Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-345-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/hess-21-345-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes
Hjalte Jomo Danielsen Sørup
CORRESPONDING AUTHOR
Technical University of Denmark, Global Decision Support Initiative,
Lyngby, Denmark
Technical University of Denmark, Department of Environmental
Engineering, Lyngby, Denmark
Stylianos Georgiadis
Technical University of Denmark, Global Decision Support Initiative,
Lyngby, Denmark
Technical University of Denmark, Department of Applied Mathematics and
Computer Science, Lyngby, Denmark
Ida Bülow Gregersen
Ramboll Danmark A/S, Department of Climate Adaptation and Green
Infrastructure, Copenhagen, Denmark
Karsten Arnbjerg-Nielsen
Technical University of Denmark, Global Decision Support Initiative,
Lyngby, Denmark
Technical University of Denmark, Department of Environmental
Engineering, Lyngby, Denmark
Related authors
Emma Dybro Thomassen, Hjalte Jomo Danielsen Sørup, Marc Scheibel, Thomas Einfalt, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-397, https://doi.org/10.5194/hess-2020-397, 2020
Preprint withdrawn
Short summary
Short summary
This study examines characteristics of extreme events of a 13 year long record of 1 × 1 km spatial resolution and durations ranging from 15-minute to daily durations by means of simple data driven methods. We found that these analyses enabled us to distinguish and characterise types of extreme events useful for urban hydrology applications. The result is useful e.g. for selecting events of particular interest when assessing performance of e.g. urban drainage systems.
Emma Dybro Thomassen, Hjalte Jomo Danielsen Sørup, Marc Scheibel, Thomas Einfalt, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-184, https://doi.org/10.5194/hess-2018-184, 2018
Revised manuscript not accepted
Short summary
Short summary
This article takes the first steps in describing rainfall with spatio-temporal variations. A detailed description of rainfall will provide an improved planning tool for protecting cities against pluvial flooding. The article uses high resolution radar data from the catchment of the river Wupper, North Rhine-Westphalia, Germany. The spatio-temporal properties of extreme rain events was described with 16 variables. Three statistical methods were applied and four rainfall types were identified.
Hjalte Jomo Danielsen Sørup, Ole Bøssing Christensen, Karsten Arnbjerg-Nielsen, and Peter Steen Mikkelsen
Hydrol. Earth Syst. Sci., 20, 1387–1403, https://doi.org/10.5194/hess-20-1387-2016, https://doi.org/10.5194/hess-20-1387-2016, 2016
Short summary
Short summary
Fine-resolution spatio-temporal precipitation data are important as input to urban hydrological models to assess performance issues under all possible conditions. In the present study synthetic data at very fine spatial and temporal resolution are generated using a stochastic model. Data are generated for both present and future climate conditions. The results show that it is possible to generate spatially distributed data at resolutions relevant for urban hydrology.
M. A. Sunyer, H. J. D. Sørup, O. B. Christensen, H. Madsen, D. Rosbjerg, P. S. Mikkelsen, and K. Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci., 17, 4323–4337, https://doi.org/10.5194/hess-17-4323-2013, https://doi.org/10.5194/hess-17-4323-2013, 2013
Emma Dybro Thomassen, Hjalte Jomo Danielsen Sørup, Marc Scheibel, Thomas Einfalt, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-397, https://doi.org/10.5194/hess-2020-397, 2020
Preprint withdrawn
Short summary
Short summary
This study examines characteristics of extreme events of a 13 year long record of 1 × 1 km spatial resolution and durations ranging from 15-minute to daily durations by means of simple data driven methods. We found that these analyses enabled us to distinguish and characterise types of extreme events useful for urban hydrology applications. The result is useful e.g. for selecting events of particular interest when assessing performance of e.g. urban drainage systems.
Roland Löwe and Karsten Arnbjerg-Nielsen
Nat. Hazards Earth Syst. Sci., 20, 981–997, https://doi.org/10.5194/nhess-20-981-2020, https://doi.org/10.5194/nhess-20-981-2020, 2020
Short summary
Short summary
To consider potential future urban developments in pluvial flood risk assessment, we develop empirical relationships for imperviousness and flood damage based on an analysis of existing urban characteristics. Results suggest that (1) data resolutions must be carefully selected, (2) there are lower limits for the spatial scale at which predictions can be generated, and (3) depth-dependent damage estimates are challenging to reproduce empirically and can be vulnerable to simulation artifacts.
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Emma Dybro Thomassen, Hjalte Jomo Danielsen Sørup, Marc Scheibel, Thomas Einfalt, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-184, https://doi.org/10.5194/hess-2018-184, 2018
Revised manuscript not accepted
Short summary
Short summary
This article takes the first steps in describing rainfall with spatio-temporal variations. A detailed description of rainfall will provide an improved planning tool for protecting cities against pluvial flooding. The article uses high resolution radar data from the catchment of the river Wupper, North Rhine-Westphalia, Germany. The spatio-temporal properties of extreme rain events was described with 16 variables. Three statistical methods were applied and four rainfall types were identified.
