
Hydrol. Earth Syst. Sci., 21, 345–355, 2017
www.hydrol-earth-syst-sci.net/21/345/2017/
doi:10.5194/hess-21-345-2017
© Author(s) 2017. CC Attribution 3.0 License.

Formulating and testing a method for perturbing precipitation time
series to reflect anticipated climatic changes
Hjalte Jomo Danielsen Sørup1,2, Stylianos Georgiadis1,3, Ida Bülow Gregersen4, and Karsten Arnbjerg-Nielsen1,2

1Technical University of Denmark, Global Decision Support Initiative, Lyngby, Denmark
2Technical University of Denmark, Department of Environmental Engineering, Lyngby, Denmark
3Technical University of Denmark, Department of Applied Mathematics and Computer Science, Lyngby, Denmark
4Ramboll Danmark A/S, Department of Climate Adaptation and Green Infrastructure, Copenhagen, Denmark

Correspondence to: Hjalte Jomo Danielsen Sørup (hjds@env.dtu.dk)

Received: 25 September 2016 – Published in Hydrol. Earth Syst. Sci. Discuss.: 6 October 2016
Revised: 3 January 2017 – Accepted: 4 January 2017 – Published: 20 January 2017

Abstract. Urban water infrastructure has very long planning
horizons, and planning is thus very dependent on reliable es-
timates of the impacts of climate change. Many urban water
systems are designed using time series with a high tempo-
ral resolution. To assess the impact of climate change on
these systems, similarly high-resolution precipitation time
series for future climate are necessary. Climate models can-
not at their current resolutions provide these time series at the
relevant scales. Known methods for stochastic downscaling
of climate change to urban hydrological scales have known
shortcomings in constructing realistic climate-changed pre-
cipitation time series at the sub-hourly scale. In the present
study we present a deterministic methodology to perturb his-
torical precipitation time series at the minute scale to re-
flect non-linear expectations to climate change. The method-
ology shows good skill in meeting the expectations to cli-
mate change in extremes at the event scale when evaluated at
different timescales from the minute to the daily scale. The
methodology also shows good skill with respect to represent-
ing expected changes of seasonal precipitation. The method-
ology is very robust against the actual magnitude of the ex-
pected changes as well as the direction of the changes (in-
crease or decrease), even for situations where the extremes
are increasing for seasons that in general should have a de-
creasing trend in precipitation. The methodology can pro-
vide planners with valuable time series representing future
climate that can be used as input to urban hydrological mod-
els and give better estimates of climate change impacts on
these systems.

1 Introduction

Climate change impacts water management worldwide as
the water cycle is an essential part of the climate system.
The planning horizon for water infrastructure is often very
long, making reliable predictions of future climate crucial
(Arnbjerg-Nielsen et al., 2015b). In the design of water in-
frastructure, precipitation data are needed. Especially for ur-
ban infrastructure the time resolution of precipitation data
needed for design and planning is much finer than what is
provided by climate models (Berndtsson and Niemczynow-
icz, 1988; Schilling, 1991). Hence a lot of effort is put into
giving reliable estimates of what the expected change in pre-
cipitation will be at these fine scales (Fowler et al., 2007;
Kendon et al., 2014; Mayer et al., 2015). Expected changes in
precipitation, however, do not translate directly into changes
in floods or overflows from structures. To determine these
changes, urban hydrological models have to be run, driven by
the changed precipitation (Olsson et al., 2009; Willems et al.,
2012). By definition, fine-resolution precipitation time series
for future climates are not observable, and hence a multitude
of statistical approaches have been developed to enable gen-
eration of time series with properties that for a large range of
metrics have the same characteristics as the expected future
precipitation (Willems, 1999; Olsson and Burlando, 2002;
Cowpertwait, 2006; Molnar and Burlando, 2008; Burton et
al., 2010; Willems et al., 2012; Sørup et al., 2016a).

