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Abstract. In this study dimensionally consistent governing
equations of continuity and motion for transient soil wa-
ter flow and soil water flux in fractional time and in frac-
tional multiple space dimensions in anisotropic media are
developed. Due to the anisotropy in the hydraulic conduc-
tivities of natural soils, the soil medium within which the
soil water flow occurs is essentially anisotropic. Accord-
ingly, in this study the fractional dimensions in two hori-
zontal and one vertical directions are considered to be differ-
ent, resulting in multi-fractional multi-dimensional soil space
within which the flow takes place. Toward the development
of the fractional governing equations, first a dimensionally
consistent continuity equation for soil water flow in multi-
dimensional fractional soil space and fractional time is de-
veloped. It is shown that the fractional soil water flow conti-
nuity equation approaches the conventional integer form of
the continuity equation as the fractional derivative powers
approach integer values. For the motion equation of soil wa-
ter flow, or the equation of water flux within the soil ma-
trix in multi-dimensional fractional soil space and fractional
time, a dimensionally consistent equation is also developed.
Again, it is shown that this fractional water flux equation ap-
proaches the conventional Darcy equation as the fractional
derivative powers approach integer values. From the com-
bination of the fractional continuity and motion equations,
the governing equation of transient soil water flow in multi-
dimensional fractional soil space and fractional time is ob-
tained. It is shown that this equation approaches the con-
ventional Richards equation as the fractional derivative pow-
ers approach integer values. Then by the introduction of the
Brooks–Corey constitutive relationships for soil water into

the fractional transient soil water flow equation, an explicit
form of the equation is obtained in multi-dimensional frac-
tional soil space and fractional time. The governing fractional
equation is then specialized to the case of only vertical soil
water flow and of only horizontal soil water flow in fractional
time–space. It is shown that the developed governing equa-
tions, in their fractional time but integer space forms, show
behavior consistent with the previous experimental observa-
tions concerning the diffusive behavior of soil water flow.

1 Introduction

Various laboratory (Silliman and Simpson, 1987; Levy and
Berkowitz, 2003) and field studies (Peaudecerf and Sauty,
1978; Sudicky et al., 1983; Sidle et al., 1998) of transport
in subsurface porous media have shown significant devia-
tions from Fickian behavior. As one approach to the mod-
eling of the generally non-Fickian behavior of transport,
Meerschaert, Benson, Baumer, Schumer, Zhang and their co-
workers (Meerschaert et al., 1999, 2002, 2006; Benson et
al., 2000a, b; Baumer et al., 2005, 2007; Schumer et al.,
2001, 2009; Zhang et al., 2007, 2009; Zhang and Benson,
2008) have introduced the fractional advection–dispersion
equation (fADE) as a model for transport in heterogeneous
subsurface media. By theoretical and numerical studies the
above authors have shown that fADE has a nonlocal structure
that can model well the heavy-tailed non-Fickian dispersion
in subsurface media, mainly by means of a fractional spa-
tial derivative in the dispersion term of the equation. Mean-
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while, they have also shown that fADE, with a fractional
time derivative, can also model well the long particle wait-
ing times in transport in both surface and subsurface envi-
ronments. However, while the above-mentioned studies pro-
vided extensive treatment of the fractional differential equa-
tion modeling of transport in fractional time–space by sub-
surface flows, few studies have addressed the detailed mod-
eling of the actual subsurface flows in porous media in frac-
tional time–space.

He (1998) seems to be the first scholar who proposed a
fractional form of Darcy’s equation for water flux in porous
media. Based on this fractional water flux equation, in his
pioneering work He (1998) then proposed a fractional gov-
erning equation of flow through saturated porous media. The
left-hand side (LHS) and the right-hand side (RHS) of He’s
fractional Darcy flux formulation have different units. As sat-
urated flow equations, He’s proposed governing equations
address the groundwater flow instead of the unsaturated soil
water flow. Since the focus of our study is soil water flow
in fractional time–space, below we shall discuss the litera-
ture that specifically addresses the fractional soil water flow
equations.

As early as in 1960s Gardner and his co-workers (Fergu-
son and Gardner, 1963; Rawlins and Gardner, 1963) ques-
tioned the classical diffusivity expression in the diffusion
form of the conventional Richards equation for soil water
flow being only dependent on the soil water content. Based
on their experimental observations, they reported that diffu-
sivity was also dependent explicitly on time besides being de-
pendent on the soil water content. Following on these exper-
imental observations, Guerrini and Swartzendruber (1992)
hypothesized a new form for Richards equation for horizon-
tal unsaturated soil water flow in semi-rigid soils. Unlike the
assumption that the soil hydraulic conductivity K and soil
water pressure head ψ are only dependent on the soil water
content, they hypothesized that K and ψ are also dependent
explicitly on time. This hypothesis led them to the formula-
tion of the diffusivity coefficientD within the diffusion form
of the Richards equation as function of not only the soil wa-
ter content but also explicitly on time, that is D =D(θ, t) =
E(θ)tm, whereE is a function of water content θ whilem is a
power value. The application of their theory to the field data
of Rawlins and Gardner (1963) proved successful, yielding
fractional values of m less than unity in tm. In a field experi-
mental study of horizontal water absorption into porous con-
struction materials (fired-clay and siliceous brick), El-Abd
and Milczarek (2004) arrived at a formulation of diffusivity
coefficient again in the form D(θ, t) = E(θ) tm. The appli-
cation of this form to their experimental data produced satis-
factory results.