Per Skougaard Kaspersen, Nanna Høegh Ravn, Karsten Arnbjerg-Nielsen, Henrik Madsen, and Martin Drews
Hydrol. Earth Syst. Sci., 21, 4131–4147, https://doi.org/10.5194/hess-21-4131-2017, https://doi.org/10.5194/hess-21-4131-2017, 2017
Søren Thorndahl, Thomas Einfalt, Patrick Willems, Jesper Ellerbæk Nielsen, Marie-Claire ten Veldhuis, Karsten Arnbjerg-Nielsen, Michael R. Rasmussen, and Peter Molnar
Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, https://doi.org/10.5194/hess-21-1359-2017, 2017
Short summary
Short summary
This paper reviews how weather radar data can be used in urban hydrological applications. It focuses on three areas of research: (1) temporal and spatial resolution of rainfall data, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Moreover, the paper provides examples of urban hydrological applications which can benefit from radar rainfall data in comparison to tradition rain gauge measurements of rainfall.
Hjalte Jomo Danielsen Sørup, Ole Bøssing Christensen, Karsten Arnbjerg-Nielsen, and Peter Steen Mikkelsen
Hydrol. Earth Syst. Sci., 20, 1387–1403, https://doi.org/10.5194/hess-20-1387-2016, https://doi.org/10.5194/hess-20-1387-2016, 2016
Short summary
Short summary
Fine-resolution spatio-temporal precipitation data are important as input to urban hydrological models to assess performance issues under all possible conditions. In the present study synthetic data at very fine spatial and temporal resolution are generated using a stochastic model. Data are generated for both present and future climate conditions. The results show that it is possible to generate spatially distributed data at resolutions relevant for urban hydrology.
P. Skougaard Kaspersen, N. Høegh Ravn, K. Arnbjerg-Nielsen, H. Madsen, and M. Drews
Proc. IAHS, 370, 21–27, https://doi.org/10.5194/piahs-370-21-2015, https://doi.org/10.5194/piahs-370-21-2015, 2015
Short summary
Short summary
A combined remote sensing and hydrological modelling approach is developed to examine the influence of urban land cover changes and climate change for the exposure of cities towards flooding. Results show that the past 30 years of urban development has increased the exposure to pluvial flooding by 6-26%. Corresponding estimates for a medium and high climate change scenario (2071-2100) are 40% and 100%, indicating that urban land cover changes are central for the exposure of cities to flooding.
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
M. A. Sunyer, H. J. D. Sørup, O. B. Christensen, H. Madsen, D. Rosbjerg, P. S. Mikkelsen, and K. Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci., 17, 4323–4337, https://doi.org/10.5194/hess-17-4323-2013, https://doi.org/10.5194/hess-17-4323-2013, 2013
Related subject area
Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Simulation of spatially distributed sources, transport, and transformation of nitrogen from fertilization and septic system in an exurban watershed
An optimized long short-term memory (LSTM)-based approach applied to early warning and forecasting of ponding in the urban drainage system
A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
Impact of urban geology on model simulations of shallow groundwater levels and flow paths
Technical note: Modeling spatial fields of extreme precipitation – a hierarchical Bayesian approach
Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index
Forecasting green roof detention performance by temporal downscaling of precipitation time-series projections
Evaluating different machine learning methods to simulate runoff from extensive green roofs
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
The impact of the spatiotemporal structure of rainfall on flood frequency over a small urban watershed: an approach coupling stochastic storm transposition and hydrologic modeling
Space variability impacts on hydrological responses of nature-based solutions and the resulting uncertainty: a case study of Guyancourt (France)
Urban surface water flood modelling – a comprehensive review of current models and future challenges
Resampling and ensemble techniques for improving ANN-based high-flow forecast accuracy
Event selection and two-stage approach for calibrating models of green urban drainage systems
Modeling the high-resolution dynamic exposure to flooding in a city region
Drainage area characterization for evaluating green infrastructure using the Storm Water Management Model
Critical scales to explain urban hydrological response: an application in Cranbrook, London
Increase in flood risk resulting from climate change in a developed urban watershed – the role of storm temporal patterns
Patterns and comparisons of human-induced changes in river flood impacts in cities
Scale effect challenges in urban hydrology highlighted with a distributed hydrological model
Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding
Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review
Hydrodynamics of pedestrians' instability in floodwaters
Using rainfall thresholds and ensemble precipitation forecasts to issue and improve urban inundation alerts
Enhancing the T-shaped learning profile when teaching hydrology using data, modeling, and visualization activities
On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution
Precipitation variability within an urban monitoring network via microcanonical cascade generators
Estimation of peak discharges of historical floods
Indirect downscaling of hourly precipitation based on atmospheric circulation and temperature
Assessing the hydrologic restoration of an urbanized area via an integrated distributed hydrological model
Using the Storm Water Management Model to predict urban headwater stream hydrological response to climate and land cover change
Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data
Contribution of directly connected and isolated impervious areas to urban drainage network hydrographs
Thermal management of an unconsolidated shallow urban groundwater body
Online multistep-ahead inundation depth forecasts by recurrent NARX networks
A statistical analysis of insurance damage claims related to rainfall extremes
Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study of Fuzhou City, China
Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam
Multi-objective optimization for combined quality–quantity urban runoff control
Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach
Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks
Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment
Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024, https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Short summary
A coupled statistical–hydrodynamic model framework is employed to quantitatively evaluate the sensitivity of compound flood hazards to the relative timing of peak storm surges and rainfall. The findings reveal that the timing difference between these two factors significantly affects flood inundation depth and extent. The most severe inundation occurs when rainfall precedes the storm surge peak by 2 h.