Expectations to precipitation at event level under climate
change are often non-linear with the anticipation that changes
in occurrence and size of extreme events will be higher than
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changes in seasonal or yearly precipitation (Boberg et al.,
2010). This is a problem often solved by weather generators
or other similar downscaling techniques (Fowler et al., 2007;
Burton et al., 2010), but these often have difficulty in present-
ing realistic time series at the sub-hourly to hourly timescales
relevant for urban infrastructure (Segond et al., 2006; Ver-
hoest et al., 2010; Sørup et al., 2016a). Several studies have
tested the applicability of Markov models for simulation of
high-resolution precipitation series (Srikanthan and McMa-
hon, 1983; Thyregod et al., 1998; Ailliot et al., 2009; Gelati
et al., 2010; Sørup et al., 2012). The approach has the ad-
vantage that realistic chronology is created in the output.
However, for very high resolutions the sensing method of the
gauge may have an impact on the signal, giving an upper
bound to the temporal resolution of the model, as has been
shown for e.g. tipping bucket gauges (Thyregod et al., 1998;
Sørup et al., 2012).

In the present study, we develop and demonstrate a novel
non-linear methodology that perturbs existing precipitation
time series to reflect complex expectations to precipitation in
a changed future climate. The method incorporates regional
historical knowledge about precipitation through the use
of Intensity-Frequency-Duration (IDF) relationships (WMO,
2009) and knowledge about the expected changes in these
due to climate change. Thus, the method generates time se-
ries for a changed climate which are chronologically identi-
cal to the observations used as input, but perturbed to reflect
climate change. These series can be used as input for hy-
draulic or hydrologic models where the climate change effect
has to be assessed for all possible rain conditions.

The presented methodology is based on the assumption
that precipitation can be scaled according to identified expec-
tations to climate changes. In its simplest form, this assump-
tion is identified as the Delta Change (DC) method (Fowler
et al., 2007). The basic assumption is that relative changes
in output from climate models might represent expectations
to climate change well even though the output itself could
be wrongly scaled in absolute values. A more elaborate use
of this assumption is provided by Distribution Based Scal-
ing (DBS) presented by Yang et al. (2010). In this approach
parameters are derived from regional climate model data to
estimate present and future distribution functions for rainfall
intensities. The relative change in the distribution parameters
is applied to a similar distribution function based on obser-
vational data. Thereby, perturbation of rainfall intensities due
to climate change relies on the rarity of the individual events
and changes markedly from average to extreme events with
a high impact on hydrological responses of simulation mod-
els (van Roosmalen et al., 2011). Unlike the study by Yang
et al. (2010), the expected changes in this study are not cal-
culated directly using the DC method on Regional Climate
Model output; they are derived from comprehensive state-of-
the-art studies where all available data are used to determine
realistic expectations to changes to precipitation due to cli-

mate change (e.g. Giorgi, 2006; Kendon et al., 2008; Chris-
tensen et al., 2015).

2 Methodology

In urban water management, the relevant time frame to con-
sider is most often that of the rain event (Willems, 1999).
The determination of robust IDF relationships for present
climate at the relevant timescales is a prerequisite. For de-
veloped countries where high-resolution precipitation is gen-
erally available, these two prerequisites are very often met
(Arnbjerg-Nielsen et al., 2015a), making the methodology
generally relevant. The general flow of the methodology is
presented in Fig. 1, and how to proceed with each step is
presented in the following sections (2.1–2.5).

2.1 Modelling framework

Let us consider a system S that describes precipitation over
a time period. The original data are expressed as a time se-
ries of precipitation intensity over fixed time steps. This time
series alternates between a dry period (no precipitation) and
a rainy one. A given event is characterised as dry, extreme
or non-extreme with respect to the amount of precipitation
during the event.