The study by Pachepsky et al. (2003) appears to be the
first to propose a fractional model of horizontal, unsaturated
soil water flow in field soils. Motivated by the observations
of Nielsen et al. (1962) on the jerky movements of the infil-
tration front in field soils, which can be explained by long

recurrence time intervals in between motions, Pachepsky et
al. (2003) proposed a time-fractional model of horizontal
soil water flow in field soils. While the space component of
their model has integer derivatives, they proposed a fractional
form for the diffusivity, and expressed the Darcy water flux
formulation in diffusive form with their proposed fractional
diffusivity. Pachepsky et al. (2003) showed that the cause for
fractional diffusivity is the scaling of time in the Boltzmann
relationship not with the power of 0.5 (which corresponds to
Brownian motion) but with a power less than 0.5, an exper-
imental observation that was already made by Guerrini and
Swartzendruber (1992). Pachepsky et al. (2003) supported
their claim by various previous experimental studies’ results,
and showed that their proposed time-fractional form of the
Richards equation with fractional diffusivity can explain ex-
perimental data. Meanwhile, Gerolymatou et al. (2006) pro-
posed a fractional integral form for the Richards equation in
fractional time but in integer horizontal space for unsaturated
soil water flow in one horizontal dimension. Comparing their
model simulations against the field experimental data of El-
Abd and Milczarek (2004), they showed that their fractional
Richards equation describes the evolution of soil water con-
tent in time and space better than the corresponding integer
Richards equation. Again considering horizontal unsaturated
soil water flow in fractional time but integer space, Sun et
al. (2013) utilized the concept of fractal ruler in time, due
to Cushman et al. (2009), to define a fractional derivative
in time which they used to modify the integer time deriva-
tive in the conventional Richards equation. By means of this
fractional derivative definition they were able to model the
anomalous Boltzmann scaling in the wetting front movement
and were able to obtain good fits to water content experimen-
tal data. Sun et al. (2013) conjectured that the time-dependent
diffusivityD(θ, t)=E(θ)tm (for a fractional value ofm) due
to Guerrini and Swartzendruber (1992) and El-Abd and Mil-
czarek (2004), in the conventional Richards equation can be
expressed essentially by representing the conventional inte-
ger derivative of the soil water content with respect to time
by a product of the fractional time derivative of the soil water
content and a fractional power of time.

The above-cited studies on the governing equations of soil
water flow only treat time with fractional dimension, while
keeping space with integer dimension. Furthermore, these
studies address only one spatial dimension. Accordingly,
our study in the following will attempt to develop a frac-
tional continuity equation and a fractional water flux (mo-
tion) equation for unsaturated soil water flow in both frac-
tional time and in multi-dimensional fractional space, start-
ing from the conventional mass conservation and Darcy’s
law. Due to the anisotropy in the hydraulic conductivities
of natural soils, the soil medium within which the soil wa-
ter flow occurs is essentially anisotropic. Accordingly, in this
study the fractional dimensions in two horizontal and one
vertical directions will be considered different, resulting in
multi-fractional space within which the flow takes place. To-
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ward the development of the fractional governing equations,
first a dimensionally consistent continuity equation for soil
water flow in multi-fractional, multi-dimensional space and
fractional time will be developed. For the motion equation of
soil water flow, or the equation of water flux within the soil
matrix in multi-fractional multi-dimensional space and frac-
tional time, a dimensionally consistent equation will also be
developed. From the combination of the fractional continu-
ity and motion equations, the governing equation of transient
soil water flow in multi-fractional, multi-dimensional space
and fractional time will be obtained. It will be shown that
this equation approaches the conventional Richards equation
as the fractional derivative powers approach integer values.
Then by the introduction of the Brooks–Corey constitutive
relationships for soil water (Brooks and Corey, 1964) into the
fractional transient soil water flow equation, an explicit form
of the equation will be obtained in multi-dimensional, multi-
fractional space and fractional time. The governing fractional
equation is then specialized to the case of only vertical soil
water flow and of only horizontal soil water flow in fractional
time–space.

2 Derivation of the continuity equation for transient
soil water flow in multi-dimensional fractional space
and fractional time

Let Dkβa f (x) be a Caputo fractional derivative of the
function f (x), defined as (Podlubny, 1999; Odibat and
Shawagfeh, 2007; Usero, 2008; Li et al., 2009)

Dkβa f (x)=
1

0(m− kβ)

∫ x

a

fm(ξ)

(x− ξ)kβ+1−m dξ,

m− 1<β <m,mεN,x ≥ a. (1)

Specializing the integer m= 1 reduces Eq. (1) to

Dkβa f (x)=
1

0(1− kβ)

∫ x

a

f ′(ξ)

(x− ξ)kβ
dξ,0<β < 1,x ≥ a. (2)

Then to β-order

Dβa f (x)=
1

0(1−β)

∫ x

a

f ′(ξ)

(x− ξ)β
dξ,0<β < 1,x ≥ a. (3)

One can obtain a β-order approximation to a function f (.)
around “a” as

f (x)= f (a)+
(x− a)β

0(β + 1)
Dβa f (x),0< β < 1. (4)

This result follows by taking the upper limit value of the Ca-
puto derivative at “x” in the mean value representation of
a function in terms of fractional Caputo derivative (Usero,
2008; Li et al., 2009; Odibat and Shawagfeh, 2007) in order
to have a distinct value for the above β-order approximation
of the function f around “a”. Within this framework the gov-
erning equations, based on this approximation, become prog-
nostic equations that shall be known from the outset of model

simulation for the whole time–space modeling domain. The
next issue is what to take for the value of “a”. If one ex-
presses Eq. (4) with a = x−1x, that is,

f (x)= f (x−1x)+
(1x)β

0(β + 1)
D
β
x−1xf (x), (5)

then the evaluation of the Caputo fractional derivative for
f (x)= x will result in an expression that will contain a bi-
nomial expansion with a fractional power, which has infinite
number of terms. As will be discussed in a later section, in
order to render the developed fractional governing equations
to become purely differential equations, it is necessary to
establish an analytical relationship between 1x and (1x)β

that will be universally applicable throughout the modeling
domain. This is possible when one takes the lower limit in
the above Caputo derivative in Eq. (5) as zero (0) (that is,
1x = x) for f (x)= x. Then under such a construct, it will
be possible to develop purely differential forms (with only
fractional differential operators and no finite difference oper-
ators) for the governing equations of soil water flow, as will
be shown in the following.