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Amanda K. Suchy, Jonathan M. Duncan, and Arther J. Gold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-256, https://doi.org/10.5194/hess-2023-256, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Human-induced nitrogen (N) is found as the primary N source in many urban watersheds. We developed a high-resolution ecohydrological model to consider the spatial patterns and loads of septic effluents and lawn fertilization. The comparable simulations to observations showed the ability of our model to enhance insights into current water quality conditions, identify high retention locations, and plan future restorations to improve urban water quality.
Wen Zhu, Tao Tao, Hexiang Yan, Jieru Yan, Jiaying Wang, Shuping Li, and Kunlun Xin
Hydrol. Earth Syst. Sci., 27, 2035–2050, https://doi.org/10.5194/hess-27-2035-2023, https://doi.org/10.5194/hess-27-2035-2023, 2023
Short summary
Short summary
To provide a possibility for early warning and forecasting of ponding in the urban drainage system, an optimized long short-term memory (LSTM)-based model is proposed in this paper. It has a remarkable improvement compared to the models based on LSTM and convolutional neural network (CNN) structures. The performance of the corrected model is reliable if the number of monitoring sites is over one per hectare. Increasing the number of monitoring points further has little impact on the performance.
Qianqian Zhou, Shuai Teng, Zuxiang Situ, Xiaoting Liao, Junman Feng, Gongfa Chen, Jianliang Zhang, and Zonglei Lu
Hydrol. Earth Syst. Sci., 27, 1791–1808, https://doi.org/10.5194/hess-27-1791-2023, https://doi.org/10.5194/hess-27-1791-2023, 2023
Short summary
Short summary
A deep-learning-based data-driven model for flood predictions in temporal and spatial dimensions, with the integration of a long short-term memory network, Bayesian optimization, and transfer learning is proposed. The model accurately predicts water depths and flood time series/dynamics for hyetograph inputs, with substantial improvements in computational time. With transfer learning, the model was well applied to a new case study and showed robust compatibility and generalization ability.
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023, https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary
Short summary
The study explores the effect of Anthropocene geology and the computational grid size on the simulation of shallow urban groundwater. Many cities are facing challenges with high groundwater levels close to the surface, yet urban planning and development seldom consider its impact on the groundwater resource. This study illustrates that the urban subsurface infrastructure significantly affects the groundwater flow paths and the residence time of shallow urban groundwater.
Bianca Rahill-Marier, Naresh Devineni, and Upmanu Lall
Hydrol. Earth Syst. Sci., 26, 5685–5695, https://doi.org/10.5194/hess-26-5685-2022, https://doi.org/10.5194/hess-26-5685-2022, 2022
Short summary
Short summary
We present a new approach to modeling extreme regional rainfall by considering the spatial structure of extreme events. The developed models allow a probabilistic exploration of how the regional drainage network may respond to extreme rainfall events and provide a foundation for how future risks may be better estimated.
Matthew Preisser, Paola Passalacqua, R. Patrick Bixler, and Julian Hofmann
Hydrol. Earth Syst. Sci., 26, 3941–3964, https://doi.org/10.5194/hess-26-3941-2022, https://doi.org/10.5194/hess-26-3941-2022, 2022
Short summary
Short summary
There is rising concern in numerous fields regarding the inequitable distribution of human risk to floods. The co-occurrence of river and surface flooding is largely excluded from leading flood hazard mapping services, therefore underestimating hazards. Using high-resolution elevation data and a region-specific social vulnerability index, we developed a method to estimate flood impacts at the household level in near-real time.
Vincent Pons, Rasmus Benestad, Edvard Sivertsen, Tone Merete Muthanna, and Jean-Luc Bertrand-Krajewski
Hydrol. Earth Syst. Sci., 26, 2855–2874, https://doi.org/10.5194/hess-26-2855-2022, https://doi.org/10.5194/hess-26-2855-2022, 2022
Short summary
Short summary
Different models were developed to increase the temporal resolution of precipitation time series to minutes. Their applicability under climate change and their suitability for producing input time series for green infrastructure (e.g. green roofs) modelling were evaluated. The robustness of the model was validated against a range of European climates in eight locations in France and Norway. The future hydrological performances of green roofs were evaluated in order to improve design practice.
Elhadi Mohsen Hassan Abdalla, Vincent Pons, Virginia Stovin, Simon De-Ville, Elizabeth Fassman-Beck, Knut Alfredsen, and Tone Merete Muthanna
Hydrol. Earth Syst. Sci., 25, 5917–5935, https://doi.org/10.5194/hess-25-5917-2021, https://doi.org/10.5194/hess-25-5917-2021, 2021
Short summary
Short summary
This study investigated the potential of using machine learning algorithms as hydrological models of green roofs across different climatic condition. The study provides comparison between conceptual and machine learning algorithms. Machine learning models were found to be accurate in simulating runoff from extensive green roofs.
Yang Yang and Ting Fong May Chui
Hydrol. Earth Syst. Sci., 25, 5839–5858, https://doi.org/10.5194/hess-25-5839-2021, https://doi.org/10.5194/hess-25-5839-2021, 2021
Short summary
Short summary
This study uses explainable machine learning methods to model and interpret the statistical correlations between rainfall and the discharge of urban catchments with sustainable urban drainage systems. The resulting models have good prediction accuracies. However, the right predictions may be made for the wrong reasons as the model cannot provide physically plausible explanations as to why a prediction is made.
