Research article
| Highlight paper
10 May 2016
Research article
| Highlight paper
| 10 May 2016
Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model
Subhadeep Halder et al.
Related authors
No articles found.
Eunkyo Seo and Paul A. Dirmeyer
Hydrol. Earth Syst. Sci., 26, 5411–5429, https://doi.org/10.5194/hess-26-5411-2022, https://doi.org/10.5194/hess-26-5411-2022, 2022
Short summary
Short summary
This study presents the climatology of the observed land–atmosphere interactions on a subdaily timescale during the warm season from flux site observations. Multivariate metrics are employed to examine the land, atmosphere, and combined couplings, and a mixing diagram is adopted to understand the coevolution of the moist and thermal energy budget within the atmospheric mixed layer. The diurnal cycles of both mixing diagrams and hourly land–atmosphere couplings exhibit hysteresis.
Zun Yin, Kirsten Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
EGUsphere, https://doi.org/10.5194/egusphere-2022-769, https://doi.org/10.5194/egusphere-2022-769, 2022
Short summary
Short summary
Land-atmosphere (L-A) interactions concerns daytime process. However, most studies used monthly (M) or entire-day-mean (E) data, due to the lack of daytime-only data. We questioned if M and E are sufficient for assessing L-A coupling strength. Via this study, we found that the evaluation is biased by integrating nighttime or by monthly smoothing. We propose either integrating L-A metrics within models or providing daily products based on optimized averaging algorithms.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Liang Chen, Paul A. Dirmeyer, Zhichang Guo, and Natalie M. Schultz
Hydrol. Earth Syst. Sci., 22, 111–125, https://doi.org/10.5194/hess-22-111-2018, https://doi.org/10.5194/hess-22-111-2018, 2018
Short summary
Short summary
This paper evaluates the performance of two commonly used land surface models in simulating deforestation-induced change in surface fluxes using paired FLUXNET observations. Our results highlight the shortcomings in the energy partitioning between latent and sensible heat flux over different land cover types, suggesting the need to improve the representation of surface heat flux processes in land models to increase confidence in LULCC-climate simulations.
Yoshihide Wada, Marc F. P. Bierkens, Ad de Roo, Paul A. Dirmeyer, James S. Famiglietti, Naota Hanasaki, Megan Konar, Junguo Liu, Hannes Müller Schmied, Taikan Oki, Yadu Pokhrel, Murugesu Sivapalan, Tara J. Troy, Albert I. J. M. van Dijk, Tim van Emmerik, Marjolein H. J. Van Huijgevoort, Henny A. J. Van Lanen, Charles J. Vörösmarty, Niko Wanders, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 4169–4193, https://doi.org/10.5194/hess-21-4169-2017, https://doi.org/10.5194/hess-21-4169-2017, 2017
Short summary
Short summary
Rapidly increasing population and human activities have altered terrestrial water fluxes on an unprecedented scale. Awareness of potential water scarcity led to first global water resource assessments; however, few hydrological models considered the interaction between terrestrial water fluxes and human activities. Our contribution highlights the importance of human activities transforming the Earth's water cycle, and how hydrological models can include such influences in an integrated manner.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
A. M. Badger and P. A. Dirmeyer
Hydrol. Earth Syst. Sci., 19, 4547–4557, https://doi.org/10.5194/hess-19-4547-2015, https://doi.org/10.5194/hess-19-4547-2015, 2015
Short summary
Short summary
This study expands upon previous Amazon deforestation modeling studies by using realistic heterogeneous crop cover as replacement vegetation and diagnoses the changes in land-atmosphere coupling due to land use change. With the use of an interactive crop model, the impact that irrigation has on land-atmosphere coupling when using crops as a replacement vegetation is analyzed. This study also provides documentation on the development of tropical crops for CLM4.5.
P. A. Dirmeyer, G. Fang, Z. Wang, P. Yadav, and A. Milton
Hydrol. Earth Syst. Sci., 18, 5317–5329, https://doi.org/10.5194/hess-18-5317-2014, https://doi.org/10.5194/hess-18-5317-2014, 2014
Short summary
Short summary
Climate change simulations project drought to increase even under moderate warming scenarios; both droughts and floods increase sharply with severe warming. Over 20% of the globe is projected to experience reduced rainfall but greater year-to-year variability. The vulnerability of growing regions for many types of crops are assessed based on soil moisture, and rivers using runoff projections. Increased water cycle variability is found to be a threat to agriculture and river systems as well.