Within the above framework one can express the net mass
outflow rate from the control volume in Fig. 1 as[
ρqx1 (x1,x2,x3; t)− ρqx1 (x1−1x1,x2,x3; t)

]
1x21x3

+
[
ρqx2 (x1,x2,x3; t)− ρqx2 (x1,x2−1x2,x3; t)

]
1x11x3

+
[
ρqx3 (x1,x2,x3; t)− ρqx3 (x1,x2,x3−1x3; t)

]
1x11x2. (6)

Then by introducing Eq. (5) into Eq. (6) with 1x = x, and
expressing the resulting Caputo derivative Dβ0 f (x) (taking
1x = x renders the lower limit in the Caputo derivative of
Eq. 5 to be 0) by ∂βf (x)

(∂x)β
for convenience, the net mass flux

from the soil control volume in Fig. 1 may be expressed to
β-order in fractional space as

=
(1x1)

β1

0(β1+ 1)

(
∂

∂x1

)β1 (
ρqx1 (x1 ,x2, x3; t)

)
1x21x3

+
(1x2)

β2

0(β2+ 1)

(
∂

∂x2

)β2 (
ρqx2 (x1 ,x2, x3; t)

)
1x11x3

+
(1x3)

β3

0(β3+ 1)

(
∂

∂x3

)β3 (
ρqx3 (x1 ,x2, x3; t)

)
1x11x2, (7)

where different fractional powers are considered in the three
Cartesian directions in space due to the general anisotropy in
the soil permeabilities and in the resulting flows in the soil
media. It also follows from Eq. (5) with f (xi)= xi that to
β-order one obtains the approximation

1xi =
(1xi)

βi

0(βi + 1)
∂βixi

(∂xi)
βi
, i = 1,2,3. (8)

With respect to the Caputo derivative Dβ0 x,

∂βixi

(∂xi)
βi
=

x
1−βi
i

0(2−βi)
, i = 1,2,3. (9)
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  Figure 1. The control volume for the three-dimensional soil water flow.

Hence, combining Eqs. (8) and (9) yields

(1xi)
βi =

0(βi + 1)0(2−βi)

x
1−βi
i

(1xi), i = 1,2,3 (10)

with respect to βi-order fractional space in the ith direction,
i = 1, 2, 3.

Introducing Eq. (10) into Eq. (7) yields for the net mass
outflow rate

=
0(2−β1)

x
1−β1
1

(
∂

∂x1

)β1 (
ρqx1 (x̄; t)

)
1x11x21x3

+
0(2−β2)

x
1−β2
2

(
∂

∂x2

)β2 (
ρqx2 (x̄; t)

)
1x11x21x3

+
0(2−β3)

x
1−β3
3

(
∂

∂x3

)β3 (
ρqx3 (x̄; t)

)
1x11x21x3,

x̄ = (x1 ,x2,x3) (11)

to β-order, reflecting multi-fractional scaling in the
anisotropic soil medium.

Denoting the volumetric water content by θ(x̄, t), the wa-
ter volume Vw within the control volume in Fig. 1 may be
expressed as

Vw = θ1x11x21x3. (12)

Hence, the time rate of change of mass within the control
volume in Fig. 1 is

ρ (x, t)θ (x, t)− ρ (x, t −1t)θ (x, t −1t)

1t
1x11x21x3. (13)

Introducing Eq. (5) with fractional power β replaced by α,
x replaced by t and with 1t = t , into Eq. (13), and express-
ing the resulting Caputo derivative operator with its lower

limit as 0, by ∂α

(∂t)α
for convenience, yields the time rate of

change of mass within the control volume with respect to α-
fractional time increments

(1t)α

1t 0 (α+ 1)

(
∂

∂t

)α
ρ (x, t)θ (x, t) (14)

to α-order. With respect to the Caputo derivative Dα0 t =
∂α t
(∂t)α

,

∂αt

(∂t)α
=

t1−α

0(2−α)
, (15)

which when combined with Eq. (5) (with x replaced by t and
β replaced by α) yields the approximation

(1t)α =
0(α+ 1)0(2−α)

t1−α
(1t) (16)

to α-order. Introducing Eq. (16) into Eq. (14) yields for the
time rate of change of mass within the control volume in
Fig. 1 with respect to α-order fractional time increments:

0(2−α)
t1−α

∂αρ (x, t)θ (x, t)

(∂t)α
1x11x21x3. (17)

Since the time rate of change of mass within the control vol-
ume of Fig. 1 is inversely related to the net flux through the
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control volume, Eqs. (11) and (17) can be combined to yield

0(2−α)
t1−α

∂αρ (x, t)θ (x, t)

(∂t)α
=−

[
0(2−β1)

x
1−β1
1

(
∂

∂x1

)β1

(
ρqx1 (x; t)

)
+
0(2−β2)

x
1−β2
2

(
∂

∂x2

)β2 (
ρqx2 (x; t)

)
+
0(2−β3)

x
1−β3
3

(
∂

∂x3

)β3 (
ρqx3 (x; t)

)]
,

0(2−α)
t1−α

∂αρ (x, t)θ (x, t)

(∂t)α
=−

∑3
i=1

0(2−βi)

x
1−βi
i

(
∂

∂xi

)βi
(
ρ (x; t)qxi (x; t)

)
(18)

as the fractional continuity equation of transient soil water
flow in multi-fractional space of a generally anisotropic soil
medium in fractional time.