We denote by E the state space of the system S, with at
least three states, i.e. |E| ≥ 3. Also let D0, D1 and D2 be the
non-empty sets of states of dry periods, non-extreme and ex-
treme events, respectively, with |D0| = 1, |D1| = d1 ≥ 1 and
|D2| = d2 ≥ 1, i.e. there exists exactly one state for dry peri-
ods, D0 =Ddry, but a different number of extreme and non-
extreme states (d1 and d2, respectively) can be defined for
both the non-extreme and extreme events. An extreme event
can be further categorised according to the severity of the
phenomenon, expressed in terms of the return period of the
measured intensity. Non-extreme events can be categorised
according to the season in which they appear. Hence, the state
space E is partitioned into three disjoint subsets as follows:

E =D0 ∪D1 ∪D2, (1)

where Di ∩Dj =∅, i 6= j, ij ∈ {0,1,2}. We link the non-
extreme events to the seasonality of the phenomenon and
thus D1 =

{
Dwinter,Dspring,Dsummer,Dautumn}, that is d1 =

4. D2 can likewise be partitioned into one or several states
appropriate for describing extreme precipitation which may
have different return periods or different hydro-climatic ori-
gins. In this study, we use a partition based on return periods
with D2 =

{
D2,D10,D100}, referring to states that classify

the extremes as either 2-, 10- or 100-year events based on
return level.

By definition there is always a dry period between two
events, and we assume that there is no dependence between
consecutive events. We define the following processes that
describe the evolution of a semi-Markov system (Barbu and
Limnios, 2008):
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Figure 1. Flow diagram showing the general process involved in the presented methodology.

– J := (Jn)n∈N is a Markov chain with state space E,
where Jn is the state of the system at the nth event;

– U := (Un)n∈N is the sequence of jump times between
states with state space N and U0 = 0; and

– Z := (Zk)k∈N is a discrete-time process with states on
E, with Zk to be the state of the system at a time step k.

The processes J and Z are related through the formula

Zk = JN (k),k ∈N, (2)

where N(k) is the discrete-time counting process of events
in [1,k]⊂N , i.e.

N (k) :=max {n ∈N : Un ≤ k} . (3)

The corresponding transition matrix of the chain J is very
simple. Figure 2b illustrates the evolution of the stochastic
system described above.

2.2 Framework for determining state of individual
events

There is no unique way to assign a state to an extreme event.
In the literature some studies apply hydro-climatic regimes
for this classification (Gelati et al., 2010; Svoboda et al.,
2016), while others apply event statistics (Madsen et al.,
2009; Sørup et al., 2016a). For any given application, the
most appropriate classification depends on the data available.
In this paper, various methods based on the maximum mean
intensities are used to define the event state. For all investi-
gated methods the changes to extremes are evaluated by cal-
culation of IDF curves based on return levels, zis, at event
level for a selection of return periods, I (WMO, 2009). The
return period (T ) of individual events across all intensities
is determined using the median plotting position (Rosbjerg,
1988):

Tmedian =
Ttotal+ 0.4
rank− 0.3

, (4)

where Ttotal is the length of the time series and rank is the
rank number of the individual event.

Using data with observations every minute and a mini-
mum dry weather separation between events of 60 min, the
mean maximum intensities over 5, 10, 30, 60, 180, 360 and
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Figure 2. (a) Illustration of the magnitude of perturbation of events
for non-extreme summer and winter events as well as 2- and 100-
year extreme events, with summer events being perturbed with a
factor below 1 and factors for the winter and the extremes being
above 1. Factors for extremes are higher than for the winter events,
and factors for the very extreme are higher than for the more mod-
erate extreme. (b) Illustration of the states associated with the dif-
ferent events if they were to happen in the shown chronology; the
dry state, Ddry, is present between all wet states.

720 min are calculated for each event. At shorter time frames,
e.g. 1 min, the variability of the observed extremes is ex-
pected to be very large due to the inherent sampling error
(Fankhauser, 1998), and at very long time frames, e.g. 1 day
(i.e. 1440 min), the extremes often consist of several events
following one another and a different event definition would
be necessary to ensure that the real extremes are identified
(Madsen et al., 2009). A representative return period for the
event is derived based on a mathematical comparison to re-
gional IDF estimates (Fig. 3). This return period is then in
turn used to define the state of the event. We test four differ-
ent selection criteria which define the state of extreme events
as either D2,D10 or D100. The selection criteria are listed in
Sect. 3.3.
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Figure 3. The IDF curve for an extreme event in comparison to the
regional IDF curves for 0.5-, 2-, 10- and 100-year return periods,
respectively (based on Madsen et al. (2017)).

