Articles | Volume 20, issue 10
https://doi.org/10.5194/hess-20-4177-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-4177-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Describing the interannual variability of precipitation with the derived distribution approach: effects of record length and resolution
Department of Civil Engineering, University of Memphis, Memphis, Tennessee, USA
Jorge Sebastián Moraga
Departamento de Ingeniería Civil, Universidad de Concepción, Concepción, Chile
Geri Pranzini
Departamento de Ingeniería Civil, Universidad de Concepción, Concepción, Chile
Peter Molnar
Institute of Environmental Engineering, ETH Zürich, Zurich, Switzerland
Related authors
Francesco Dell'Aira and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1956, https://doi.org/10.5194/egusphere-2024-1956, 2024
Short summary
Short summary
Scientists and engineers need better indices to frame the hydrologic effects of land development. Existing approaches are not able to reflect the interactions due to the spatial arrangement of distinct land patches, which affect how much runoff is generated and how fast it can travel downstream, impacting flood response. Our novel, GIS-based modeling framework explicitly considers these aspects and is applicable to a wide range of problems, including peak-flow predictions in ungauged basins.
Renee van Dongen, Dirk Scherler, Dadiyorto Wendi, Eric Deal, Luca Mao, Norbert Marwan, and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2022-1234, https://doi.org/10.5194/egusphere-2022-1234, 2022
Preprint archived
Short summary
Short summary
El Niño Southern Oscillation (ENSO) is a climatic phenomenon that causes abnormal climatic conditions in Chile. We investigated how ENSO affects catchment hydrology and found strong seasonal and spatial differences in the hydrological response to ENSO which was caused by different hydrological processes in catchments that are dominated by snowmelt-generated runoff or rainfall-generated runoff. These results are relevant for water resources management and ENSO mitigation in Chile.
Francesco Dell'Aira and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1956, https://doi.org/10.5194/egusphere-2024-1956, 2024
Short summary
Short summary
Scientists and engineers need better indices to frame the hydrologic effects of land development. Existing approaches are not able to reflect the interactions due to the spatial arrangement of distinct land patches, which affect how much runoff is generated and how fast it can travel downstream, impacting flood response. Our novel, GIS-based modeling framework explicitly considers these aspects and is applicable to a wide range of problems, including peak-flow predictions in ungauged basins.
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-37, https://doi.org/10.5194/hess-2024-37, 2024
Revised manuscript under review for HESS
Short summary
Short summary
While rainwater is a key resource in crop production, its productivity faces challenges from climate change. Using a simple model of climate, water, and crop yield interactions, we found that rain-scarce croplands in Ethiopia are likely to experience decreases in crop yield during the main growing season, primarily due to future temperature increases. These insights are crucial for shaping future water management plans, policies, and informed decision-making for climate adaptation.
Jessica Droujko, Srividya Hariharan Sudha, Gabriel Singer, and Peter Molnar
Earth Surf. Dynam., 11, 881–897, https://doi.org/10.5194/esurf-11-881-2023, https://doi.org/10.5194/esurf-11-881-2023, 2023
Short summary
Short summary
We combined data from satellite images with data measured from a kayak in order to understand the propagation of fine sediment in the Vjosa River. We were able to find some storm-activated and some permanent sources of sediment. We also estimated how much fine sediment is carried into the Adriatic Sea by the Vjosa River: approximately 2.5 Mt per year, which matches previous findings. With our work, we hope to show the potential of open-access satellite images.
Tobias Siegfried, Aziz Ul Haq Mujahid, Beatrice Sabine Marti, Peter Molnar, Dirk Nikolaus Karger, and Andrey Yakovlev
EGUsphere, https://doi.org/10.5194/egusphere-2023-520, https://doi.org/10.5194/egusphere-2023-520, 2023
Preprint archived
Short summary
Short summary
Our study investigates climate change impacts on water resources in Central Asia's high-mountain regions. Using new data and a stochastic soil moisture model, we found increased precipitation and higher temperatures in the future, leading to higher water discharge despite decreasing glacier melt contributions. These findings are crucial for understanding and preparing for climate change effects on Central Asia's water resources, with further research needed on extreme weather event impacts.