If one further assumes an incompressible soil medium with
constant density, then the fractional soil water flow continuity
Eq. (18) simplifies further to

0(2−α)
t1−α

∂αθ (x, t)

(∂t)α
=−

∑3
i=1

0(2−βi)

x
1−βi
i

(
∂

∂xi

)βi
(
qxi (x; t)

)
,0< α,β1,β2,β3<1;x = (x1,x2,x3) . (19)

In the following, Eq. (19) will be used as the fractional
continuity equation for soil water flow for further study.

Performing a dimensional analysis of Eq. (19), one obtains

1
T 1−α ·

1
T α
=

1
L1−βi

1
Lβi

L

T
=

1
T
, (20)

where L denotes length and T denotes time. Hence, Eq. (20)
shows the dimensional consistency of the LHS and RHS of
the continuity Eq. (19) for transient soil water flow in multi-
fractional space and fractional time.

Podlubny (1999) has shown that for n− 1<α, βi < n,
where n is any positive integer, as α and βi→ n, the Ca-
puto fractional derivative of a function f (y) to order α or βi
(i = 1, 2, 3) becomes the conventional nth derivative of the
function f (y). Therefore, specializing Podlubny’s (1999) re-
sult to n= 1, for α and βi→ 1 (i = 1, 2, 3), the continuity
Eq. (19) reduces to

∂θ (x, t)

∂t
=−

∑3
i=1

∂

∂xi

(
qxi (x; t)

)
, (21)

which is the conventional continuity equation for soil water
flow.

3 An equation for soil water flux (specific discharge) in
fractional time–space

The experiments of Darcy (1856) showed that the specific
discharge qi is directly proportional to the change in hy-

draulic head,1h=h(xi)−h(xi−1x), i = 1, 2, 3, and is in-
versely proportional to the spatial displacement in any direc-
tion i,1xi = xi− (xi−1xi), i = 1, 2, 3 (Freeze and Cherry,
1979). Hence, one can express the Darcy law in integer time–
space as

qxi1xi =−Ki1hi, i = 1,2,3, (22)

where Ki =Ki (x) denotes the hydraulic conductivity in the
ith spatial direction (i = 1, 2, 3), and the negative sign on
the RHS of Eq. (22) is due to soil water flow being in the
direction of decreasing hydraulic head.

In Eq. (22), using the β-order approximation to a function
around x−1x in Eq. (5) to βi-order (i = 1, 2, 3) yields, with
D
βi
0 h=

∂βi h

(∂xi )
βi

,

1hi =
(1xi)

βi

0(βi + 1)
∂βih

(∂xi)
βi
, i = 1,2,3, (23)

where the lower limit in the integral of the Caputo derivative
is again taken at zero. Combining Eqs. (10) and (23) with
Eq. (22) yields,

qi

[
x

1−βi
i

0(2−βi)

]
=−Ki

[
∂βih

(∂xi)
βi

]
, i = 1,2,3. (24)

Expressing Eq. (24) for the specific discharge qi , one obtains

qi (x, t)=−Ki (x)
0(2−βi)

x
1−βi
i

∂βih

(∂xi)
βi
, i = 1,2,3 (25)

as the equation of water flux through anisotropic soil media
in multi-fractional multi-dimensional space.

Performing a dimensional analysis on Eq. (25), one ob-
tains

[
qi (x, t)

]
= L/T and

[
Ki (x)

0(2−βi)

x
1−βi
i

∂βih

(∂xi)
βi

]

=
L

T

L

L1−βiLβi
=
L

T
, (26)

which establishes the dimensional consistency of Eq. (25) as
the fractional equation for soil water flux. Furthermore, it is
well known that for unsaturated soil water flow, the hydraulic
conductivity is function of the volumetric soil water content
θ and of spatial location (Freeze and Cherry, 1979). In fact,
Ki may be expressed in terms of the saturated hydraulic con-
ductivity Ks and the relative hydraulic conductivity Kr(θ) as

Ki (x,θ)=Ks,i(x)Kr(θ). (27)

Hence, the equation of soil water flux (specific discharge)
in multi-dimensional, multi-fractional anisotropic soil space
may be expressed as

qi (x, t)= −Ki (x,θ)
0(2−βi)

x
1−βi
i

∂βih(x, t)

(∂xi)
βi

, i = 1,2,3. (28)
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Equation (28) is dimensionally consistent in that both the
LHS and RHS of the equation have the unit L/T .

As noted above, Podlubny (1999) has shown that for
n− 1<βi < n (i = 1, 2, 3), where n is any positive integer,
as βi → n, the Caputo fractional derivative of a function
f (y) to order βi (i = 1, 2, 3) becomes the conventional nth
derivative of the function f (y). Therefore, specializing Pod-
lubny’s (1999) result to n= 1, for βi→ 1 (i = 1, 2, 3), the
fractional soil water flux Eq. (28) becomes

qi (x, t)=−Ki (x,θ)
∂h(x, t)

∂xi
, i = 1,2,3, (29)

which is the conventional Darcy equation for soil water flux.
As such the derived fractional soil water flux Eq. (28) is con-
sistent with the conventional Darcy equation for the integer
power case.