Zhengzheng Zhou, James A. Smith, Mary Lynn Baeck, Daniel B. Wright, Brianne K. Smith, and Shuguang Liu
Hydrol. Earth Syst. Sci., 25, 4701–4717, https://doi.org/10.5194/hess-25-4701-2021, https://doi.org/10.5194/hess-25-4701-2021, 2021
Short summary
Short summary
The role of rainfall space–time structure in flood response is an important research issue in urban hydrology. This study contributes to this understanding in small urban watersheds. Combining stochastically based rainfall scenarios with a hydrological model, the results show the complexities of flood response for various return periods, implying the common assumptions of spatially uniform rainfall in urban flood frequency are problematic, even for relatively small basin scales.
Yangzi Qiu, Igor da Silva Rocha Paz, Feihu Chen, Pierre-Antoine Versini, Daniel Schertzer, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 25, 3137–3162, https://doi.org/10.5194/hess-25-3137-2021, https://doi.org/10.5194/hess-25-3137-2021, 2021
Short summary
Short summary
Our original research objective is to investigate the uncertainties of the hydrological responses of nature-based solutions (NBSs) that result from the multiscale space variability in both the rainfall and the NBS distribution. Results show that the intersection effects of spatial variability in rainfall and the spatial arrangement of NBS can generate uncertainties of peak flow and total runoff volume estimations in NBS scenarios.
Kaihua Guo, Mingfu Guan, and Dapeng Yu
Hydrol. Earth Syst. Sci., 25, 2843–2860, https://doi.org/10.5194/hess-25-2843-2021, https://doi.org/10.5194/hess-25-2843-2021, 2021
Short summary
Short summary
This study presents a comprehensive review of models and emerging approaches for predicting urban surface water flooding driven by intense rainfall. It explores the advantages and limitations of existing models and identifies major challenges. Issues of model complexities, scale effects, and computational efficiency are also analysed. The results will inform scientists, engineers, and decision-makers of the latest developments and guide the model selection based on desired objectives.
Everett Snieder, Karen Abogadil, and Usman T. Khan
Hydrol. Earth Syst. Sci., 25, 2543–2566, https://doi.org/10.5194/hess-25-2543-2021, https://doi.org/10.5194/hess-25-2543-2021, 2021
Short summary
Short summary
Flow distributions are highly skewed, resulting in low prediction accuracy of high flows when using artificial neural networks for flood forecasting. We investigate the use of resampling and ensemble techniques to address the problem of skewed datasets to improve high flow prediction. The methods are implemented both independently and in combined, hybrid techniques. This research presents the first analysis of the effects of combining these methods on high flow prediction accuracy.
Ico Broekhuizen, Günther Leonhardt, Jiri Marsalek, and Maria Viklander
Hydrol. Earth Syst. Sci., 24, 869–885, https://doi.org/10.5194/hess-24-869-2020, https://doi.org/10.5194/hess-24-869-2020, 2020
Short summary
Short summary
Urban drainage models are usually calibrated using a few events so that they accurately represent a real-world site. This paper compares 14 single- and two-stage strategies for selecting these events and found significant variation between them in terms of model performance and the obtained values of model parameters. Calibrating parameters for green and impermeable areas in two separate stages improved model performance in the validation period while making calibration easier and faster.
Xuehong Zhu, Qiang Dai, Dawei Han, Lu Zhuo, Shaonan Zhu, and Shuliang Zhang
Hydrol. Earth Syst. Sci., 23, 3353–3372, https://doi.org/10.5194/hess-23-3353-2019, https://doi.org/10.5194/hess-23-3353-2019, 2019
Short summary
Short summary
Urban flooding exposure is generally investigated with the assumption of stationary disasters and disaster-hit bodies during an event, and thus it cannot satisfy the increasingly elaborate modeling and management of urban floods. In this study, a comprehensive method was proposed to simulate dynamic exposure to urban flooding considering human mobility. Several scenarios, including diverse flooding types and various responses of residents to flooding, were considered.
Joong Gwang Lee, Christopher T. Nietch, and Srinivas Panguluri
Hydrol. Earth Syst. Sci., 22, 2615–2635, https://doi.org/10.5194/hess-22-2615-2018, https://doi.org/10.5194/hess-22-2615-2018, 2018
Short summary
Short summary
This paper demonstrates an approach to spatial discretization for analyzing green infrastructure (GI) using SWMM. Besides DCIA, pervious buffers should be identified for GI modeling. Runoff contributions from different spatial components and flow pathways would impact GI performance. The presented approach can reduce the number of calibration parameters and apply scale–independently to a watershed scale. Hydrograph separation can add insights for developing GI scenarios.
Elena Cristiano, Marie-Claire ten Veldhuis, Santiago Gaitan, Susana Ochoa Rodriguez, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 22, 2425–2447, https://doi.org/10.5194/hess-22-2425-2018, https://doi.org/10.5194/hess-22-2425-2018, 2018
Short summary
Short summary
In this work we investigate the influence rainfall and catchment scales have on hydrological response. This problem is quite relevant in urban areas, where the response is fast due to the high degree of imperviousness. We presented a new approach to classify rainfall variability in space and time and use this classification to investigate rainfall aggregation effects on urban hydrological response. This classification allows the spatial extension of the main core of the storm to be identified.