Qinggang Gao, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar, and Christoph Schär
Weather Clim. Dynam., 4, 189–211, https://doi.org/10.5194/wcd-4-189-2023, https://doi.org/10.5194/wcd-4-189-2023, 2023
Short summary
Short summary
We developed a vortex identification algorithm for realistic atmospheric simulations. The algorithm enabled us to obtain a climatology of vortex shedding from Madeira Island for a 10-year simulation period. This first objective climatological analysis of vortex streets shows consistency with observed atmospheric conditions. The analysis shows a pronounced annual cycle with an increasing vortex shedding rate from April to August and a sudden decrease in September.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Renee van Dongen, Dirk Scherler, Dadiyorto Wendi, Eric Deal, Luca Mao, Norbert Marwan, and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2022-1234, https://doi.org/10.5194/egusphere-2022-1234, 2022
Preprint archived
Short summary
Short summary
El Niño Southern Oscillation (ENSO) is a climatic phenomenon that causes abnormal climatic conditions in Chile. We investigated how ENSO affects catchment hydrology and found strong seasonal and spatial differences in the hydrological response to ENSO which was caused by different hydrological processes in catchments that are dominated by snowmelt-generated runoff or rainfall-generated runoff. These results are relevant for water resources management and ENSO mitigation in Chile.
Silvan Ragettli, Tabea Donauer, Peter Molnar, Ron Delnoije, and Tobias Siegfried
Earth Surf. Dynam., 10, 797–815, https://doi.org/10.5194/esurf-10-797-2022, https://doi.org/10.5194/esurf-10-797-2022, 2022
Short summary
Short summary
This paper presents a novel methodology to identify and quantitatively analyze deposition and erosion patterns in ephemeral ponds or in perennial lakes with strong water level fluctuations. We apply this method to unravel the water and sediment balance of Lac Wégnia, a designated Ramsar site in Mali. The study can be a showcase for monitoring Sahelian lakes using remote sensing data, as it sheds light on the actual drivers of change in Sahelian lakes.
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021, https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Short summary
Landslides are a dangerous natural hazard affecting alpine regions, calling for effective warning systems. Here we consider different approaches for the prediction of rainfall-induced shallow landslides at the regional scale, based on open-access datasets and operational hydrological forecasting systems. We find antecedent wetness useful to improve upon the classical rainfall thresholds and the resolution of the hydrological model used for its estimate to be a critical aspect.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Marius G. Floriancic, Wouter R. Berghuijs, Tobias Jonas, James W. Kirchner, and Peter Molnar
Hydrol. Earth Syst. Sci., 24, 5423–5438, https://doi.org/10.5194/hess-24-5423-2020, https://doi.org/10.5194/hess-24-5423-2020, 2020
Short summary
Short summary
Low river flows affect societies and ecosystems. Here we study how precipitation and potential evapotranspiration shape low flows across a network of 380 Swiss catchments. Low flows in these rivers typically result from below-average precipitation and above-average potential evapotranspiration. Extreme low flows result from long periods of the combined effects of both drivers.
Elena Leonarduzzi and Peter Molnar
Nat. Hazards Earth Syst. Sci., 20, 2905–2919, https://doi.org/10.5194/nhess-20-2905-2020, https://doi.org/10.5194/nhess-20-2905-2020, 2020
Short summary
Short summary
Landslides are a natural hazard that affects alpine regions. Here we focus on rainfall-induced shallow landslides and one of the most widely used approaches for their predictions: rainfall thresholds. We design several comparisons utilizing a landslide database and rainfall records in Switzerland. We find that using daily rather than hourly rainfall might be a better option in some circumstances, and mean annual precipitation and antecedent wetness can improve predictions at the regional scale.
Giulia Battista, Peter Molnar, and Paolo Burlando
Earth Surf. Dynam., 8, 619–635, https://doi.org/10.5194/esurf-8-619-2020, https://doi.org/10.5194/esurf-8-619-2020, 2020
Short summary
Short summary
Suspended sediment load in rivers is highly uncertain because of spatial and temporal variability. By means of a hydrology and suspended sediment transport model, we investigated the effect of spatial variability in precipitation and surface erodibility on catchment sediment fluxes in a mesoscale river basin.
