Valdes, R. A. M. de Jeu, K. Scipal, and P. D. Bates
Hydrol. Earth Syst. Sci., 13, 1545–1553, https://doi.org/10.5194/hess-13-1545-2009, https://doi.org/10.5194/hess-13-1545-2009, 2009
Cited articles
Adeel, Z., Safriel, U., Niemeijer, D., and White, R.: Ecosystems and human well-being: desertification synthesis, Tech. rep., World Resources Institute (WRI), Washington, D.C., USA, 2005.
Alexander, L., Zhang, X., Peterson, T., Caesar, J., Gleason, B., Klein Tank, A., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., and Tagipour, A.: Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res.-Atmos., 111, D05109, https://doi.org/10.1029/2005JD006290, 2006.
Allan, R. P., Soden, B. J., John, V. O., Ingram, W., and Good, P.: Current changes in tropical precipitation, Environ. Res. Lett., 5, 025205, https://doi.org/10.1088/1748-9326/5/2/025205, 2010.
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–232, 2002.
Barnett, A. G., van der Pols, J. C., and Dobson, A. J.: Regression to the mean: what it is and how to deal with it, Int. J. Epidemiol., 34, 215–220, 2005.
Coles, S., Bawa, J., Trenner, L., and Dorazio, P.: An introduction to statistical modeling of extreme values, vol. 208, Springer, London, UK, 2001.
Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., and Stahle, D. W.: Long-term aridity changes in the western United States, Science, 306, 1015–1018, 2004.
Donat, M., Alexander, L., Yang, H., Durre, I., Vose, R., Dunn, R., Willett, K., Aguilar, E., Brunet, M., Caesar, J., and Hewitson, B.: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset, J. Geophys. Res.-Atmos., 118, 2098–2118, 2013a.
Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., and Caesar, J.: Global land-based datasets for monitoring climatic extremes, B. Am. Meteorol. Soc., 94, 997–1006, 2013b.
Donat, M. G., Lowry, A. L., Alexander, L. V., O'Gorman, P. A., and Maher, N.: More extreme precipitation in the world's dry and wet regions, Nat. Clim. Change, 6, 508–513, 2016.
Feng, S. and Fu, Q.: Expansion of global drylands under a warming climate, Atmos. Chem. Phys., 13, 10081–10094, https://doi.org/10.5194/acp-13-10081-2013, 2013.
Fischer, E. M. and Knutti, R.: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes, Nat. Clim. Change, 5, 560–564, 2015.
Galton, F.: Regression towards mediocrity in hereditary stature, J. Anthropol. Inst. Great Brit. Ireland, 15, 246–263, 1886.
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and Seneviratne, S. I.: Global assessment of trends in wetting and drying over land, Nat. Geosci., 7, 716–721, 2014.
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642, 2014.
Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland expansion under climate change, Nat. Clim. Change, 6, 166–171, 2015.
Hulme, M.: Recent climatic change in the world's drylands, Geophys. Res. Lett., 23, 61–64, 1996.
Ingram, W.: Extreme precipitation: Increases all round, Nat. Clim. Change, 6, 443–444, 2016.
IPCC: Summary for Policymakers, in: Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change, edited by: Field, C., Barros, V., Stocker, T., Dahe, Q., Dokken, D., Ebi, K., Mastrandrea, M., Mach, K., Plattner, G., Allen, S., Tignor, M., and Midgley, P., Cambridge University Press, New York, NY, USA, 2012.
IPCC: Summary for Policymakers, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., Chatterjee, K., Ebi, K., Estrada, Y., Genova, R., Girma, B., Kissel, E., Levy, A., MacCracken, S., Mastrandrea, M., and White, L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1–32, 2014.
Johnson, N. L., Kotz, S., and Balakrishnan, N.: Continuous univariate distributions, Vol. 1, John Wiley & Sons, New York, 1994.
Johnson, N. L., Kotz, S., and Balakrishnan, N.: Continuous univariate distributions, Vol. 2, John Wiley & Sons, New York, 1995.
Kharin, V. V., Zwiers, F. W., Zhang, X., and Hegerl, G. C.: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations, J. Climate, 20, 1419–1444, 2007.
Köppen, W.: Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt, Geogr. Z., 6, 593–611, 1900.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World map of the Köppen-Geiger climate classification updated, Meteorol. Z., 15, 259–263, 2006.
Lehmann, J., Coumou, D., and Frieler, K.: Increased record-breaking precipitation events under global warming, Climatic Change, 132, 501–515, 2015.
Liu, C. and Allan, R. P.: Observed and simulated precipitation responses in wet and dry regions 1850–2100, Environ. Res. Lett., 8, 034002, https://doi.org/10.1088/1748-9326/8/3/034002, 2013.
Middleton, N. and Thomas, D.: World Atlas of Desertification: United Nations Environmental Programme, Arnold, London, UK, 1992.
Millennium Ecosystem Assessment: Dryland systems, Ecosystems and human well-being: current state and trends, Island Press, Washington, D.C., USA, 623–662, 2005.
Milly, P. and Dunne, K.: Potential evapotranspiration and continental drying, Nat. Clim. Change, 6, 946–949, 2016.
O'Gorman, P. A.: Precipitation extremes under climate change, Curr. Clim. Change Rep., 1, 49–59, 2015.
Sherwood, S. and Fu, Q.: A drier future?, Science, 343, 737–739, 2014.
Sippel, S., Zscheischler, J., Heimann, M., Otto, F. E., Peters, J., and Mahecha, M. D.: Quantifying changes in climate variability and extremes: Pitfalls and their overcoming, Geophys. Res. Lett., 42, 9990–9998, 2015.
Sun, F., Roderick, M. L., and Farquhar, G. D.: Changes in the variability of global land precipitation, Geophys. Res. Lett., 39, L19402, https://doi.org/10.1029/2012GL053369, 2012.
Thornthwaite, C. W.: An approach toward a rational classification of climate, Geogr. Rev., 38, 55–94, 1948.
Tollefson, J.: Global warming already driving increases in rainfall extremes, Nature, 443–444, https://doi.org/10.1038/nature.2016.19508, 2016.
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The changing character of precipitation, B. Am. Meteorol. Soc., 84, 1205–1217, 2003.
Van den Brink, H. and Können, G.: Estimating 10000-year return values from short time series, Int. J. Climatol., 31, 115–126, 2011.
Westra, S., Alexander, L. V., and Zwiers, F. W.: Global increasing trends in annual maximum daily precipitation, J. Climate, 26, 3904–3918, 2013.
Zhang, X., Hegerl, G., Zwiers, F. W., and Kenyon, J.: Avoiding inhomogeneity in percentile-based indices of temperature extremes, J. Climate, 18, 1641–1651, 2005.
Short summary
The paper re-investigates the question whether observed precipitation extremes and annual totals have been increasing in the world's dry regions over the last 60 years. Despite recently postulated increasing trends, we demonstrate that large uncertainties prevail due to (1) the choice of dryness definition and (2) statistical data processing. In fact, we find only minor (and only some significant) increases if (1) dryness is based on aridity and (2) statistical artefacts are accounted for.
The paper re-investigates the question whether observed precipitation extremes and annual totals...