Suresh Hettiarachchi, Conrad Wasko, and Ashish Sharma
Hydrol. Earth Syst. Sci., 22, 2041–2056, https://doi.org/10.5194/hess-22-2041-2018, https://doi.org/10.5194/hess-22-2041-2018, 2018
Short summary
Short summary
The study examines the impact of higher temperatures expected in a future climate on how rainfall varies with time during severe storm events. The results show that these impacts increase future flood risk in urban environments and that current design guidelines need to be adjusted so that effective adaptation measures can be implemented.
Stephanie Clark, Ashish Sharma, and Scott A. Sisson
Hydrol. Earth Syst. Sci., 22, 1793–1810, https://doi.org/10.5194/hess-22-1793-2018, https://doi.org/10.5194/hess-22-1793-2018, 2018
Short summary
Short summary
This study investigates global patterns relating urban river flood impacts to socioeconomic development and changing hydrologic conditions, and comparisons are provided between 98 individual cities. This paper condenses and communicates large amounts of information to accelerate the understanding of relationships between local urban conditions and global processes, and to potentially motivate knowledge transfer between decision-makers facing similar circumstances.
Abdellah Ichiba, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Philippe Bompard, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 22, 331–350, https://doi.org/10.5194/hess-22-331-2018, https://doi.org/10.5194/hess-22-331-2018, 2018
Short summary
Short summary
This paper proposes a two-step investigation to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependency observed within GIS data inputted in urban hydrological models. Then an intensive multi-scale modelling work was carried out to confirm effects on model performances. The model was implemented at 17 spatial resolutions ranging from 100 to 5 m. Results allow the understanding of scale challenges in hydrology modelling.
Per Skougaard Kaspersen, Nanna Høegh Ravn, Karsten Arnbjerg-Nielsen, Henrik Madsen, and Martin Drews
Hydrol. Earth Syst. Sci., 21, 4131–4147, https://doi.org/10.5194/hess-21-4131-2017, https://doi.org/10.5194/hess-21-4131-2017, 2017
Elena Cristiano, Marie-Claire ten Veldhuis, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017, https://doi.org/10.5194/hess-21-3859-2017, 2017
Short summary
Short summary
In the last decades, new instruments were developed to measure rainfall and hydrological processes at high resolution. Weather radars are used, for example, to measure how rainfall varies in space and time. At the same time, new models were proposed to reproduce and predict hydrological response, in order to prevent flooding in urban areas. This paper presents a review of our current knowledge of rainfall and hydrological processes in urban areas, focusing on their variability in time and space.
Chiara Arrighi, Hocine Oumeraci, and Fabio Castelli
Hydrol. Earth Syst. Sci., 21, 515–531, https://doi.org/10.5194/hess-21-515-2017, https://doi.org/10.5194/hess-21-515-2017, 2017
Short summary
Short summary
In developed countries, the majority of fatalities during floods occurs as a consequence of inappropriate high-risk behaviour such as walking or driving in floodwaters. This work addresses pedestrians' instability in floodwaters. It analyses both the contribution of flood and human physical characteristics in the loss of stability highlighting the key role of subject height (submergence) and flow regime. The method consists of a re-analysis of experiments and numerical modelling.
Tsun-Hua Yang, Gong-Do Hwang, Chin-Cheng Tsai, and Jui-Yi Ho
Hydrol. Earth Syst. Sci., 20, 4731–4745, https://doi.org/10.5194/hess-20-4731-2016, https://doi.org/10.5194/hess-20-4731-2016, 2016
Short summary
Short summary
Taiwan continues to suffer from floods. This study proposes the integration of rainfall thresholds and ensemble precipitation forecasts to provide probabilistic urban inundation forecasts. Utilization of ensemble precipitation forecasts can extend forecast lead times to 72 h, preceding peak flows and allowing response agencies to take necessary preparatory measures. This study also develops a hybrid of real-time observation and rainfall forecasts to improve the first 24 h inundation forecasts.
Christopher A. Sanchez, Benjamin L. Ruddell, Roy Schiesser, and Venkatesh Merwade
Hydrol. Earth Syst. Sci., 20, 1289–1299, https://doi.org/10.5194/hess-20-1289-2016, https://doi.org/10.5194/hess-20-1289-2016, 2016
Short summary
Short summary
The use of authentic learning activities is especially important for place-based geosciences like hydrology, where professional breadth and technical depth are critical for practicing hydrologists. The current study found that integrating computerized learning content into the learning experience, using only a simple spreadsheet tool and readily available hydrological data, can effectively bring the "real world" into the classroom and provide an enriching educational experience.