2.3 Perturbation and change factor

With each event of a time series classified according to a
state, the time series can be perturbed using the following
methodology linking the time series to the states of the indi-
vidual events.

Let Rk , k ∈N , be the precipitation intensity at time step
k and R := (Rk)k∈N the corresponding process describing
these intensities. The process of perturbed precipitation in
each time step k is denoted by R∗ :=

(
R∗k

)
k∈N

.
Similarly to the state space E, we introduce the state space

of the change factors, denoted by ECF, |ECF| = |E|. We can
then write

ECF = C0 ∪C1 ∪C2, (5)

with |C0| = 1, |C1| = d1 and |C2| = d2.
We consider the process CF: = (CFn)n∈N with state space

ECF, where CFn is the change factor at the nth event. Let
W := (Wk)k∈N be the chain, with state space ECF, of change
factors in time steps k ∈N , that is

Wk = CFN(k) (6)

with N(k) to be the counting process defined in (Eq. 3). Un-
der the above notation, the original and perturbed sequences
of precipitation, Rk and R∗k , are written as

R∗k =Wk Rk. (7)

This means that, for a sequence of events, some events will
be perturbed more than others, and for extreme cases some
might be reduced while others are increased, depending on
the local expectations to climate change. Figure 2a shows an
example where a non-extreme summer event is perturbed to
a lesser volume than the original while a winter non-extreme
is increased marginally and both 2- and 100-year extremes
are increased considerably more (both in absolute numbers
as well as in relative percentages). Figure 2b shows how
the state space changes if these four events were to happen
chronologically in time with the state jump times marked on
the x axis.

2.4 Volume correction based on seasonal dependence of
extremes

The extreme part of precipitation is only expected to consti-
tute a smaller fraction of the total precipitation volume on
an annual basis (Sørup et al., 2016b), but as extreme pre-
cipitation is often associated with a particular season (see
e.g. Sørup et al., 2012), the volumetric part of the extremes
might be higher for sub-annual considerations. This implies
that situations where the expectations for changes to the ex-
tremes are very different from the expectations to changes to
seasonal precipitation have to be handled through volumetric
corrections in order to accommodate the fact that both expec-
tations to changes in extremes and overall seasonal changes
are correct. How to do this best will be very much depen-
dent on the local conditions. In our case this is described in
Sect. 3.4.

2.5 Evaluation of perturbed time series

The evaluation of the perturbed time series is done against
the original time series and against the expected changes.

The average percent-wise difference between the per-
turbed return levels, z∗i,j,m, of the modelled time series,
R∗k , perturbed with the time-dependent change factors, Wk ,
against the same return levels, zi,j,m, of the original time se-
ries, Rk , multiplied by the target change factor, CFj

e , can be
defined as

8i,j,m =

(
1−

z∗i,j,m

zi,j,mCFj
e

)
100%, (8)

across all IDF points, i, all extremity levels and seasonality,
j , and all perturbed time series, m. A combined skill score,
8, across all considered metrics that describe the average de-
viance from the expectations, can then be defined as

8=
∑

i∈I

∑
j∈J

∑
m∈M

∣∣1−8i,j,m

∣∣
|I | |J | |M|

, (9)

with |I | |J | |M| being the product of the total number of IDF
points, I , the total number of extreme levels considered plus
seasonality, J , and the total number of time series perturbed,
M , as a normalization factor.

2.6 Sensitivity analysis

The robustness of the methodology is tested by evaluating
its sensitivity to the actual magnitude of the target parame-
ters for both extreme and seasonal changes. Low (L), mean
(M) and high (H) scenarios are constructed and paired in all
possible combinations to assess both the individual and com-
bined influence of these (Table 1). As this increases the num-
ber of scenarios with which the precipitation time series sub-
stantially are perturbed, this is not done until after an initial
evaluation of the state selection criteria.

Hydrol. Earth Syst. Sci., 21, 345–355, 2017 www.hydrol-earth-syst-sci.net/21/345/2017/



H. J. D. Sørup et al.: A method for perturbing precipitation 349

Table 1. Tested combinations of extreme and seasonal changes.