4 Governing equation of transient soil water flow in
multi-dimensional fractional soil space and
fractional time

Combining the fractional continuity Eq. (19) with the frac-
tional soil water flux Eq. (28) yields

0(2−α)
t1−α

∂αθ (x, t)

(∂t)α
=

∑3
i=1

0(2−βi)

x
1−βi
i

(
∂

∂xi

)βi
(
Ki (x,θ)

0(2−βi)

x
1−βi
i

∂βih(x, t)

(∂xi)
βi

)
for 0<α,β1,β2,β3<1;x = (x1,x2,x3) . (30)

Since Ki (x,θ)=Ks,i (x)Kr (θ) one obtains

0(2−α)
t1−α

∂αθ (x, t)

(∂t)α
=

∑3
i=1

0(2−βi)

x
1−βi
i

(
∂

∂xi

)βi
(
Ks,i (x)Kr (θ)

0(2−βi)

x
1−βi
i

∂βih(x, t)

(∂xi)
βi

)
for 0<α,β1,β2,β3<1;x = (x1,x2,x3) (31)

as the governing equation of transient soil water flow in
anisotropic multi-dimensional fractional soil media and frac-
tional time.

Meanwhile, the soil hydraulic head h is related to the ele-
vation head x3 and soil capillary pressure head ψ by

h= ψ(θ)+ x3. (32)

Substituting Eq. (32) into Eq. (31) results in

0(2−α)
t1−α

∂αθ (x, t)

(∂t)α
=

∑3
i=1

0(2−βi)

x
1−βi
i

(
∂

∂xi

)βi
(
Ks,i (x)Kr (θ)

0(2−βi)

x
1−βi
i

∂βi

(∂xi)
βi
(ψ (θ)+ x3)

)
. (33)

With respect to the Caputo derivative:

∂β3x3

(∂x3)
β3
=

x
1−β3
3

0(2−β3)
. (34)

Opening Eq. (33) further and introducing Eq. (34) yields

0(2−α)
t1−α

∂αθ (x, t)

(∂t)α
=

∑3
i=1

0(2−βi)

x
1−βi
i

(
∂

∂xi

)βi
(
Ks,i (x)Kr (θ)

0(2−βi)

x
1−βi
i

∂βiψ (θ)

(∂xi)
βi

)

+
0(2−β3)

x
1−β3
3

(
∂

∂x3

)β3 (
Ks,3 (x)Kr (θ)

)
;

0< α,β1,β2,β3<1;x = (x1,x2,x3) (35)

as the governing equation of transient soil water flow in
anisotropic multi-dimensional fractional media and frac-
tional time. This governing equation may also be written as

∂αθ (x, t)

(∂t)α
=

∑3
i=1

1
0(2−α)

(0(2−βi))2

x
1−βi
i

(
∂

∂xi

)βi
(
Ks,i (x)Kr (θ)

t1−α

x
1−βi
i

∂βiψ (θ)

(∂xi)
βi

)

+
1

0(2−α)
0(2−β3)

x
1−β3
3

(
∂

∂x3

)β3 (
t1−αKs,3 (x)Kr (θ)

)
;

0< α,β1,β2,β3<1;x = (x1,x2,x3) . (36)

As noted above, Podlubny (1999) has shown that for n−
1<α, βi < n (i = 1, 2, 3), where n is any positive integer, as
α and βi→ n, the Caputo fractional derivative of a function
f (y) to order α or βi (i = 1, 2, 3) becomes the conventional
nth derivative of the function f (y). Therefore, specializing
Podlubny’s (1999) result to n= 1, for α and βi→ 1 (i = 1,
2, 3), the fractional governing Eq. (33) of soil water flow
becomes

∂θ (x, t)

∂t
=

∑3
i=1

∂

∂xi

(
Ks,i (x)Kr (θ)

∂

∂xi
(ψ (θ)+ x3)

)
, (37)

which is the conventional Richards equation for transient soil
water flow.

With respect to dimensional consistency, one may note
that both sides of the fractional governing Eqs. (33) or (35)
for transient soil water flow have the unit 1/T . Meanwhile,
both sides of Eq. (36) have the unit 1/T α . Hence, these frac-
tional equations are dimensionally consistent.
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5 Fractional governing equation of transient soil water
flow in the vertical direction

In the case of vertical transient unsaturated flow for the in-
filtration process in soils in fractional time–space, Eq. (35)
reduces further to

0(2−α)
t1−α

∂αθ (x, t)

(∂t)α
=
0(2−β3)

x
1−β3
3

(
∂

∂x3

)β3

(
Ks,3 (x)Kr (θ)

0(2−β3)

x
1−β3
3

∂β3ψ (θ)

(∂x3)
β3

)

+
0(2−β3)

x
1−β3
3

(
∂

∂x3

)β3 (
Ks,3 (x)Kr (θ)

)
;

0< α,β3<1;x = (x1,x2,x3) (38)

as the governing equation. This governing equation for verti-
cal transient soil water flow in fractional time–space can also
be expressed as

∂αθ (x, t)

(∂t)α
=
0(2−β3)

x
1−β3
3

(
∂

∂x3

)β3

(
Ks,3 (x)Kr (θ)

0(2−β3)

0(2−α)
t1−α

x
1−β3
3

∂β3ψ (θ)

(∂x3)
β3

)

+
1

0(2−α)
0(2−β3)

x
1−β3
3

(
∂

∂x3

)β3 (
t1−αKs,3 (x)Kr (θ)

)
;

0< α,β3<1;x = (x1,x2,x3) . (39)

As in the integer case of Richards Eq. (37), Eqs. (35), (36),
(38) and (39) have both the hydraulic conductivity K and the
capillary pressure head ψ as functions of the soil volumet-
ric water content θ . As such, characteristic soil water rela-
tionships, such as those given by Brooks and Corey (1964),
may be utilized to obtain an explicit form of the governing
equation of transient, unsaturated soil water flow in fractional
time–space, as explained in the following.