S. J. Sutanto, B. van den Hurk, P. A. Dirmeyer, S. I. Seneviratne, T. Röckmann, K. E. Trenberth, E. M. Blyth, J. Wenninger, and G. Hoffmann
Hydrol. Earth Syst. Sci., 18, 2815–2827, https://doi.org/10.5194/hess-18-2815-2014, https://doi.org/10.5194/hess-18-2815-2014, 2014
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France
Linking the complementary evaporation relationship with the Budyko framework for ungauged areas in Australia
Risks of seasonal extreme rainfall events in Bangladesh under 1.5 and 2.0 °C warmer worlds – how anthropogenic aerosols change the story
Pan evaporation is increased by submerged macrophytes
Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis
Characterizing basin-scale precipitation gradients in the Third Pole region using a high-resolution atmospheric simulation-based dataset
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Hydrological concept formation inside long short-term memory (LSTM) networks
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe
Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature
Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations
Recent decrease in summer precipitation over the Iberian Peninsula closely links to reduction in local moisture recycling
Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity
Critical transitions in the hydrological system: early-warning signals and network analysis
Testing a maximum evaporation theory over saturated land: implications for potential evaporation estimation
The suitability of a hybrid framework including data driven approaches for hydrological forecasting
The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy
Impact of correcting sub-daily climate model biases for hydrological studies
The Mesoamerican mid-summer drought: the impact of its definition on occurrences and recent changes
Reconstructing climate trends adds skills to seasonal reference crop evapotranspiration forecasting
Influence of initial soil moisture in a regional climate model study over West Africa – Part 1: Impact on the climate mean
Influence of initial soil moisture in a regional climate model study over West Africa – Part 2: Impact on the climate extremes
Compound flood impact forecasting: integrating fluvial and flash flood impact assessments into a unified system
Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning
Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany
Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification
Flexible and consistent quantile estimation for intensity–duration–frequency curves
Evaluation of Asian summer precipitation in different configurations of a high-resolution general circulation model in a range of decision-relevant spatial scales
Rainfall-induced shallow landslides and soil wetness: comparison of physically based and probabilistic predictions
Land use and climate change effects on water yield from East African forested water towers
Easy-to-use spatial random-forest-based downscaling-calibration method for producing precipitation data with high resolution and high accuracy
Improved parameterization of snow albedo in Noah coupled with Weather Research and Forecasting: applicability to snow estimates for the Tibetan Plateau
A 10 km North American precipitation and land-surface reanalysis based on the GEM atmospheric model
Contribution of moisture sources to precipitation changes in the Three Gorges Reservoir Region
Impacts of land use and land cover change and reforestation on summer rainfall in the Yangtze River basin
Mass balance and hydrological modeling of the Hardangerjøkulen ice cap in south-central Norway
Long-term relative decline in evapotranspiration with increasing runoff on fractional land surfaces
Decision tree-based detection of blowing snow events in the European Alps
Changes in the simulation of atmospheric instability over the Iberian Peninsula due to the use of 3DVAR data assimilation
Simulating the evolution of the topography–climate coupled system
Using data assimilation to optimize pedotransfer functions using field-scale in situ soil moisture observations
Impact of frozen soil processes on soil thermal characteristics at seasonal to decadal scales over the Tibetan Plateau and North China
The development and persistence of soil moisture stress during drought across southwestern Germany
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, and Guillaume Lacquement
Hydrol. Earth Syst. Sci., 26, 6055–6071, https://doi.org/10.5194/hess-26-6055-2022, https://doi.org/10.5194/hess-26-6055-2022, 2022
Short summary
Short summary
The interest of this study is to demonstrate that we identify two zones in our study area whose hydroclimatic behaviours are uneven. By investigating relationships between the hydroclimatic conditions in both clusters for past observations with the overall atmospheric functioning, we show that the inequalities are mainly driven by a different control of the atmospheric teleconnection patterns over the area.
Daeha Kim, Minha Choi, and Jong Ahn Chun
Hydrol. Earth Syst. Sci., 26, 5955–5969, https://doi.org/10.5194/hess-26-5955-2022, https://doi.org/10.5194/hess-26-5955-2022, 2022
Short summary
Short summary
We proposed a practical method that predicts the evaporation rates on land surfaces (ET) where only atmospheric data are available. Using a traditional equation that describes partitioning of precipitation into ET and streamflow, we could approximately identify the key parameter of the predicting formulation based on land–atmosphere interactions. The simple method conditioned by local climates outperformed sophisticated models in reproducing water-balance estimates across Australia.