We found that sediment load depends on the spatial variability in erosion drivers, as this affects erosion rates and the location and connectivity to the channel of the erosion areas.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Anna Costa, Daniela Anghileri, and Peter Molnar
Hydrol. Earth Syst. Sci., 22, 3421–3434, https://doi.org/10.5194/hess-22-3421-2018, https://doi.org/10.5194/hess-22-3421-2018, 2018
Short summary
Short summary
We analyse the control of hydroclimatic factors – erosive rainfall, ice melt, and snowmelt – on suspended sediment concentration (SSC) of Alpine catchments regulated by hydropower, and we develop a multivariate hydroclimatic–informed rating curve. We show that while erosive rainfall determines the variability of SSC, ice melt generates the highest contribution to SSC per unit of runoff. This approach allows the exploration of climate–driven changes in fine sediment dynamics in Alpine catchments.
Anna Costa, Peter Molnar, Laura Stutenbecker, Maarten Bakker, Tiago A. Silva, Fritz Schlunegger, Stuart N. Lane, Jean-Luc Loizeau, and Stéphanie Girardclos
Hydrol. Earth Syst. Sci., 22, 509–528, https://doi.org/10.5194/hess-22-509-2018, https://doi.org/10.5194/hess-22-509-2018, 2018
Short summary
Short summary
We explore the signal of a warmer climate in the suspended-sediment dynamics of a regulated and human-impacted Alpine catchment. We demonstrate that temperature-driven enhanced melting of glaciers, which occurred in the mid-1980s, played a dominant role in suspended sediment concentration rise, through increased runoff from sediment-rich proglacial areas, increased contribution of sediment-rich meltwater, and increased sediment supply in proglacial areas due to glacier recession.
Anna Costa, Daniela Anghileri, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-419, https://doi.org/10.5194/hess-2017-419, 2017
Manuscript not accepted for further review
Short summary
Short summary
We develop a novel rating curve to simulate suspended sediment concentration (SSC) in Alpine catchments (Process-Based Rating Curve, PBRC). Instead of relating SSC to discharge, as in traditional approaches, we model SSC by differentiating the potential contributions of the main erosional and transport processes of Alpine environments: erosive rainfall, snowmelt, and icemelt. We show that PBRC significantly improves predictions of SSC, especially when analysing climate-induced changes.
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Short summary
We investigated the relative contribution of the spatial versus climatic rainfall variability for flow peaks by applying an advanced stochastic rainfall generator to simulate rainfall for a small urban catchment and simulate flow dynamics in the sewer system. We found that the main contribution to the total flow variability originates from the natural climate variability. The contribution of spatial rainfall variability to the total flow variability was found to increase with return periods.
Søren Thorndahl, Thomas Einfalt, Patrick Willems, Jesper Ellerbæk Nielsen, Marie-Claire ten Veldhuis, Karsten Arnbjerg-Nielsen, Michael R. Rasmussen, and Peter Molnar
Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, https://doi.org/10.5194/hess-21-1359-2017, 2017
Short summary
Short summary
This paper reviews how weather radar data can be used in urban hydrological applications. It focuses on three areas of research: (1) temporal and spatial resolution of rainfall data, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Moreover, the paper provides examples of urban hydrological applications which can benefit from radar rainfall data in comparison to tradition rain gauge measurements of rainfall.
Bahareh Kianfar, Simone Fatichi, Athansios Paschalis, Max Maurer, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-536, https://doi.org/10.5194/hess-2016-536, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Raingauge observations show a large variability in extreme rainfall depths in the current climate. Climate model predictions of extreme rainfall in the future have to be compared with this natural variability. Our work shows that predictions of future extreme rainfall often lie within the range of natural variability of present-day climate, and therefore predictions of change are highly uncertain. We demonstrate this by using stochastic rainfall models and 10-min rainfall data in Switzerland.