Seasonality Extremes

Low Mean High
expected expected expected
change change change

Low expected change LL ML HL
Mean expected change LM MM HM
High expected change LH MH HH

3 Case study: Denmark

To showcase the methodology, it is applied to Danish condi-
tions where the situation is that complex non-linear changes
are expected with respect to precipitation in a changed cli-
mate.

3.1 Data

3.1.1 Observational data

Precipitation data from the Danish SVK rain gauge network
are used in this study (Mikkelsen et al., 1998; Madsen et al.,
2002). For this study 10 time series from different parts of
Denmark with lengths of approximately 33 years between
1979 and 2012 are used. To distinguish individual events,
a dry weather period between individual events of at least
60 min is applied.

3.1.2 IDF curves

For present climate IDF curves are extracted from a re-
gional model for extremes originally developed by Madsen
et al. (1998) and updated by Madsen et al. (2009) and Mad-
sen et al. (2017). The IDF curves vary across Denmark, but
a single mean regional curve is chosen for this study inde-
pendently of the location of the gauge considered. Table 2
summarises the IDF values used.

3.1.3 Expectations to climate change

The official recommendations regarding climate change
for urban infrastructure in Denmark was determined by
Gregersen et al. (2014) on the basis of the ENSEMBLES data
set (van der Linden and Mitchell, 2009), with the addition of
a few simulations using high-end scenarios. The data set in-
dicates that in general precipitation amounts and intensities
will increase and that extremes will increase more than the
expected mean increases for Denmark. Furthermore, the re-
sults show that it is very likely that increases will be more
pronounced for the very rare extremes compared to the more
frequent extremes. Table 3 sums up these official expecta-
tions for the three return periods that has to be assessed in
Danish urban hydrological contexts.

In addition, the Danish Meteorological Institute has pub-
lished expectations regarding climate change on a seasonal
basis (Olesen et al., 2014). The analysis is performed for
a range of climate variables and focuses on utilizing the
data available in the best possible way to create realistic un-
certainty intervals for the expected changes. The estimated
change factors for precipitation are based on analysis of the
RCP2.6 and RCP8.5 scenarios (Moss et al., 2010), hence a
low-end emission scenario and a high-end emission scenario,
respectively. Table 4 lists these expectations as well as a sim-
ple mean average of the two to represent the mean expected
change. To match the change factors for extreme precipita-
tion in Gregersen et al. (2014), which primarily is based on
the more average emission A1B scenario (Nakicenovic et al.,
2000), simple scaling of the seasonal expectations to a mid-
point is applied, as scalability has been shown to be a valid
assumption across most scales and most indices (Christensen
et al., 2015). The A1B scenario does not lie exactly in the
middle between the RCP2.6 and RCP8.5 scenarios, but def-
initely somewhere between these, and the original estimates
from Olesen et al. (2014) are kept as low and high expected
changes for the sensitivity analysis.

3.2 Defining states

For Denmark the state space (Eq. 1) is defined with a total of
eight states based on the expectations to climate change listed
in Tables 3 and 4 with four seasonal states defined for the
non-extreme events and three states for the different extreme
event levels:

E = {Ddry,Dwinter,Dspring,Dsummer,Dautumn,D2,D10,D100
}.

(10)

Correspondingly the change factors used to perturb the time
series are, as a starting point, determined based on the mean
expectations listed in Tables 3 and 4.

3.3 Determining state of individual events

For the determination of the state of the individual ex-
treme events four different selection criteria are investi-
gated, with the purpose of defining a representative re-
turn period for each event. All points mentioned refer
to the return periods of the events intensity points, T =

{T5,T10,T30,T60,T180,T360,T720}, shown in a situation as
depicted in Fig. 3:

Criterion A The maximum return period is used to define
the return period of the whole event (based on one
point);

Tevent = T ∗1 =maxT . (11)

Criterion B The mean of the three largest return periods is
used to define the events (based on three points),
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Table 2. IDF intensities (µm s−1) for various return periods for Denmark extracted from the model presented by Madsen et al. (2017).