Ruksana H. Rimi, Karsten Haustein, Emily J. Barbour, Sarah N. Sparrow, Sihan Li, David C. H. Wallom, and Myles R. Allen
Hydrol. Earth Syst. Sci., 26, 5737–5756, https://doi.org/10.5194/hess-26-5737-2022, https://doi.org/10.5194/hess-26-5737-2022, 2022
Short summary
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Brigitta Simon-Gáspár, Gábor Soós, and Angela Anda
Hydrol. Earth Syst. Sci., 26, 4741–4756, https://doi.org/10.5194/hess-26-4741-2022, https://doi.org/10.5194/hess-26-4741-2022, 2022
Short summary
Short summary
Due to climate change, it is extremely important to determine evaporation as accurately as possible. In nature, there are sediments and macrophytes in the open waters; thus, one of the aims was to investigate their effect on evaporation. The second aim of this paper was to estimate daily evaporation by using different models, which, according to results, have high priority in the evaporation prediction. Water management can obtain useful information from the results of the current research.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
Yaozhi Jiang, Kun Yang, Hua Yang, Hui Lu, Yingying Chen, Xu Zhou, Jing Sun, Yuan Yang, and Yan Wang
Hydrol. Earth Syst. Sci., 26, 4587–4601, https://doi.org/10.5194/hess-26-4587-2022, https://doi.org/10.5194/hess-26-4587-2022, 2022
Short summary
Short summary
Our study quantified the altitudinal precipitation gradients (PGs) over the Third Pole (TP). Most sub-basins in the TP have positive PGs, and negative PGs are found in the Himalayas, the Hengduan Mountains and the western Kunlun. PGs are positively correlated with wind speed but negatively correlated with relative humidity. In addition, PGs tend to be positive at smaller spatial scales compared to those at larger scales. The findings can assist precipitation interpolation in the data-sparse TP.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022, https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022, https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
Short summary
Despite the accuracy of deep learning rainfall-runoff models, we are currently uncertain of what these models have learned. In this study we explore the internals of one deep learning architecture and demonstrate that the model learns about intermediate hydrological stores of soil moisture and snow water, despite never having seen data about these processes during training. Therefore, we find evidence that the deep learning approach learns a physically realistic mapping from inputs to outputs.
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022, https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Short summary
How to combine multi-source precipitation data effectively is one of the hot topics in hydrometeorological research. This study presents a two-step merging strategy based on machine learning for multi-source precipitation merging over China. The results demonstrate that the proposed method effectively distinguishes the occurrence of precipitation events and reduces the error in precipitation estimation. This method is robust and may be successfully applied to other areas even with scarce data.
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022, https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary
Short summary
The hydrometeorological skills of two new nowcasting systems for forecasting Mediterranean intense rainfall events and floods are investigated. The results reveal that up to 75 or 90 min of forecast the performance of the nowcasting system blending numerical weather prediction and extrapolation of radar estimation is higher than the numerical weather model. For lead times up to 3 h the skills are equivalent in general. Using these nowcasting systems for flash flood forecasting is also promising.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Shakirudeen Lawal, Stephen Sitch, Danica Lombardozzi, Julia E. M. S. Nabel, Hao-Wei Wey, Pierre Friedlingstein, Hanqin Tian, and Bruce Hewitson
Hydrol. Earth Syst. Sci., 26, 2045–2071, https://doi.org/10.5194/hess-26-2045-2022, https://doi.org/10.5194/hess-26-2045-2022, 2022
Short summary
Short summary
To investigate the impacts of drought on vegetation, which few studies have done due to various limitations, we used the leaf area index as proxy and dynamic global vegetation models (DGVMs) to simulate drought impacts because the models use observationally derived climate. We found that the semi-desert biome responds strongly to drought in the summer season, while the tropical forest biome shows a weak response. This study could help target areas to improve drought monitoring and simulation.
Yubo Liu, Monica Garcia, Chi Zhang, and Qiuhong Tang
Hydrol. Earth Syst. Sci., 26, 1925–1936, https://doi.org/10.5194/hess-26-1925-2022, https://doi.org/10.5194/hess-26-1925-2022, 2022
Short summary
Short summary
Our findings indicate that the reduction in contribution to the Iberian Peninsula (IP) summer precipitation is mainly concentrated in the IP and its neighboring grids. Compared with 1980–1997, both local recycling and external moisture were reduced during 1998–2019. The reduction in local recycling in the IP closely links to the disappearance of the wet years and the decreasing contribution in the dry years.