Matteo Saletti, Peter Molnar, Marwan A. Hassan, and Paolo Burlando
Earth Surf. Dynam., 4, 549–566, https://doi.org/10.5194/esurf-4-549-2016, https://doi.org/10.5194/esurf-4-549-2016, 2016
Short summary
Short summary
This study presents a new reduced-complexity model with few parameters linked to basic physical processes, which aims to reproduce the transport of sediment as bed load and the formation and stability of channel morphology in steep mountain streams. The model is able to simulate the formation and stability of steps, bed structures commonly encountered in steep channels, by assuming that their formation is due to intense sediment transport during high flows causing jamming of particles.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
P. Molnar, S. Fatichi, L. Gaál, J. Szolgay, and P. Burlando
Hydrol. Earth Syst. Sci., 19, 1753–1766, https://doi.org/10.5194/hess-19-1753-2015, https://doi.org/10.5194/hess-19-1753-2015, 2015
Short summary
Short summary
We present an empirical study of the rates of increase in precipitation intensity with air temperature using high-resolution 10 min precipitation records in Switzerland. We estimated the scaling rates for lightning (convective) and non-lightning event subsets and show that scaling rates are between 7 and 14%/C for convective rain and that mixing of storm types exaggerates the relations to air temperature. Doubled CC rates reported by other studies are an exception in our data set.
K. Džubáková, P. Molnar, K. Schindler, and M. Trizna
Hydrol. Earth Syst. Sci., 19, 195–208, https://doi.org/10.5194/hess-19-195-2015, https://doi.org/10.5194/hess-19-195-2015, 2015
Short summary
Short summary
We use a high-resolution ground-based camera system with near-infrared sensitivity to quantify the response of riparian vegetation in an Alpine river to floods with the use of vegetation indices. The vegetation showed both damage and enhancement within 1 week following floods, with a selective impact determined by pre-flood vegetation vigour, morphological setting and intensity of flood forcing. The tested vegetation indices differed in the direction of predicted change in the range 0.7-35.8%.
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
L. Gaál, P. Molnar, and J. Szolgay
Hydrol. Earth Syst. Sci., 18, 1561–1573, https://doi.org/10.5194/hess-18-1561-2014, https://doi.org/10.5194/hess-18-1561-2014, 2014
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Uncertainty analysis
Actionable human–water system modelling under uncertainty
Robust multi-objective optimization under multiple uncertainties using the CM-ROPAR approach: case study of water resources allocation in the Huaihe River basin
Evaluating the impact of post-processing medium-range ensemble streamflow forecasts from the European Flood Awareness System
Coupled effects of observation and parameter uncertainty on urban groundwater infrastructure decisions
Disentangling sources of future uncertainties for water management in sub-Saharan river basins
Possibilistic response surfaces: incorporating fuzzy thresholds into bottom-up flood vulnerability analysis
Future hot-spots for hydro-hazards in Great Britain: a probabilistic assessment
Evaluation of impacts of future climate change and water use scenarios on regional hydrology
Planning for climate change impacts on hydropower in the Far North
Dissolved oxygen prediction using a possibility theory based fuzzy neural network
Projected changes in US rainfall erosivity
Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data
Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation
Robust global sensitivity analysis of a river management model to assess nonlinear and interaction effects
Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin
Irrigation efficiency and water-policy implications for river basin resilience
On an improved sub-regional water resources management representation for integration into earth system models
Statistical analysis of error propagation from radar rainfall to hydrological models
The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin
Prioritization of water management under climate change and urbanization using multi-criteria decision making methods
Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications
Laura Gil-García, Nazaret M. Montilla-López, Carlos Gutiérrez-Martín, Ángel Sánchez-Daniel, Pablo Saiz-Santiago, Josué M. Polanco-Martínez, Julio Pindado, and Carlos Dionisio Pérez-Blanco
Hydrol. Earth Syst. Sci., 28, 4501–4520, https://doi.org/10.5194/hess-28-4501-2024, https://doi.org/10.5194/hess-28-4501-2024, 2024
Short summary
Short summary
This paper presents an interdisciplinary model for quantifying uncertainties in water allocation under climate change. It combines climate, hydrological, and microeconomic experiments with a decision support system. Multi-model analyses reveal potential futures for water management policies, emphasizing non-linear climate responses. As illustrated in the Douro River basin, minor water allocation changes have significant economic impacts, stresssing the need for adaptation strategies.