6 Soil water content-based explicit form of the
governing equation of transient soil water flow in
fractional time–space

One can utilize the Brooks and Corey (1964) formula for the
soil characteristic relationship between the capillary soil wa-
ter pressure head ψ and the soil water content θ as follows:

ψ (θ)= ψbθ
1/λ
e (θ − θr)

−1/λ, (40)

where ψb is the air entry pressure head (bubbling pressure),
θe = (θs−θr) is the effective porosity, θs is the saturation vol-
umetric soil water content, θr is the residual water content,
and λ is the pore size distribution index. Therefore, the βi-
order Caputo fractional derivative of the capillary pressure

head ψ with respect to xi in the interval (0, xi) may be ex-
pressed in terms of the Brooks–Corey relationship (Eq. 40)
as (Podlubny, 1999; Odibat and Shawagfeh, 2007)

∂βiψ(θ)

(∂xi)
βi
=

ψbθ
1/λ
e

0(1−βi)

xi∫
0

(
∂

∂ξi
(θ − θr)

−1/λ
)

(xi − ξi)
−βidξi = ψbθ

1/λ
e

∂βi (θ − θr)
−1/λ

(∂xi)
βi

. (41)

Under the Brooks and Corey (1964) relationship between the
hydraulic conductivity and the volumetric soil water content,
the relative hydraulic conductivity Kr(θ) is expressed as

Kr (θ)= θ
−3−2/λ
e (θ − θr)

3+2/λ (42)

and using expression (42) within Ki (x,θ)=Ks,i(x)Kr(θ),
the βi-order fractional Caputo derivative ofKi (x,θ) with re-
spect to xi in the interval (0, xi) may be expressed as

∂βiKs,i(x)Kr(θ)

(∂xi)
βi

= θ
−3−2/λ
e

∂βi
(
Ks,i(x)(θ − θr)

3+2/λ)
(∂xi)

βi
,

i = 1,2,3. (43)

Substituting Eqs. (41) and (43) into Eq. (35) results in an
explicit form of the governing equation of transient soil water
flow in anisotropic multi-dimensional fractional soil space
and fractional time in terms of the volumetric water content
θ as

0(2−α)
t1−α

∂αθ (x, t)

(∂t)α
=

∑3
i=1
ψbθ

−3−1/λ
e

(0(2−βi))2

x
1−βi
i

(
∂

∂xi

)βi
(
Ks,i (x)

(θ − θr)
3+2/λ

x
1−βi
i

∂βi (θ − θr)
−1/λ

(∂xi)
βi

)

+ θ
−3−2/λ
e

0(2−β3)

x
1−β3
3

(
∂

∂x3

)β3 (
Ks,3 (x)(θ − θr)

3+2/λ
)
;

0< α,β1,β2,β3<1 (44)

in terms of the Brooks–Corey soil water characteristics re-
lationships. This governing equation can also be expressed
as

∂αθ (x, t)

(∂t)α
=

∑3
i=1
ψbθ

−3−1/λ
e

(0(2−βi))2

0(2−α)x1−βi
i

(
∂

∂xi

)βi
(
Ks,i (x)(θ − θr)

3+2/λ t
1−α

x
1−βi
i

∂βi (θ − θr)
−1/λ

(∂xi)
βi

)

+ θ
−3−2/λ
e

0(2−β3)

0 (2−α)x1−β3
3

(
∂

∂x3

)β3

(
t1−αKs,3 (x)(θ − θr)

3+2/λ
)
;0< α,β1,β2,β3<1. (45)

Upon dimensional analysis of Eq. (44) one can see that it
is dimensionally consistent since both of its sides have the
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unit of 1/T , where T denotes time. Meanwhile, Eq. (45) is
also dimensionally consistent with both sides of the equation
having the unit 1/T α .

Specializing Eq. (45) to only the vertical direction, the
governing equation of transient soil water flow in the vertical
direction in fractional space–time may be expressed as

∂αθ (x, t)

(∂t)α
= ψbθ

−3−1/λ
e

(0 (2−β3))
2

0(2−α)x1−β3
3

(
∂

∂x3

)β3

(
Ks,3 (x)(θ − θr)

3+2/λ t
1−α

x
1−β3
3

∂β3(θ − θr)
−1/λ

(∂x3)
β3

)

+ θ
−3−2/λ
e

0(2−β3)

0 (2−α)x1−β3
3

(
∂

∂x3

)β3

(
t1−αKs,3 (x)(θ − θr)

3+2/λ
)
;0< α,β3<1. (46)

Upon dimensional analysis of Eq. (46) one can find that
both sides of this equation have the unit of 1/T α , where T de-
notes time. Hence, the fractional equation of vertical tran-
sient soil water flow, in its explicit form, is dimensionally
consistent.

Finally, specializing Eq. (45) to only the horizontal direc-
tions, the governing equation of transient soil water flow in
the horizontal directions in fractional space–time may be ex-
pressed as

∂αθ (x, t)

(∂t)α
=

∑2
i=1
ψbθ

−3−1/λ
e

(0(2−βi))2

0(2−α)x1−βi
i

(
∂

∂xi

)βi
(
Ks,i (x)(θ − θr)

3+2/λ t
1−α

x
1−βi
i

∂βi (θ − θr)
−1/λ

(∂xi)
βi

)
;

0<α,β1,β2<1. (47)

Upon dimensional analysis of Eq. (47) one can find that
both sides of this equation have the unit of 1/T α , where T
denotes time. Hence, the fractional equation of horizontal
transient soil water flow, in its explicit form, is dimension-
ally consistent.