Nejc Bezak, Pasquale Borrelli, and Panos Panagos
Hydrol. Earth Syst. Sci., 26, 1907–1924, https://doi.org/10.5194/hess-26-1907-2022, https://doi.org/10.5194/hess-26-1907-2022, 2022
Short summary
Short summary
Rainfall erosivity is one of the main factors in soil erosion. A satellite-based global map of rainfall erosivity was constructed using data with a 30 min time interval. It was shown that the satellite-based precipitation products are an interesting option for estimating rainfall erosivity, especially in regions with limited ground data. However, ground-based high-frequency precipitation measurements are (still) essential for accurate estimates of rainfall erosivity.
Xueli Yang, Zhi-Hua Wang, and Chenghao Wang
Hydrol. Earth Syst. Sci., 26, 1845–1856, https://doi.org/10.5194/hess-26-1845-2022, https://doi.org/10.5194/hess-26-1845-2022, 2022
Short summary
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Zhuoyi Tu, Yuting Yang, and Michael L. Roderick
Hydrol. Earth Syst. Sci., 26, 1745–1754, https://doi.org/10.5194/hess-26-1745-2022, https://doi.org/10.5194/hess-26-1745-2022, 2022
Short summary
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-89, https://doi.org/10.5194/hess-2022-89, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purpose, combined and rerun with global data is able to create valuable information similar to large scale forecasting models.
Paola Mazzoglio, Ilaria Butera, Massimiliano Alvioli, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 26, 1659–1672, https://doi.org/10.5194/hess-26-1659-2022, https://doi.org/10.5194/hess-26-1659-2022, 2022
Short summary
Short summary
We have analyzed the spatial dependence of rainfall extremes upon elevation and morphology in Italy. Regression analyses show that previous rainfall–elevation relations at national scale can be substantially improved with new data, both using topography attributes and constraining the analysis within areas stemming from geomorphological zonation. Short-duration mean rainfall depths can then be estimated, all over Italy, using different parameters in each area of the geomorphological subdivision.
Mina Faghih, François Brissette, and Parham Sabeti
Hydrol. Earth Syst. Sci., 26, 1545–1563, https://doi.org/10.5194/hess-26-1545-2022, https://doi.org/10.5194/hess-26-1545-2022, 2022
Short summary
Short summary
The diurnal cycles of precipitation and temperature generated by climate models are biased. This work investigates whether or not impact modellers should correct the diurnal cycle biases prior to conducting hydrological impact studies at the sub-daily scale. The results show that more accurate streamflows are obtained when the diurnal cycles biases are corrected. This is noticeable for smaller catchments, which have a quicker reaction time to changes in precipitation and temperature.
Edwin P. Maurer, Iris T. Stewart, Kenneth Joseph, and Hugo G. Hidalgo
Hydrol. Earth Syst. Sci., 26, 1425–1437, https://doi.org/10.5194/hess-26-1425-2022, https://doi.org/10.5194/hess-26-1425-2022, 2022
Short summary
Short summary
The mid-summer drought (MSD) is common in Mesoamerica. It is a short (weeks-long) period of reduced rainfall near the middle of the rainy season. When it occurs, how long it lasts, and how dry it is all have important implications for smallholder farmers. Studies of changes in MSD characteristics rely on defining characteristics of an MSD. Different definitions affect whether an area would be considered to experience an MSD as well as the changes that have happened in the last 40 years.
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022, https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Short summary
Forecasts of evaporative water loss in the future are highly valuable for water resource management. These forecasts are often produced using the outputs of climate models. We developed an innovative method to correct errors in these forecasts, particularly the errors caused by deficiencies of climate models in modeling the changing climate. We apply this method to seasonal forecasts of evaporative water loss across Australia and achieve significant improvements in the forecast quality.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 711–730, https://doi.org/10.5194/hess-26-711-2022, https://doi.org/10.5194/hess-26-711-2022, 2022
Short summary
Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 731–754, https://doi.org/10.5194/hess-26-731-2022, https://doi.org/10.5194/hess-26-731-2022, 2022
Short summary
Short summary
The impact of initial soil moisture is more significant on temperature extremes than on precipitation extremes. A stronger impact is found on maximum temperature than on minimum temperature. The impact on extreme precipitation indices is homogeneous, especially over the Central Sahel, and dry (wet) experiments tend to decrease (increase) the number of precipitation extreme events but not their intensity.
Josias Láng-Ritter, Marc Berenguer, Francesco Dottori, Milan Kalas, and Daniel Sempere-Torres
Hydrol. Earth Syst. Sci., 26, 689–709, https://doi.org/10.5194/hess-26-689-2022, https://doi.org/10.5194/hess-26-689-2022, 2022
Short summary
Short summary
During flood events, emergency managers such as civil protection authorities rely on flood forecasts to make informed decisions. In the current practice, they monitor several separate forecasts, each one of them covering a different type of flooding. This can be time-consuming and confusing, ultimately compromising the effectiveness of the emergency response. This work illustrates how the automatic combination of flood type-specific impact forecasts can improve decision support systems.