Jitao Zhang, Dimitri Solomatine, and Zengchuan Dong
Hydrol. Earth Syst. Sci., 28, 3739–3753, https://doi.org/10.5194/hess-28-3739-2024, https://doi.org/10.5194/hess-28-3739-2024, 2024
Short summary
Short summary
Faced with the problem of uncertainty in the field of water resources management, this paper proposes the Copula Multi-objective Robust Optimization and Probabilistic Analysis of Robustness (CM-ROPAR) approach to obtain robust water allocation schemes based on the uncertainty of drought and wet encounters and the uncertainty of inflow. We believe that this research article not only highlights the significance of the CM-ROPAR approach but also provides a new concept for uncertainty analysis.
Gwyneth Matthews, Christopher Barnard, Hannah Cloke, Sarah L. Dance, Toni Jurlina, Cinzia Mazzetti, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 2939–2968, https://doi.org/10.5194/hess-26-2939-2022, https://doi.org/10.5194/hess-26-2939-2022, 2022
Short summary
Short summary
The European Flood Awareness System creates flood forecasts for up to 15 d in the future for the whole of Europe which are made available to local authorities. These forecasts can be erroneous because the weather forecasts include errors or because the hydrological model used does not represent the flow in the rivers correctly. We found that, by using recent observations and a model trained with past observations and forecasts, the real-time forecast can be corrected, thus becoming more useful.
Marina R. L. Mautner, Laura Foglia, and Jonathan D. Herman
Hydrol. Earth Syst. Sci., 26, 1319–1340, https://doi.org/10.5194/hess-26-1319-2022, https://doi.org/10.5194/hess-26-1319-2022, 2022
Short summary
Short summary
Sensitivity analysis can be harnessed to evaluate effects of model uncertainties on planning outcomes. This study explores how observation and parameter uncertainty propagate through a hydrogeologic model to influence the ranking of decision alternatives. Using global sensitivity analysis and evaluation of aquifer management objectives, we evaluate how physical properties of the model and choice of observations for calibration can lead to variations in decision-relevant model outputs.
Alessandro Amaranto, Dinis Juizo, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 26, 245–263, https://doi.org/10.5194/hess-26-245-2022, https://doi.org/10.5194/hess-26-245-2022, 2022
Short summary
Short summary
This study aims at designing water supply strategies that are robust against climate, social, and land use changes in a sub-Saharan river basin. We found that robustness analysis supports the discovery of policies enhancing the resilience of water resources systems, benefiting the agricultural, energy, and urban sectors. We show how energy sustainability is affected by water availability, while urban and irrigation resilience also depends on infrastructural interventions and land use changes.
Thibaut Lachaut and Amaury Tilmant
Hydrol. Earth Syst. Sci., 25, 6421–6435, https://doi.org/10.5194/hess-25-6421-2021, https://doi.org/10.5194/hess-25-6421-2021, 2021
Short summary
Short summary
Response surfaces are increasingly used to identify the hydroclimatic conditions leading to a water resources system's failure. Partitioning the surface usually requires performance thresholds that are not necessarily crisp. We propose a methodology that combines the inherent uncertainty of response surfaces with the ambiguity of performance thresholds. The proposed methodology is illustrated with a multireservoir system in Canada for which some performance thresholds are imprecise.
Lila Collet, Shaun Harrigan, Christel Prudhomme, Giuseppe Formetta, and Lindsay Beevers
Hydrol. Earth Syst. Sci., 22, 5387–5401, https://doi.org/10.5194/hess-22-5387-2018, https://doi.org/10.5194/hess-22-5387-2018, 2018
Short summary
Short summary
Floods and droughts cause significant damages and pose risks to lives worldwide. In a climate change context this work identifies hotspots across Great Britain, i.e. places expected to be impacted by an increase in floods and droughts. By the 2080s the western coast of England and Wales and northeastern Scotland would experience more floods in winter and droughts in autumn, with a higher increase in drought hazard, showing a need to adapt water management policies in light of climate change.
Seungwoo Chang, Wendy Graham, Jeffrey Geurink, Nisai Wanakule, and Tirusew Asefa
Hydrol. Earth Syst. Sci., 22, 4793–4813, https://doi.org/10.5194/hess-22-4793-2018, https://doi.org/10.5194/hess-22-4793-2018, 2018
Short summary
Short summary
It is important to understand potential impacts of climate change and human water use on streamflow and groundwater levels. This study used climate models with an integrated hydrologic model to project future streamflow and groundwater level in Tampa Bay for a variety of future water use scenarios. Impacts of different climate projections on streamflow were found to be much stronger than the impacts of different human water use scenarios, but both were significant for groundwater projection.