Return period Duration
(years) (min)

5 10 30 60 180 360 720

T = 100 43.67 34.80 20.63 12.47 5.21 3.11 1.72
T = 10 28.62 21.43 11.37 6.95 3.09 1.86 1.09
T = 2 19.54 14.08 7.08 4.38 2.04 1.25 0.75
T = 0.5 12.40 8.73 4.33 2.75 1.33 0.84 0.51

Table 3. Expected changes in extreme precipitation for Denmark.
All values from Table 1 of Gregersen et al. (2014).

Change factor 2-year 10-year 100-year
for extreme event event event
precipitation (–) (CF2) (CF10) (CF100)

Low expected change 1.0 1.0 1.0
Mean expected change 1.2 1.3 1.4
High expected change 1.45 1.7 2.0

Tevent =
1
3

∑3
i=1

T ∗i , (12)

where T ∗2 and T ∗3 are the second and third maxima, respec-
tively, i.e. T ∗2 =max{T \T ∗1 } and T ∗3 =max{T \(T ∗1 ∩ T ∗2 )}.

Criterion C The mean of all the return periods is used to
define the events (based on all seven points):

Tevent = T . (13)

Criterion D A customised step-wise threshold selection cri-
terion is constructed where the event-specific IDF curve
is compared to regional IDF levels.

Criterion D is important to test as this allows for construc-
tion of a criterion that is closely linked to specific knowl-
edge on the place-specific precipitation dynamics, i.e. for
how many duration points on the IDF curve a given return
period has to be exceeded for it to be essential for the classi-
fication of the event.

Following these selection criteria, four different systems,
Si, i ∈ {A,B,C,D}, are constructed and analysed.

Options SA to SC are straightforward based on Eqs. (11)–
(13), but option SD is determined specifically for the case
study. Table 5 summarises the methodology for option SD
used in this study; specifically it is reflected that for very
extreme events, fewer durations have to be extreme for the
event as a whole to be considered extreme compared to the
more moderate 2-year return level.

3.4 Volume correction based on seasonal dependence of
extremes

In previous studies using the SVK data set, it has been shown
that

1. the extreme events account for at most 25 % of the to-
tal rainwater volume on an annual basis (Sørup et al.,
2016b), and

2. the extreme events occur mostly in the summer season
(Sørup et al., 2012).

Furthermore, in the summer season the expected seasonal
change (−10 %) differs mostly from the expected change
in extremes (+20–40 %); see Tables 4 and 3, respectively.
Based on this information the seasonal change factor for
non-extreme summer events has to be adjusted to reach
the overall change factors reported in Table 4. We esti-
mate a partition between non-extreme and extreme events of
{fnon-extreme,fextreme} = {0.8,0.2}, and the change factor for
2-year events, CF2, is used to represent the extremes as the
largest seasonal volume by far is for the more frequent ex-
tremes (Sørup et al., 2016b). In this way the change factor
for summer, CFsummer, can be adjusted from its value listed
in Table 4 (0.9) as

CFsummer
adjusted =

CFsummer
−CF2fextreme

fnon-extreme
=

0.9− 1.2 · 0.2
0.8

= 0825. (14)

In other words the change factors for non-extreme summer
events are modified from −10 to −17.5 % in order to com-
pensate for the positive change of +20–40 % to the extremes
occurring in the summer period. For the other seasons such
an adjustment is not needed.

4 Results

4.1 Evaluation of selection criteria

The 10 time series are perturbed using the four different state
selection criteria (SA− SD) and the evaluation metric is cal-
culated using Eq. (9) with the extreme events having return
periods closest to 2, 10 and 100 years (Table 6). Overall, state
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Table 4. Expected seasonal changes to precipitation in Denmark based on data from Table 5 of Olesen et al. (2014) and linearly scaled
midpoint values.

Change factor for seasonal Winter Spring Summer Autumn
precipitation (–) (CFwinter) (CFspring) (CFsummer) (CFautumn)

Low expected change (RCP2.6) 1.0 1.0 1.0 1.0
Mean expected change 1.1 1.05 0.9 1.05
High expected change (RCP8.5) 1.2 1.1 0.8 1.1

Table 5. Selection criterion SD for choosing Tevents at event level.