Junjiang Liu, Xing Yuan, Junhan Zeng, Yang Jiao, Yong Li, Lihua Zhong, and Ling Yao
Hydrol. Earth Syst. Sci., 26, 265–278, https://doi.org/10.5194/hess-26-265-2022, https://doi.org/10.5194/hess-26-265-2022, 2022
Short summary
Short summary
Hourly streamflow ensemble forecasts with the CSSPv2 land surface model and ECMWF meteorological forecasts reduce both the probabilistic and deterministic forecast error compared with the ensemble streamflow prediction approach during the first week. The deterministic forecast error can be further reduced in the first 72 h when combined with the long short-term memory (LSTM) deep learning method. The forecast skill for LSTM using only historical observations drops sharply after the first 24 h.
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, https://doi.org/10.5194/hess-25-6523-2021, 2021
Short summary
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Sara Cloux, Daniel Garaboa-Paz, Damián Insua-Costa, Gonzalo Miguez-Macho, and Vicente Pérez-Muñuzuri
Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021, https://doi.org/10.5194/hess-25-6465-2021, 2021
Short summary
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
Felix S. Fauer, Jana Ulrich, Oscar E. Jurado, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6479–6494, https://doi.org/10.5194/hess-25-6479-2021, https://doi.org/10.5194/hess-25-6479-2021, 2021
Short summary
Short summary
Extreme rainfall events are modeled in this study for different timescales. A new parameterization of the dependence between extreme values and their timescale enables our model to estimate extremes on very short (1 min) and long (5 d) timescales simultaneously. We compare different approaches of modeling this dependence and find that our new model improves performance for timescales between 2 h and 2 d without affecting model performance on other timescales.
Mark R. Muetzelfeldt, Reinhard Schiemann, Andrew G. Turner, Nicholas P. Klingaman, Pier Luigi Vidale, and Malcolm J. Roberts
Hydrol. Earth Syst. Sci., 25, 6381–6405, https://doi.org/10.5194/hess-25-6381-2021, https://doi.org/10.5194/hess-25-6381-2021, 2021
Short summary
Short summary
Simulating East Asian Summer Monsoon (EASM) rainfall poses many challenges because of its multi-scale nature. We evaluate three setups of a 14 km global climate model against observations to see if they improve simulated rainfall. We do this over catchment basins of different sizes to estimate how model performance depends on spatial scale. Using explicit convection improves rainfall diurnal cycle, yet more model tuning is needed to improve mean and intensity biases in simulated summer rainfall.
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021, https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Short summary
Landslides are a dangerous natural hazard affecting alpine regions, calling for effective warning systems. Here we consider different approaches for the prediction of rainfall-induced shallow landslides at the regional scale, based on open-access datasets and operational hydrological forecasting systems. We find antecedent wetness useful to improve upon the classical rainfall thresholds and the resolution of the hydrological model used for its estimate to be a critical aspect.
Charles Nduhiu Wamucii, Pieter R. van Oel, Arend Ligtenberg, John Mwangi Gathenya, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 25, 5641–5665, https://doi.org/10.5194/hess-25-5641-2021, https://doi.org/10.5194/hess-25-5641-2021, 2021
Short summary
Short summary
East African water towers (WTs) are under pressure from human influences within and without, but the water yield (WY) is more sensitive to climate changes from within. Land use changes have greater impacts on WY in the surrounding lowlands. The WTs have seen a strong shift towards wetter conditions while, at the same time, the potential evapotranspiration is gradually increasing. The WTs were identified as non-resilient, and future WY may experience more extreme variations.
Chuanfa Chen, Baojian Hu, and Yanyan Li
Hydrol. Earth Syst. Sci., 25, 5667–5682, https://doi.org/10.5194/hess-25-5667-2021, https://doi.org/10.5194/hess-25-5667-2021, 2021
Short summary
Short summary
This study proposes an easy-to-use downscaling-calibration method based on a spatial random forest with the incorporation of high-resolution variables. The proposed method is general, robust, accurate and easy to use as it shows more accurate results than the classical methods in the study area with heterogeneous terrain morphology and precipitation. It can be easily applied to other regions where precipitation data with high resolution and high accuracy are urgently required.