Jessica E. Cherry, Corrie Knapp, Sarah Trainor, Andrea J. Ray, Molly Tedesche, and Susan Walker
Hydrol. Earth Syst. Sci., 21, 133–151, https://doi.org/10.5194/hess-21-133-2017, https://doi.org/10.5194/hess-21-133-2017, 2017
Short summary
Short summary
We know that climate is changing quickly in the Far North (the Arctic and sub-Arctic). Hydropower continues to grow in this region because water resources are perceived to be plentiful. However, with changes in glacier extent and permafrost, and more extreme events, will those resources prove reliable into the future? This study amasses the evidence that quantitative hydrology modeling and uncertainty assessment have matured to the point where they should be used in water resource planning.
Usman T. Khan and Caterina Valeo
Hydrol. Earth Syst. Sci., 20, 2267–2293, https://doi.org/10.5194/hess-20-2267-2016, https://doi.org/10.5194/hess-20-2267-2016, 2016
Short summary
Short summary
This paper contains a new two-step method to construct fuzzy numbers using observational data. In addition an existing fuzzy neural network is modified to account for fuzzy number inputs. This is combined with possibility-theory based intervals to train the network. Furthermore, model output and a defuzzification technique is used to estimate the risk of low Dissolved Oxygen so that water resource managers can implement strategies to prevent the occurrence of low Dissolved Oxygen.
M. Biasutti and R. Seager
Hydrol. Earth Syst. Sci., 19, 2945–2961, https://doi.org/10.5194/hess-19-2945-2015, https://doi.org/10.5194/hess-19-2945-2015, 2015
Short summary
Short summary
We estimate future changes in US erosivity from the most recent ensemble projections of daily and monthly rainfall accumulation. The expectation of overall increase in erosivity is confirmed by these calculations, but a quantitative assessment is marred by large uncertainties. Specifically, the uncertainty in the method of estimation of erosivity is more consequential than that deriving from the spread in climate simulations, and leads to changes of uncertain sign in parts of the south.
M. C. Peel, R. Srikanthan, T. A. McMahon, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 1615–1639, https://doi.org/10.5194/hess-19-1615-2015, https://doi.org/10.5194/hess-19-1615-2015, 2015
Short summary
Short summary
We present a proof-of-concept approximation of within-GCM uncertainty using non-stationary stochastic replicates of monthly precipitation and temperature projections and investigate the impact of within-GCM uncertainty on projected runoff and reservoir yield. Amplification of within-GCM variability from precipitation to runoff to reservoir yield suggests climate change impact assessments ignoring within-GCM uncertainty would provide water resources managers with an unjustified sense of certainty
T. A. McMahon, M. C. Peel, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 361–377, https://doi.org/10.5194/hess-19-361-2015, https://doi.org/10.5194/hess-19-361-2015, 2015
Short summary
Short summary
Here we assess GCM performance from a hydrologic perspective. We identify five better performing CMIP3 GCMs that reproduce grid-scale climatological statistics of observed precipitation and temperature over global land regions for future hydrologic simulation. GCM performance in reproducing observed mean and standard deviation of annual precipitation, mean annual temperature and mean monthly precipitation and temperature was assessed and ranked, and five better performing GCMs were identified.