A Tevent is chosen of a If Or

2-year event At least four points from the event have At least two points from the event have
a return period above 0.5 years a return period above 2 years

10-year event At least three points from the event have At least two points from the event have
a return period above 2 years a return period above 10 years

100-year event At least three points from the event have At least two points from the event have
a return period above 10 years a return period above 100 years

non-extreme event None of the above criteria are met

Table 6. Calculated skill scores, 8, for the four selection criteria A–
D calculated using Eq. (10).

SA SB SC SD

8 9.3 % 8.5 % 12 % 6.4 %

selection criterion SD outperforms the other alternatives even
though all selection criteria seem reasonable, as all estimated
deviances are below 13 % of the expected changes.

In order to study the performance for each state, we con-
struct the skill score variable of Eq. (8) and plot it against
the duration for the individual extremes and against months
for seasonal precipitation (Fig. 4). Plotted this way 100 %
represents a perfect fit, 0 % represents no change and ev-
erything positive represents a change in the right direction.
For the 2-year return levels both state selection criteria SB
and SD perform similarly and with a relative change close
to 100 %. State selection criterion SA overestimates the 2-
year return level by approximately 10 % on average and state
selection criterion SC underestimates it with a similar mag-
nitude, which still corresponds to a positive change for the
events (Fig. 4a). For the 10-year return level, all state se-
lection criteria perform similarly very well (Fig. 4b). When
the 100-year return level is evaluated, the reason for crite-
rion SD’s better overall performance becomes clear: it is the
only criterion that does not systematically underestimate this
return level (Fig. 4c). Even so, all criteria produce results
where the direction of change is correct. Given the inherent
uncertainty in estimating the actual levels of such events, ob-
taining close to 85 % of the expected change is considered
good. With respect to the seasonal behaviour, all state selec-
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Figure 4. Performance of the different selection criteria, SA−SD, in
producing (a) 2-year extremes, (b) 10-year extremes, (c) 100-year
extremes and (d) seasonal changes according to the perturbation
schemes listed in Tables 3 and 4.

tion criteria have approximately the same performance at a
level close to 100 % (Fig. 4d).

The performance of all the state selection criteria drops
when considering durations that are both shorter and longer
than the durations used in the state selection methodology
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Table 7. Calculated skill scores, 8, for selection criterion SD for the
nine different sensitivity scenarios listed in Table 1 calculated using
Eq. (9).

8 Extremes

Low Mean High

Seasonality Low 0.0 % 6.0 % 8.6 %
Mean 1.0 % 6.4 % 8.8 %
High 1.2 % 6.3 % 8.8 %

(5–720 min). At the minute scale, this is of minor importance,
but at 2 days (2880 min) the tendency is very robust across
different state selection criteria and extremity levels. This is
most likely because these average extreme events are caused
by several events with dry periods in between. Hence the in-
dividual events are each assessed to be non-extreme and they
are adjusted towards lower volumes, even though combined
they are rather extreme.

4.2 Sensitivity analysis with selection criterion D

The sensitivity analysis is carried out for the best state se-
lection criterion only, i.e. criterion SD. The resulting skill
scores for the nine individual sensitivity scenarios are listed
in Table 7. The highest sensitivity is found when changing
between the different extreme precipitation scenarios, with
a large increase in the metric when moving from low to
mean scenarios and also a notable increase when moving
from mean to high scenarios. As such the performance of
the methodology drops with the magnitude of the expected
changes to extremes, but even for the high extremes the per-
formance is similar to the performance of state selection cri-
teria SA to SD in Table 6. The methodology, on the other
hand, shows very little sensitivity to the variation in expec-
tations to seasonal changes, not even for the combination
where the difference between expectations to seasonal sum-
mer precipitation (−20 %) and the extremes become very
high.