Lian Liu, Yaoming Ma, Massimo Menenti, Rongmingzhu Su, Nan Yao, and Weiqiang Ma
Hydrol. Earth Syst. Sci., 25, 4967–4981, https://doi.org/10.5194/hess-25-4967-2021, https://doi.org/10.5194/hess-25-4967-2021, 2021
Short summary
Short summary
Albedo is a key factor in land surface energy balance, which is difficult to successfully reproduce by models. Here, we select eight snow events on the Tibetan Plateau to evaluate the universal improvements of our improved albedo scheme. The RMSE relative reductions for temperature, albedo, sensible heat flux and snow depth reach 27%, 32%, 13% and 21%, respectively, with remarkable increases in the correlation coefficients. This presents a strong potential of our scheme for modeling snow events.
Nicolas Gasset, Vincent Fortin, Milena Dimitrijevic, Marco Carrera, Bernard Bilodeau, Ryan Muncaster, Étienne Gaborit, Guy Roy, Nedka Pentcheva, Maxim Bulat, Xihong Wang, Radenko Pavlovic, Franck Lespinas, Dikra Khedhaouiria, and Juliane Mai
Hydrol. Earth Syst. Sci., 25, 4917–4945, https://doi.org/10.5194/hess-25-4917-2021, https://doi.org/10.5194/hess-25-4917-2021, 2021
Short summary
Short summary
In this paper, we highlight the importance of including land-data assimilation as well as offline precipitation analysis components in a regional reanalysis system. We also document the performance of the first multidecadal 10 km reanalysis performed with the GEM atmospheric model that can be used for seamless land-surface and hydrological modelling in North America. It is of particular interest for transboundary basins, as existing datasets often show discontinuities at the border.
Ying Li, Chenghao Wang, Hui Peng, Shangbin Xiao, and Denghua Yan
Hydrol. Earth Syst. Sci., 25, 4759–4772, https://doi.org/10.5194/hess-25-4759-2021, https://doi.org/10.5194/hess-25-4759-2021, 2021
Short summary
Short summary
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the operation and regulation of the Three Gorges Dam and the protection of residents and properties. We investigated the long-term contribution of moisture sources to precipitation changes in this region with an atmospheric moisture tracking model. We found that southwestern source regions (especially the southeastern tip of the Tibetan Plateau) are the key regions that control TGRR precipitation changes.
Wei Li, Lu Li, Jie Chen, Qian Lin, and Hua Chen
Hydrol. Earth Syst. Sci., 25, 4531–4548, https://doi.org/10.5194/hess-25-4531-2021, https://doi.org/10.5194/hess-25-4531-2021, 2021
Short summary
Short summary
Reforestation can influence climate, but the sensitivity of summer rainfall to reforestation is rarely investigated. We take two reforestation scenarios to assess the impacts of reforestation on summer rainfall under different reforestation proportions and explore the potential mechanisms. This study concludes that reforestation increases summer rainfall amount and extremes through thermodynamics processes, and the effects are more pronounced in populated areas than over the whole basin.
Trude Eidhammer, Adam Booth, Sven Decker, Lu Li, Michael Barlage, David Gochis, Roy Rasmussen, Kjetil Melvold, Atle Nesje, and Stefan Sobolowski
Hydrol. Earth Syst. Sci., 25, 4275–4297, https://doi.org/10.5194/hess-25-4275-2021, https://doi.org/10.5194/hess-25-4275-2021, 2021
Short summary
Short summary
We coupled a detailed snow–ice model (Crocus) to represent glaciers in the Weather Research and Forecasting (WRF)-Hydro model and tested it on a well-studied glacier. Several observational systems were used to evaluate the system, i.e., satellites, ground-penetrating radar (used over the glacier for snow depth) and stake observations for glacier mass balance and discharge measurements in rivers from the glacier. Results showed improvements in the streamflow projections when including the model.
Ren Wang, Pierre Gentine, Jiabo Yin, Lijuan Chen, Jianyao Chen, and Longhui Li
Hydrol. Earth Syst. Sci., 25, 3805–3818, https://doi.org/10.5194/hess-25-3805-2021, https://doi.org/10.5194/hess-25-3805-2021, 2021
Short summary
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
Zhipeng Xie, Weiqiang Ma, Yaoming Ma, Zeyong Hu, Genhou Sun, Yizhe Han, Wei Hu, Rongmingzhu Su, and Yixi Fan
Hydrol. Earth Syst. Sci., 25, 3783–3804, https://doi.org/10.5194/hess-25-3783-2021, https://doi.org/10.5194/hess-25-3783-2021, 2021
Short summary
Short summary
Ground information on the occurrence of blowing snow has been sorely lacking because direct observations of blowing snow are sparse in time and space. In this paper, we investigated the potential capability of the decision tree model to detect blowing snow events in the European Alps. Trained with routine meteorological observations, the decision tree model can be used as an efficient tool to detect blowing snow occurrences across different regions requiring limited meteorological variables.
