Articles | Volume 21, issue 3
https://doi.org/10.5194/hess-21-1547-2017
https://doi.org/10.5194/hess-21-1547-2017
Research article
 | 
13 Mar 2017
Research article |  | 13 Mar 2017

Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time

M. Levent Kavvas, Ali Ercan, and James Polsinelli

Related authors

Ensemble modeling of the two-dimensional stochastic confined groundwater flow through the evolution of the hydraulic head's probability density function
Joaquin Meza and M. Levent Kavvas
EGUsphere, https://doi.org/10.31223/X5ND5B,https://doi.org/10.31223/X5ND5B, 2024
Preprint archived
Short summary
Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time
M. Levent Kavvas, Tongbi Tu, Ali Ercan, and James Polsinelli
Earth Syst. Dynam., 11, 1–12, https://doi.org/10.5194/esd-11-1-2020,https://doi.org/10.5194/esd-11-1-2020, 2020
Short summary
Ensemble modeling of stochastic unsteady open-channel flow in terms of its time–space evolutionary probability distribution – Part 1: theoretical development
Alain Dib and M. Levent Kavvas
Hydrol. Earth Syst. Sci., 22, 1993–2005, https://doi.org/10.5194/hess-22-1993-2018,https://doi.org/10.5194/hess-22-1993-2018, 2018
Short summary
Ensemble modeling of stochastic unsteady open-channel flow in terms of its time–space evolutionary probability distribution – Part 2: numerical application
Alain Dib and M. Levent Kavvas
Hydrol. Earth Syst. Sci., 22, 2007–2021, https://doi.org/10.5194/hess-22-2007-2018,https://doi.org/10.5194/hess-22-2007-2018, 2018
Short summary
Maximization of the precipitation from tropical cyclones over a target area through physically based storm transposition
Mathieu Mure-Ravaud, Alain Dib, M. Levent Kavvas, and Elena Yegorova
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-665,https://doi.org/10.5194/hess-2017-665, 2018
Preprint withdrawn
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Theory development
Snowmelt-mediated isotopic homogenization of shallow till soil
Filip Muhic, Pertti Ala-Aho, Matthias Sprenger, Björn Klöve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 4861–4881, https://doi.org/10.5194/hess-28-4861-2024,https://doi.org/10.5194/hess-28-4861-2024, 2024
Short summary
Hydro-pedotransfer functions: a roadmap for future development
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024,https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
The dimensions of deep-layer soil desiccation and its impact on xylem hydraulic conductivity in dryland tree plantations
Nana He, Xiaodong Gao, Dagang Guo, Yabiao Wu, Dong Ge, Lianhao Zhao, Lei Tian, and Xining Zhao
Hydrol. Earth Syst. Sci., 28, 1897–1914, https://doi.org/10.5194/hess-28-1897-2024,https://doi.org/10.5194/hess-28-1897-2024, 2024
Short summary
Prediction of absolute unsaturated hydraulic conductivity – comparison of four different capillary bundle models
Andre Peters, Sascha C. Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 4579–4593, https://doi.org/10.5194/hess-27-4579-2023,https://doi.org/10.5194/hess-27-4579-2023, 2023
Short summary
Prediction of the absolute hydraulic conductivity function from soil water retention data
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023,https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary

Cited articles

Baumer, B. and Meerschaert, M. M.: Fractional diffusion with two time scales, Physica A, 373, 237–251, 2007.
Baumer, B., Benson, D., and Meerschaert, M. M.: Advection and dispersion in time and space, Physica A, 350, 245–262, 2005.
Bear, J.: Hydraulics of groundwater, McGraw-Hill Inc., New York, 1979.
Benson, D. A., Wheatcraft, S. W., and Meerschaert, M. M.: Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 1403–1412, 2000a.
Benson, D. A., Wheatcraft, S. W., and Meerschaert, M. M.: The fractional-order governing equation of Levy motion, Water Resour. Res., 36, 1413–1423, 2000b.
Download
Short summary
In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. By the introduction of the Brooks–Corey constitutive relationships, an explicit form of the equations is obtained. The developed governing equations, in their fractional time but integer space forms, show behavior consistent with the previous experimental observations.