G. Bruni, R. Reinoso, N. C. van de Giesen, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 19, 691–709, https://doi.org/10.5194/hess-19-691-2015, https://doi.org/10.5194/hess-19-691-2015, 2015
P. Licznar, C. De Michele, and W. Adamowski
Hydrol. Earth Syst. Sci., 19, 485–506, https://doi.org/10.5194/hess-19-485-2015, https://doi.org/10.5194/hess-19-485-2015, 2015
J. Herget, T. Roggenkamp, and M. Krell
Hydrol. Earth Syst. Sci., 18, 4029–4037, https://doi.org/10.5194/hess-18-4029-2014, https://doi.org/10.5194/hess-18-4029-2014, 2014
F. Beck and A. Bárdossy
Hydrol. Earth Syst. Sci., 17, 4851–4863, https://doi.org/10.5194/hess-17-4851-2013, https://doi.org/10.5194/hess-17-4851-2013, 2013
D. H. Trinh and T. F. M. Chui
Hydrol. Earth Syst. Sci., 17, 4789–4801, https://doi.org/10.5194/hess-17-4789-2013, https://doi.org/10.5194/hess-17-4789-2013, 2013
J. Y. Wu, J. R. Thompson, R. K. Kolka, K. J. Franz, and T. W. Stewart
Hydrol. Earth Syst. Sci., 17, 4743–4758, https://doi.org/10.5194/hess-17-4743-2013, https://doi.org/10.5194/hess-17-4743-2013, 2013
H. Ozdemir, C. C. Sampson, G. A. M. de Almeida, and P. D. Bates
Hydrol. Earth Syst. Sci., 17, 4015–4030, https://doi.org/10.5194/hess-17-4015-2013, https://doi.org/10.5194/hess-17-4015-2013, 2013
Y. Seo, N.-J. Choi, and A. R. Schmidt
Hydrol. Earth Syst. Sci., 17, 3473–3483, https://doi.org/10.5194/hess-17-3473-2013, https://doi.org/10.5194/hess-17-3473-2013, 2013
J. Epting, F. Händel, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 1851–1869, https://doi.org/10.5194/hess-17-1851-2013, https://doi.org/10.5194/hess-17-1851-2013, 2013
H.-Y. Shen and L.-C. Chang
Hydrol. Earth Syst. Sci., 17, 935–945, https://doi.org/10.5194/hess-17-935-2013, https://doi.org/10.5194/hess-17-935-2013, 2013
M. H. Spekkers, M. Kok, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 17, 913–922, https://doi.org/10.5194/hess-17-913-2013, https://doi.org/10.5194/hess-17-913-2013, 2013
J. J. Lian, K. Xu, and C. Ma
Hydrol. Earth Syst. Sci., 17, 679–689, https://doi.org/10.5194/hess-17-679-2013, https://doi.org/10.5194/hess-17-679-2013, 2013
H. T. L. Huong and A. Pathirana
Hydrol. Earth Syst. Sci., 17, 379–394, https://doi.org/10.5194/hess-17-379-2013, https://doi.org/10.5194/hess-17-379-2013, 2013
S. Oraei Zare, B. Saghafian, and A. Shamsai
Hydrol. Earth Syst. Sci., 16, 4531–4542, https://doi.org/10.5194/hess-16-4531-2012, https://doi.org/10.5194/hess-16-4531-2012, 2012
R. Archetti, A. Bolognesi, A. Casadio, and M. Maglionico
Hydrol. Earth Syst. Sci., 15, 3115–3122, https://doi.org/10.5194/hess-15-3115-2011, https://doi.org/10.5194/hess-15-3115-2011, 2011
Y.-M. Chiang, L.-C. Chang, M.-J. Tsai, Y.-F. Wang, and F.-J. Chang
Hydrol. Earth Syst. Sci., 15, 185–196, https://doi.org/10.5194/hess-15-185-2011, https://doi.org/10.5194/hess-15-185-2011, 2011
I. Andrés-Doménech, J. C. Múnera, F. Francés, and J. B. Marco
Hydrol. Earth Syst. Sci., 14, 2057–2072, https://doi.org/10.5194/hess-14-2057-2010, https://doi.org/10.5194/hess-14-2057-2010, 2010
Yen-Ming Chiang, Li-Chiu Chang, Meng-Jung Tsai, Yi-Fung Wang, and Fi-John Chang
Hydrol. Earth Syst. Sci., 14, 1309–1319, https://doi.org/10.5194/hess-14-1309-2010, https://doi.org/10.5194/hess-14-1309-2010, 2010
Cited articles
Ailliot, P., Thompson, C., and Thomson, P.: Space-time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions, J. Roy. Stat. Soc. C-App., 58, 405–426, https://doi.org/10.1111/j.1467-9876.2008.00654.x, 2009.
Arnbjerg-Nielsen, K., Funder, S. G., and Madsen, H.: Identifying climate analogues for precipitation extremes for Denmark based on RCM simulations from the ENSEMBLES database, Water Sci. Technol., 71, 418–425, https://doi.org/10.2166/wst.2015.001, 2015a.
Arnbjerg-Nielsen, K., Leonardsen, L., and Madsen, H.: Evaluating adaptation options for urban flooding based on new high-end emission scenario regional climate model simulations, Clim. Res., 64, 73–84, https://doi.org/10.3354/cr01299, 2015b.
Barbu, V. and Limnios, N.: Semi-Markov Chains and Hidden Semi-Markov Models toward Applications: Their Use in Reliability and DNA Analysis, Springer, New York, NY, USA, https://doi.org/10.1007/978-0-387-73173-5, 2008.
Berndtsson, R. and Niemczynowicz, J.: Spatial and temporal scales in rainfall analysis: Some aspects and future perspectives, J. Hydrol., 100, 293–313, https://doi.org/10.1016/0022-1694(88)90189-8, 1988.