For all extreme (+45–100 %) indices (Fig. 5a–c), the sen-
sitivity of the expected change in extremes is notable and,
especially for the 100-year return level, it is clear that per-
formance drops with increased magnitude of the expected
changes to extremes (Fig. 5c), but only to levels compara-
ble to that of the state selection criteria SA− SC as shown in
Fig. 4. Again, the performance for 2-day events (2880 min)
is worse than average, as also seen in Fig. 4. For seasonality
(Fig. 5d), the general picture is that the sensitivities of both
expectations to seasonality and extremes are of less impor-
tance and at a similar level, which in general is a lower level
than the one observed for the three extreme indices.
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Figure 5. Performance of selection criterion SD for different param-
eter values as specified in Table 1 for (a) 2-year extremes, (b) 10-
year extremes, (c) 100-year extremes and (d) seasonal changes un-
der climate change.

5 Discussion

The proposed framework is very flexible and the separation
of dry, non-extreme and extreme weather makes it possi-
ble to very effectively perturb time series to reflect differ-
ent changes in different categories. The presented case study
uses eight states to distinguish between different levels of ex-
tremes and different seasons and is able to produce time se-
ries that satisfactorily represent the expected changes listed
in Tables 3 and 4. For other places a different number of
states could be relevant and the seasonal partition could be
different depending on the local climate and expectation to
climate change. The proposed modelling framework fully
supports these spatial variations.

Four different state selection criteria over specified event
durations are tested in the present study (see Sect. 2.2), as
these covered realistic possibilities for the data set used in
this study and the focus on urban hydrology. As such, differ-
ent state selection criteria for different event durations could
be relevant in different contexts and could, as illustrated by
state selection criterion SD, be specified as very subjective
and case-specific criteria. In this study, the subjective state
selection criterion SD outperforms the other criteria (see Ta-
ble 6 and Fig. 2), but the superiority is mainly due to its
ability to produce the largest changes for the very large, and
very uncertain, extreme events. If this part of the evaluation
is disregarded, criteria SB and SD have a very similar per-
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formance, pointing to criterion SB as being a good onset for
investigating data sets where no presumptions exist and no
case-specific criterion can be constructed.

All state selection criteria showed a drop in performance
for longer duration events than the ones used in the method-
ology; this is likely due to the used event definition with
a minimum of 60 min of dry weather between individual
events, which will mean that very long lasting extremes are
likely split into several events and therefore not identified as
extremes. A different event definition with a longer minimum
dry period between events could probably partly solve this,
but it would reduce the number of events markedly and in-
crease the chance of small events close to extremes being
seen as part of the extreme, with a somewhat false classifica-
tion as a consequence.

The methodology is relatively sensitive to the magnitude
of the perturbation factors (see Sect. 4.2), but the sensitiv-
ity is not very dominant and is only at the same size as the
sensitivity of the different state selection criteria. Also, the
methodology does not address the possibilities of changes
to dry spells or changes to the occurrence rate of extremes in
general. A future research direction could be to study how the
state selection criteria along with the semi-Markov system
applied here can be used to generate fully stochastic time se-
ries where both the inter-event time and the occurrence prob-
ability of the extreme states will be included as criteria that
can be changed to meet the expectations to climate change.

6 Conclusions

The proposed methodology is a promising way of creating
artificially perturbed precipitation time series, which can rep-
resent a changed climate and be used as input in hydrologic
and hydraulic models. The methodology perturbs existing
time series based on a semi-Markov system where precipi-
tation time series are split into events characterised as dry,
extreme or non-extreme. The wet events are divided into dif-
ferent states based on an Intensity-Duration-Frequency re-
lationship based state selection criterion. Of the four tested
state selection criteria, the case-specific ones show the best
results, but the more general criteria too could be of use when
less knowledge about the precipitation regime is available.
The sensitivity of the methodology was tested against very
different expectations to climate change, both with respect to
seasonal changes and changes to extremes, and is generally
very robust, also regarding seasons where the general change
is negative while the expectation to extremes is positive. The
produced time series satisfactorily reproduce changes across
all seasons and across all levels of extremes relevant for ur-
ban hydrology.

7 Data availability

The data set used is a product of The Water Pollution
Committee of The Society of Danish Engineers made
freely available for research purposes. Access to data
is governed by the Danish Meteorological Institute, and
they should be contacted for enquiries regarding data ac-
cess at https://www.dmi.dk/erhverv/anvendelse-af-vejrdata/
spildevandskomiteens-regnmaalersystem/.
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