7 Physical framework for the developed time–space
fractional governing equations of soil water flow

In parallel to the conventional governing equations of soil
water flow processes (Freeze and Cherry, 1979; Bear, 1979),
the corresponding governing equations of the soil water flow
processes in fractional time–space must have certain proper-
ties. (i) The fractional governing equations must be purely
differential equations, containing only differential operators,
and no difference operators. (ii) They must be prognostic
equations. That is, they are solved from the initial conditions
and boundary conditions in order to describe the evolution
of the flow field in time and space. As such, from the out-
set the form of the governing equation must be known in

its entirety. Once its physical parameters (such as the satu-
rated hydraulic conductivity, etc.) are estimated, the govern-
ing equation is fixed throughout the simulation time and the
simulation space for the simulation of the soil water flow in
question. (iii) These equations must be dimensionally con-
sistent. (iv) The fractional governing equations of soil water
flow with fractional powers must converge to the correspond-
ing conventional governing equations with integer powers
as the fractional powers approach the corresponding integer
powers.

However, a distinct difference of the fractional governing
equations of soil water flow from the corresponding conven-
tional equations is that they are based on fractional deriva-
tives which are nonlocal. Being nonlocal, the fractional gov-
erning equations of soil water flow have the potential to ac-
count for the effect of the initial conditions on the soil wa-
ter flow for long times, and for the effect of the upstream
boundary conditions on the flow for long distances from the
upstream boundary. The physical meaning of the fractional
governing equation may be explained most easily in the
case of vertical soil water flow. In the context of upstream-
to-downstream vertical soil water flow from the soil sur-
face downward, in the integer form of the soil water flow
mass conservation equation (the conventional equation) the
time rate of change of mass within a control volume grid
(x−1x,x) is determined by the mass flux coming from the
upstream neighbor grid (x−21x, x−1x) into (x−1x, x),
and the mass flux that is moving from the control volume grid
(x−1x, x) to the downstream neighbor grid (x, x+1x).
This framework holds also for the soil water flow in the two
horizontal directions. As such, the mass evolution in the case
of the integer governing equation of soil water flow is local
(at the scale of the specific computational grid), due to inter-
action only among neighboring computational grids. On the
other hand, in the case of the fractional governing equation
of mass of vertical upstream-to-downstream soil water flow
from the soil surface downward, we deal with the Caputo
fractional derivative

∂βf

(∂x3)
β
=D

β

0 f (x3) (48)

defined by

D
β

0 f (x3)=
1

0(1−β)

x3∫
0

f ′(ξ)

(x3− ξ)β
dξ

0<β < 1,x3 ≥ 0. (49)

As such, each local integer derivative f ′(ξ) at each depth
ξ in the interval (0, x3) contributes to the Caputo fractional
derivative of the interval (0, x3) with weight (x3− ξ)

−β .
Within this framework, for example, in the case of one-
dimensional downward vertical soil water flow in fractional
time–space, the effect of the upstream boundary condition at
depth zero is still accounted for at any depth x3 below the
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soil surface by means of the fractional spatial derivatives that
appear in the corresponding governing equation (Eq. 39 or
Eq. 46 above). It also follows from Eq. (49) that this mem-
ory effect is modulated by the value of the fractional power
β. This is also the case in the time dimension where the ef-
fect of the initial condition at time zero is accounted for at
any time t after the initial time. Also, the effects of the local
derivatives at each time s (0≤ s ≤ t) on the Caputo deriva-
tive of the interval (0, t) are accounted for with the weights
(t − s)−α . Hence, the fractional governing equations of soil
water flow are nonlocal, and, as such, can quantify the in-
fluence of the initial and boundary conditions on the flow
process more effectively than the corresponding conventional
governing equations that are local.

Referring to Eq. (4) above, it is necessary to take the up-
per limit value of the Caputo derivative at “x” in the mean
value representation of a function in terms of the fractional
Caputo derivative (Usero, 2008; Li et al., 2009; Odibat and
Shawagfeh, 2007) in order to have the governing equations,
based on this approximation, become prognostic equations
that shall be known from the outset of model simulation for
the whole time–space modeling domain. Then referring to
Eq. (5) above, in order to have the governing equations to
have purely differential forms (with only the differential op-
erators (and no difference operators) existing in these equa-
tions), it is necessary to establish an analytical relationship
between 1x and (1x)β . This is possible by taking the ori-
gin of the Caputo derivative in Eq. (5) at zero (the upstream
boundary location in space or initial time location in time).
Otherwise, when one evaluates the Caputo derivative of the
function x at the integral limits (x−1x, x), one ends up
with a fractional binomial expansion that has infinite number
of terms, which prevents an analytical relationship between
1x and (1x)β . This is also the case for the time dimension.
The Caputo derivative of the function t in the time dimension
must again be evaluated at the lower limit of the integral set at
the initial time zero in order to obtain purely differential oper-
ators for the evolution in time for the governing equations. It
is also important to note that under these approximations, the
resulting governing equations are all dimensionally consis-
tent, and all the resulting fractional governing equations con-
verge to their corresponding conventional counterparts with
integer powers as their fractional powers approach unity.