Boberg, F., Berg, P., Thejll, P., Gutowski, W. J., and Christensen, J. H.: Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models, Clim. Dynam., 35, 1509–1520, https://doi.org/10.1007/s00382-009-0683-8, 2010.
Burton, A., Fowler, H. J., Blenkinsop, S., and Kilsby, C. G.: Downscaling transient climate change using a Neyman-Scott Rectangular Pulses stochastic rainfall model, J. Hydrol., 381, 18–32, https://doi.org/10.1016/j.jhydrol.2009.10.031, 2010.
Cowpertwait, P. S. P.: A spatial-temporal point process model of rainfall for the Thames catchment, UK, J. Hydrol., 330, 586–595, https://doi.org/10.1016/j.jhydrol.2006.04.043, 2006.
Christensen, O. B., Yang, S., Boberg, F., Maule, C. F., Thejll, P., Olesen, M., Drews, M., Sørup, H. J. D., and Christensen, J. H.:. Scalability of regional climate change in Europe for high-end scenarios, Clim. Res., 64, 25–38, https://doi.org/10.3354/cr01286, 2015.
Fankhauser, R.: Influence of systematic errors from tipping bucket rain gauges on recorded rainfall data, Water Sci. Technol., 37, 121–129, https://doi.org/10.1016/S0273-1223(98)00324-2, 1998.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Review linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, https://doi.org/10.1002/joc.1556, 2007.
Gelati, E., Christensen, O. B., Rasmussen, P. F., and Rosbjerg, D.: Downscaling atmospheric patterns to multi-site precipitation amounts in southern Scandinavia, Hydrol. Res., 41, 193–210, https://doi.org/10.2166/nh.2010.114, 2010.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734, 2006.
Gregersen, I. B., Madsen, H., Linde, J. J., and Arnbjerg-Nielsen, K.: Opdaterede klimafaktorer og dimensionsgivende regnintensiteter (Updated climate factors and design rain intensities) – Spildevandskomiteen, Skrift nr. 30, The Danish Water and Wastewater Committee under the Danish Engineering Society, Copenhagen, Denmark, https://ida.dk/sites/prod.ida.dk/files/svk_skrift30_0.pdf (last access: 21 December 2016), 2014 (in Danish).
Kendon, E. J., Rowell, D. P., Jones, R. G., and Buonomo, E.: Robustness of future changes in local precipitation extremes, J. Climate, 21, 4280–4297, https://doi.org/10.1175/2008JCLI2082.1, 2008.
Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., and Senior, C. A.: Heavier summer downpours with climate change revealed by weather forecast resolution model, Nature Climate Change, 4, 570–576, 2014.
Madsen, H., Mikkelsen, P. S., Rosbjerg, D., and Harremoes, P.: Estimation of regional intensity-duration-frequency curves for extreme precipitation, Water Sci. Technol., 37, 29–36, https://doi.org/10.1016/s0273-1223(98)00313-8, 1998.
Madsen, H., Mikkelsen, P. S., Rosbjerg, D., and Harremoes, P.: Regional estimation of rainfall intensity-duration-frequency curves using generalized least squares regression of partial duration series statistics. Water Resour. Res., 38, 21-1–21-11, https://doi.org/10.1029/2001wr001125, 2002.
Madsen, H., Arnbjerg-Nielsen, K., and Mikkelsen, P. S.: Update of regional intensity-duration-frequency curves in Denmark: Tendency towards increased storm intensities, Atmos. Res., 92, 343–349, 2009.
Madsen, H., Gregersen, I. B., Rosbjerg, D., and Arnbjerg-Nielsen, K.: Regional frequency analysis of short duration rainfall extremes in Denmark from 1979 to 2012, Water Sci. Technol., in review, 2017.
Mayer, S., Maule, C. F., Sobolowski, S., Christensen, O. B., Sørup, H. J. D., Sunyer, M., Arnbjerg-Nielsen, K., and Barstad, I.: Identifying added value in high-resolution climate simulations over Scandinavia, Tellus A, 67, 24941, https://doi.org/10.3402/tellusa.v67.24941, 2015.
Mikkelsen, P. S., Madsen, H., Arnbjerg-Nielsen, K., Jørgensen, H. K., Rosbjerg, D., and Harremoës, P.: A rationale for using local and regional point rainfall data for design and analysis of urban storm drainage systems, Water Sci. Technol., 37, 7–14, https://doi.org/10.1016/s0273-1223(98)00310-2, 1998.
Molnar, P., and Burlando, P.: Variability in the scale properties of high-resolution precipitation data in the Alpine climate of Switzerland, Water Resour. Res., 44, W10404, https://doi.org/10.1029/2007wr006142, 2008.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Nakicenovic, N., Alcamo, J., Davis, J., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., Lebre La Rovere, E., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z.: Special report on emission scenarios. A special report of Working Group III for the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 2000.
Olesen, M., Madsen, K. S., Ludwigsen, C. A., Boberg, F., Christensen, T., Cappelen, J., Christensen, O. B., Andersen, K. K., and Christensen, J. H.: Fremtidige klimaforandringer i Danmark (Future climate changes in Denmark), Danmarks Klimacenter rapport nr. 6 2014, Danish Meteorological Institute, Copenhagen, Denmark, https://www.dmi.dk/fileadmin/user_upload/Rapporter/DKC/2014/Klimaforandringer_dmi.pdf (last access: 21 December 2016), 2014 (in Danish).