Santos J. González-Rojí, Sheila Carreno-Madinabeitia, Jon Sáenz, and Gabriel Ibarra-Berastegi
Hydrol. Earth Syst. Sci., 25, 3471–3492, https://doi.org/10.5194/hess-25-3471-2021, https://doi.org/10.5194/hess-25-3471-2021, 2021
Short summary
Short summary
The simulation of precipitation extreme events is a known problem in modelling. That is why the atmospheric conditions favourable for its development as simulated by two WRF experiments are evaluated in this paper. The experiment including 3DVAR data assimilation outperforms the one without in simulating the TT index, CAPE, and CIN over the Iberian Peninsula. The ingredients for convective precipitation in winter are found at the Atlantic coast, but in summer they are at the Mediterranean coast.
Kyungrock Paik and Won Kim
Hydrol. Earth Syst. Sci., 25, 2459–2474, https://doi.org/10.5194/hess-25-2459-2021, https://doi.org/10.5194/hess-25-2459-2021, 2021
Short summary
Short summary
Climate, topography, and tectonics evolve together. To simulate their co-evolution, a fully coupled computer simulation model between local climate and topography is developed in this study. We simulated how the mountain development enhances local rainfall and its feedback on topography through stronger erosion. We found that the evolution of the coupled system can be more complicated than previously thought. The channel concavity on the windward side becomes lower as the wind grows.
Elizabeth Cooper, Eleanor Blyth, Hollie Cooper, Rich Ellis, Ewan Pinnington, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 2445–2458, https://doi.org/10.5194/hess-25-2445-2021, https://doi.org/10.5194/hess-25-2445-2021, 2021
Short summary
Short summary
Soil moisture estimates from land surface models are important for forecasting floods, droughts, weather, and climate trends. We show that by combining model estimates of soil moisture with measurements from field-scale, ground-based sensors, we can improve the performance of the land surface model in predicting soil moisture values.
Qian Li, Yongkang Xue, and Ye Liu
Hydrol. Earth Syst. Sci., 25, 2089–2107, https://doi.org/10.5194/hess-25-2089-2021, https://doi.org/10.5194/hess-25-2089-2021, 2021
Short summary
Short summary
Most land surface models have difficulty in capturing the freeze–thaw cycle in the Tibetan Plateau and North China. This paper introduces a physically more realistic and efficient frozen soil module (FSM) into the SSiB3 model (SSiB3-FSM). A new and more stable semi-implicit scheme and a physics-based freezing–thawing scheme were applied, and results show that SSiB3-FSM can be used as an effective model for soil thermal characteristics at seasonal to decadal scales over frozen ground.
Erik Tijdeman and Lucas Menzel
Hydrol. Earth Syst. Sci., 25, 2009–2025, https://doi.org/10.5194/hess-25-2009-2021, https://doi.org/10.5194/hess-25-2009-2021, 2021
Short summary
Short summary
Low amounts of soil moisture (SM) in the root zone negatively affect crop health. We characterized the development and duration of SM stress across the croplands of southwestern Germany. Development time mainly varied within drought years and was related to the available water-holding capacity of the root zone. Duration varied both within and between drought years and was especially high in 2018. Sensitivity analyses showed that (controls on) SM stress and SM drought characteristics differ.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., and Arkin, P.: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Tank, A. M. G. K., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Kumar, K. R., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. L.: Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290, 2006.
Ali, H., Misra, V., and Pai, D. S.: Observed and projected urban extreme rainfall events in India, J. Geophys. Res., 19, 12621–12642, https://doi.org/10.1002/2014JD022264, 2014.
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–231, https://doi.org/10.1038/nature01092, 2002.
Avila, F. B., Pitman, A. J., Donat, M. G., Alexander, L. V., and Abramowitz, G.: Climate model simulated changes in temperature extremes due to land cover change, J. Geophys. Res., 117, D04108, https://doi.org/10.1029/2011JD016382, 2012.
Behera, S. K., Krishnan, R., and Yamagata, T.: Unusual ocean atmosphere conditions in the tropical Indian ocean during 1994, Geophys. Res. Lett., 26, 3001–3004, https://doi.org/10.1029/1999GL010434, 1999.
Bonan, G. B., Oleson, K. W., Vertenstein, M., Levis, S., Zeng, X., Dai, Y., Dickinson, R. E., and Yang, Z.-L.: The land surface climatology of the community land model coupled to the NCAR community climate model, J. Climate, 15, 3123–3149, https://doi.org/10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2, 2002.