8 Discussion and conclusion

The governing equations that were developed in this study
are for the fractional time dimension and for multi-
dimensional fractional space that represents the fractal spa-
tial structure of a soil field. If one were to simplify the devel-
oped theory above to only fractional time but integer-space
soil fields, then the developed equations would simplify sub-
stantially. The governing Eq. (36) of transient soil water
flow in anisotropic multi-dimensional fractional soil media

in fractional time would simplify to (with βi = 1, i = 1, 2, 3)

∂αθ (x, t)

(∂t)α
=

∑3
i=1

1
0(2−α)

∂

∂xi

(
Ks,i (x)Kr (θ) t

1−α ∂ψ (θ)

∂xi

)
+

1
0(2−α)

∂

∂x3

(
t1−αKs,3 (x)Kr (θ)

)
;

0< α<1;x = (x1,x2,x3) (50)

for the governing equation of transient soil water flow in in-
teger multi-dimensional soil media and in fractional time. In
terms of the Brooks–Corey soil characteristic relationships,
the explicit governing equation of transient soil water flow in
integer multi-dimensional soil space and in fractional time is
obtained from the simplification of Eq. (45) as (with βi = 1,
i = 1, 2, 3)

∂αθ (x, t)

(∂t)α
=

∑3
i=1
− 1/λψbθ

−3−1/λ
e

1
0(2−α)

∂

∂xi(
t1−αKs,i (x)(θ − θr)

2+1/λ ∂θ

∂xi

)
+ θ
−3−2/λ
e

1
0(2−α)

∂

∂x3

(
t1−αKs,3 (x)(θ − θr)

3+2/λ
)
;

0< α<1;x = (x1,x2, x3) . (51)

As mentioned before, Guerrini and Swartzendruber (1992)
and El-Abd and Milczarek (2004), in their explanation of the
anomalous behavior of the diffusivity coefficient in their ex-
periments, have proposed that the diffusivity coefficient in
the diffusion-based formulation of the Richards equation of
soil water flow must depend not only on the water content
but also on time. Hence, they formulated this diffusivity co-
efficientD asD =D(θ , t) = E(θ) tm, where E is a function
of water content θ while m is a power value. This formula-
tion proved to be successful in modeling various experimen-
tal data on horizontal soil water flow. If one were to formulate
the diffusivity Di(θ , t) in the explicit governing Eq. (51) of
transient soil water flow in fractional time and in anisotropic
multi-dimensional integer soil space as

Di (θ, t)=Ks,i (x)(θ − θr)
2+1/λt1−α, i = 1,2,3, (52)

this diffusivity coefficient is in the same form as the diffu-
sivity coefficient D(θ , t) = E(θ) tm that was formulated
by Guerrini and Swartzendruber (1992) and El-Abd and
Milczarek (2004) based on experimental observations. As
such, within the framework of Brooks–Corey soil water re-
lationships, the explicit governing equations that were devel-
oped in this study for the transient soil water flow in multi-
dimensional fractional soil media and fractional time, when
simplified to integer soil space, are consistent with the exper-
imental observations of Guerrini and Swartzendruber (1992)
and El-Abd and Milczarek (2004) when their power value
m= 1−α.

Sun et al. (2013) conjectured that the time-dependent dif-
fusivity D(θ , t) = E(θ) tm (for a fractional value of m) due
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to Guerrini and Swartzendruber (1992) and El-Abd and Mil-
czarek (2004), in the conventional Richards equation can be
expressed essentially by representing the conventional inte-
ger derivative of the soil water content with respect to time
by a product of the fractional time derivative of the soil
water content and a fractional power of time (Sun et al.,
2013, Eq. 12), that is, ∂θ(x, t)

∂t
=

C

t1−α
∂αθ(x, t)
(∂t)α

, where C de-
notes a constant. In order to examine the conjecture of Sun et
al. (2013), one can re-write the explicit governing Eq. (51)
for soil water flow in integer space but fractional time in
equivalent form as

0(2−α)
t1−α

∂αθ (x, t)

(∂t)α
=

∑3
i=1
− 1/λψbθ

−3−1/λ
e

∂

∂xi(
Ks,i (x)(θ − θr)

2+1/λ ∂θ

∂xi

)
+ θ
−3−2/λ
e

∂

∂x3(
Ks,3 (x)(θ − θr)

3+2/λ
)
;0< α<1;x = (x1,x2, x3) . (53)

Equation (53) shows that the fractional soil water flow
Eq. (51) which accounts for the time-dependent diffusivity
expression of Guerrini and Swartzendruber (1992) and El-
Abd and Milczarek (2004) does have an equivalent form
where the integer time derivative of the soil water content
in the conventional Richards equation is replaced by a prod-
uct of the fractional time derivative of the soil water content
and a fractional power of time, thereby supporting Sun et
al.’s (2013) conjecture, although in this study the fractional
derivative is defined in the Caputo sense while in Sun et
al. (2013) the fractional derivative is defined with respect to
a fractal ruler in time.

In conclusion, in this study first a dimensionally consistent
continuity equation for soil water flow in multi-fractional,
multi-dimensional space and fractional time was developed.
For the motion equation of soil water flow, or the equa-
tion of water flux within the soil matrix in multi-fractional
multi-dimensional space and fractional time, a dimension-
ally consistent equation was also developed. From the com-
bination of the fractional continuity and motion equations,
the governing equation of transient soil water flow in multi-
fractional, multi-dimensional space and fractional time was
then obtained. It is shown that this equation approaches the
conventional Richards equation as the fractional derivative
powers approach integer values. Then by the introduction
of the Brooks–Corey constitutive relationships for soil wa-
ter (Brooks and Corey, 1964) into the fractional transient soil
water flow equation, an explicit form of the equation was ob-
tained in multi-dimensional, multi-fractional space and frac-
tional time. Finally, the governing fractional equation was
specialized to the cases of vertical soil water flow and hori-
zontal soil water flow in fractional time–space. It is shown
that the developed governing equations, in their fractional
time but integer space forms, show behavior consistent with
the previous experimental observations concerning the diffu-
sive behavior of soil water flow.
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