Olsson, J. and Burlando, P.: Reproduction of temporal scaling by a rectangular pulses rainfall model, Hydrol. Process., 16, 611–630, https://doi.org/10.1002/hyp.307, 2002.
Olsson, J., Berggren, K., Olofsson, M., and Viklander, M.: Applying climate model precipitation scenarios for urban hydrological assessment: a case study in Kalmar City, Sweden, Atmos. Res., 92, 364–375, https://doi.org/10.1016/j.atmosres.2009.01.015, 2009.
Rosbjerg, D.: Defence of the median plotting position, Progress Report – Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, 1988.
Schilling, W.: Rainfall data for urban hydrology: what do we need?, Atmos. Res., 27, 5–22, https://doi.org/10.1016/0169-8095(91)90003-F, 1991.
Segond, M.-L., Onof, C., and Wheater, H. S.: Spatiat-temporal disaggregation of daily rainfall from a generalized linear model, J. Hydrol., 331, 674–689, https://doi.org/10.1016/j.jhydrol.2006.06.019, 2006.
Sørup, H. J. D., Madsen, H., and Arnbjerg-Nielsen, K.: Descriptive and predictive evaluation of high resolution Markov chain precipitation models, Environmetrics, 23, 623–635, https://doi.org/10.1002/env.2173, 2012.
Sørup, H. J. D., Christensen, O. B., Arnbjerg-Nielsen, K., and Mikkelsen, P. S.: Downscaling future precipitation extremes to urban hydrology scales using a spatio-temporal Neyman-Scott weather generator, Hydrol. Earth Syst. Sci., 20, 1387–1403, https://doi.org/10.5194/hess-20-1387-2016, 2016a.
Sørup, H. J. D., Lerer, S. M., Arnbjerg-Nielsen, K., Mikkelsen, P. S., and Rygaard, M.: Efficiency of stormwater control measures under varying rain conditions: Quantifying the Three Points Approach (3PA), Environ. Sci. Policy, 63, 19–26, https://doi.org/10.1016/j.envsci.2016.05.010, 2016b.
Srikanthan, R. and McMahon, T. A.: Sequential generation of short time-interval rainfall data, Nord. Hydrol., 14, 277–306, 1983.
Sunyer, M. A., Madsen, H., Rosbjerg, D., and Arnbjerg-Nielsen, K.: A Bayesian Approach for Uncertainty Quantification of Extreme Precipitation Projections Including Climate Model Interdependency and Nonstationary Bias, J. Climate, 27, 7113–7132, https://doi.org/10.1175/JCLI-D-13-00589.1, 2014.
Svoboda, V., Hanel, M., Máca, P., and Kyselý, J.: Projected changes of rainfall event characteristics for the Czech Republic, J. Hydrol. Hydromech., 64, 415–425, https://doi.org/10.1515/johh-2016-0036, 2016.
Thyregod, P., Arnbjerg-Nielsen, K., Madsen, H., and Carstensen, N. J.: Modelling the embedded rainfall process using tipping bucket data, Water Sci. Technol., 37, 57–64, https://doi.org/10.1016/S0273-1223(98)00316-3, 1998.
van der Linden, P. and Mitchell, J. F.: Ensembles: Climate change and its impacts: Summary of research and results from the ensembles project, Technical Report, Met Office Hadley Centre, Exeter, UK, 2009.
van Roosmalen, L., Sonnenborg, T. O., Jensen, K. H., and Christensen, J. H.: Comparison of Hydrological Simulations of Climate Change Using Perturbation of Observations and Distribution-Based Scaling, Vadose Zone J., 10, 136–150, https://doi.org/10.2136/vzj2010.0112, 2011.
Verhoest, N. E. C., Vandenberghe, S., Cabus, P., Onof, C., Meca-Figueras, T., and Jameleddine, S.: Are stochastic point rainfall models able to preserve extreme flood statistics?, Hydrol. Process., 24, 3439–3445, https://doi.org/10.1002/hyp.7867, 2010.
Willems, P.: Stochastic generation of spatial rainfall for urban drainage areas, Water Sci. Technol., 39, 23–30, https://doi.org/10.1016/s0273-1223(99)00212-7, 1999.
Willems, P., Arnbjerg-Nielsen, K., Olsson, J., and Nguyen, V.-T.-V.: Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings, Atmos. Res., 103, 106–118, https://doi.org/10.1016/j.atmosres.2011.04.003, 2012.
WMO: Guide to hydrological practices. Volume II: Management of Water Recourses and Application of hydrological practices, WMO report 168, 6th edn., World Meteorological Organization, Geneva, Switzerland, p. 302, 2009.
Yang, W., Andreasson, J., Graham, L. P., Olsson, J., Rosberg, J., and Wetterhall, F.: Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies, Hydrol. Res., 40, 211–229, https://doi.org/10.2166/nh.2010.004, 2010.
Short summary
In this study we propose a methodology changing present-day precipitation time series to reflect future changed climate. Present-day time series have a much finer resolution than what is provided by climate models and thus have a much broader application range. The proposed methodology is able to replicate most expectations of climate change precipitation. These time series can be used to run fine-scale hydrological and hydraulic models and thereby assess the influence of climate change on them.
In this study we propose a methodology changing present-day precipitation time series to reflect...
Special issue