L. J. M. Peeters, G. M. Podger, T. Smith, T. Pickett, R. H. Bark, and S. M. Cuddy
Hydrol. Earth Syst. Sci., 18, 3777–3785, https://doi.org/10.5194/hess-18-3777-2014, https://doi.org/10.5194/hess-18-3777-2014, 2014
L. Zhuo, M. M. Mekonnen, and A. Y. Hoekstra
Hydrol. Earth Syst. Sci., 18, 2219–2234, https://doi.org/10.5194/hess-18-2219-2014, https://doi.org/10.5194/hess-18-2219-2014, 2014
C. A. Scott, S. Vicuña, I. Blanco-Gutiérrez, F. Meza, and C. Varela-Ortega
Hydrol. Earth Syst. Sci., 18, 1339–1348, https://doi.org/10.5194/hess-18-1339-2014, https://doi.org/10.5194/hess-18-1339-2014, 2014
N. Voisin, H. Li, D. Ward, M. Huang, M. Wigmosta, and L. R. Leung
Hydrol. Earth Syst. Sci., 17, 3605–3622, https://doi.org/10.5194/hess-17-3605-2013, https://doi.org/10.5194/hess-17-3605-2013, 2013
D. Zhu, D. Z. Peng, and I. D. Cluckie
Hydrol. Earth Syst. Sci., 17, 1445–1453, https://doi.org/10.5194/hess-17-1445-2013, https://doi.org/10.5194/hess-17-1445-2013, 2013
B. L. Harding, A. W. Wood, and J. R. Prairie
Hydrol. Earth Syst. Sci., 16, 3989–4007, https://doi.org/10.5194/hess-16-3989-2012, https://doi.org/10.5194/hess-16-3989-2012, 2012
J.-S. Yang, E.-S. Chung, S.-U. Kim, and T.-W. Kim
Hydrol. Earth Syst. Sci., 16, 801–814, https://doi.org/10.5194/hess-16-801-2012, https://doi.org/10.5194/hess-16-801-2012, 2012
S. Quiroga, Z. Fernández-Haddad, and A. Iglesias
Hydrol. Earth Syst. Sci., 15, 505–518, https://doi.org/10.5194/hess-15-505-2011, https://doi.org/10.5194/hess-15-505-2011, 2011
Cited articles
Barlow, M., Nigam, S., and Berbery, E. H.: ENSO, Pacific decadal variability, and US summertime precipitation, drought, and streamflow, J. Climate, 14, 2105–2128, 2001.
Benjamin, J. R. and Cornell, C. A.: Probability, Statistics, and Decision for Civil Engineers, McGraw-Hill, New York, 1970.
Dai, A. G.: Drought under global warming: a review, Wiley Interdisc. Rev. Climate Change, 2, 45–65, 2011.
Dai, A. G., Trenberth, K. E., and Qian, T. T.: A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming, J. Hydrometeorol., 5, 1117–1130, https://doi.org/10.1175/JHM-386.1, 2004.
Díaz-Granados, M. A., Valdés, J. B., and Bras, R. L.: A physically based flood frequency distribution, Water Resour. Res., 20, 995–1002, 1984.
Driscoll, E. D., Palhegyi, G. E., Strecker, E. W., and Schelley, P. E.: Analysis of storm event characteristics for selected rainfall gages throughout the United States, US Environmental Protection Agency, Washington, D.C., 1989.
Dufrêne, E., Davi, H., François, C., Le Maire, G., Le Dantec, V., and Granier, A.: Modelling carbon and water cycles in a beech forest. Part I: Model description and uncertainty analysis on modelled NEE, Ecol. Model., 185, 407–436, 2005.
Dunkerley, D.: Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site, Hydrol. Process., 22, 5024–5036, 2008.
Eagleson, P. S.: Climate, soil, and vegetation. 2. The distribution of annual precipitation derived from observed storm sequences, Water. Resour. Res., 14, 713–721, 1978.
Falvey, M. and Garreaud, R.: Wintertime precipitation episodes in central Chile: Associated meteorological conditions and orographic influences, J. Hydrometeorol., 8, 171–193, https://doi.org/10.1175/jhm562.1, 2007.
Fatichi, S., and Ivanov, V.: Interannual variability of evapotranspiration and vegetation productivity, Water Resour. Res., 50, 3275–3294, https://doi.org/10.1002/2013WR015044, 2014.
Fatichi, S., Ivanov, V. Y., and Caporali, E.: Investigating interannual variability of precipitation at the global scale: Is there a connection with seasonality?, J. Climate, 25, 5512–5523, 2012.
Ferguson, T. S., Genest, C., and Hallin, M.: Kendall's tau for serial dependence, Can. J. Stat., 28, 587–604, 2000.
Freeze, R. A.: A stochastic-conceptual analysis of rainfall-runoff processes on a hillslope. Water Resour. Res., 16, 391–408, 1980.
Gaál, L., Molnar, P., and Szolgay, J.: Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland, Hydrol. Earth Syst. Sci., 18, 1561–1573, https://doi.org/10.5194/hess-18-1561-2014, 2014.
Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C., and Razuvavev, V. A. N.: Trends in intense precipitation in the climate record, J. Climate, 18, 1326–1350, 2005.
Higgins, R. W., Chen, Y., and Douglas, A. V.: Interannual variability of the North American warm season precipitation regime, J. Climate, 12, 653–680, 1999.
Ivanov, V. Y., Bras, R. L., and Vivoni, E. R.: Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks, Water Resour. Res., 44, W03429, https://doi.org/10.1029/2006WR005588, 2008.
Knapp, A. K. and Smith, M. D.: Variation among biomes in temporal dynamics of aboveground primary production, Science, 291, 481–484, 2001.
Linsley, R. K., Kohler, M. A., and Paulhus, J. L. H.: Hydrology for Engineers, 3rd Edn., McGraw-Hill, New York, 508 pp., 1982.
Markovic, R. D.: Probability functions of best fit to distributions of annual precipitation and runoff, Hydrology Paper No. 8, Colorado State University, Fort Collins, Colorado, 1965.
Masson, D. and C. Frei: Spatial analysis of precipitation in a high-mountain region: exploring methods with multi-scale topographic predictors and circulation types, Hydrol. Earth Syst. Sci., 18, 4543–4563, https://doi.org/10.5194/hess-18-4543-2014, 2014.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: Whither water management?, Science, 319, 573–574, 2008.
Molnar, P., Fatichi, S., Gaál, L., Szolgay, J., and Burlando, P.: Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature, Hydrol. Earth Syst. Sci., 19, 1753–1766, https://doi.org/10.5194/hess-19-1753-2015, 2015.
Onof, C., Mackay, N. G., Oh, L., and Wheater, H. S.: An improved rainfall disaggregation technique for GCMs, J. Geophys. Res.-Atmos., 103, 19577–19586, 1998.
Panziera, L., James, C. N., and Germann U.: Mesoscale organization and structure of orographic precipitation producing flash floods in the Lago Maggiore region, Q. J. Roy. Meteorol. Soc., 141, 224–248, https://doi.org/10.1002/qj.2351, 2014.
Pranzini, G.: Annual rainfall distribution in Concepción as derived from the characteristics of the storm sequence, Thesis presented for the profesional degree of Civil Engineer, Depto. de Ingeniería Civil, Universidad de Concepción, Concepción, Chile, 2000.
Pranzini, G. and Meier, C. I.: Annual rainfall distribution in Concepción as derived from the characteristics of the storm sequence, in Proceedings of the XV Chilean Conference of Hydraulic Engineering, 7–9 November 2001, Concepción, 27–38, 2001.
Restrepo-Posada, P. J. and Eagleson, P. S.: Identification of independent rainstorms, J. Hydrol., 55, 303–319, https://doi.org/10.1016/0022-1694(82)90136-6, 1982.
Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A. Bartholomeus, R. P., Bonfante, A., de Lorenzi, F., Dury, M., Gloning, P., Abou Jaoude, R., Klein, T., Kuster, T. M., Martins, M., Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P., de Dato, G., Francois, L., Menzel, A., and Pereira, M.: A plant's perspective of extremes: terrestrial plant responses to changing climatic variability, Global Change Biol., 19, 75–89, https://doi.org/10.1111/gcb.12023, 2013.
Schiesser, H. H., Houze, R. A., and Huntrieser, H.: The mesoscale structure of severe precipitation systems in Switzerland, Mon. Weather Rev., 123, 2070–2097, 1995.
Tucker, G. E. and Bras, R. L.: A stochastic approach to modeling the role of rainfall variability in drainage basin evolution, Water Resour. Res., 36, 1953–1964, 2000.
Willems, P.: A spatial rainfall generator for small spatial scales, J. Hydrol., 252, 126–144, 2001.
Xie, P. P. and Arkin, P. A.: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions, J. Climate, 9, 840–858, 1996.
Short summary
We show that the derived distribution approach is able to characterize the interannual variability of precipitation much better than fitting a probabilistic model to annual rainfall totals, as long as continuously gauged data are available. The method is a useful tool for describing temporal changes in the distribution of annual rainfall, as it works for records as short as 5 years, and therefore does not require any stationarity assumption over long periods.
We show that the derived distribution approach is able to characterize the interannual...