Bounoua, L., DeFries, R., Collatz, G. J., Sellers, P., and Khan, H.: Effects of land cover conversion on surface climate, Climatic Change, 52, 29–64, 2002.
Chow, K. C., Cha, J. C. L., Pal, J. S., and Giorgi, F.: Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon, Geophys. Res. Lett., 32, L24709, https://doi.org/10.1029/2006GL028026, 2006.
Chowdary, J. S., John, N., and Gnanaseelan, C.: Interannual variability of surface air-temperature over India: impact of ENSO and Indian Ocean Sea surface temperature, Int. J. Climatol., 34, 416–429, https://doi.org/10.1002/joc.3695, 2013.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Bronnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worleyu, S. J.: Review article: the Twentieth Century Reanalysis Project, Q. J. Roy. Meteorol. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Davin, E. L. and De Noblet-Ducoudrè, N.: Climatic impact of global-scale deforestation: radiative versus nonradiative processes, J. Climate, 23, 97–112, 2010.
Dirmeyer, P. A.: The terrestrial segment of soil moisture-climate coupling, Geophys. Res. Lett., 38, L16702, https://doi.org/10.1029/2011GL048268, 2011.
Dirmeyer, P. A., Niyogi, D., de Noblet-Ducoudrè, N., Dickinson, R. E., and Snyder, P. K.: Editorial: impacts of land use change on climate, Int. J. Climatol., 30, 1905–1907, 2010.
Douglas, E. M., Niyogi, D., Frolking, S., Yeluripati, J. B., Pielke Sr., R. A., Vorosmarty, C. J., and Mohanty, U. C.: Change in moisture and energy fluxes due to agricultural land use and irrigation in the Indian monsoon belt, Geophys. Res. Lett., 33, L14403, https://doi.org/10.1029/2006GL026550, 2006.
Douglas, E. M., Beltran-Przekurat, A., Niyogi, D., Pielke Sr., R. A., and Vörösmarty, C., J.: The impact of agricultural intensification and irrigation on land-atmosphere interactions and Indian monsoon precipitation – A mesoscale modeling perspective, Global Planet. Change, 67, 117–128, https://doi.org/10.1016/j.gloplacha.2008.12.007, 2009.
Dutta, S. K., Das, S., Kar, S. C., Mohanty, U. C., and Joshi, P. C.: Impact of vegetation on the simulation of seasonal monsoon rainfall over the Indian subcontinent using a regional model, J. Earth Syst. Sci., 118, 413–440, 2009.
Elguindi, N., Bi, X., Giorgi, F., Nagarajan, B., Pal, J., Solmon, F., Rauscher, S., and Zakey, A.: RegCM version 4.0 User's Guide, ICTP, Trieste, Italy, available at: gforge.ictp.it/gf/download/docmanfileversion/6/253/UserGuide.pdf (last access: June 2015), 2010.
Feddema, J., Oleson, K., Bonan, G., Mearns, L., Washington, W., Meehl, G., and Nychka, D.: A comparison of a GCM response to historical anthropogenic land cover change and model sensitivity to uncertainty in present-day land cover representations, Clim. Dynam., 25, 581–609, https://doi.org/10.1007/s00382-005-0038-z, 2005.
Feser, F. and Barcikowska, M.: The influence of spectral nudging on typhoon formation in regional climate models, Environ. Res. Lett., 7, 014024, https://doi.org/10.1088/1748-9326/7/1/014024, 2012.
Feser, F., Rockel, B., von Storch, H., Winterfeldt, J., and Zahn, M.: Regional climate models add value to global model data: a review and selected examples, B. Am. Meteorol. Soc., 92, 1181–1192, https://doi.org/10.1175/2011BAMS3061.1, 2011.
Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G., and Vidale, P. L.: Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps, J. Geophys. Res., 108, 4124, https://doi.org/10.1029/2002JD002287, 2003.
Fritsch, J. M. and Chappell, C. F.: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization, J. Atmos. Sci., 37, 1722–1733, https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2, 1980.
Garratt, J. R.: Sensitivity of climate simulations to land-surface and atmospheric boundary layer treatments – a review, J. Climate, 6, 419–449, https://doi.org/10.1175/1520-0442(1993)006<0419:SOCSTL>2.0.CO;2, 1993.
Giorgi, F. and Bates, G. T.: The climatological skill of a regional model over complex terrain, Mon. Weather Rev., 117, 2325–2347, 1989.
Giorgi, F. and Mearns, L. O.: Introduction to special section: Regional climate modeling revisited, J. Geophys. Res., 104, 6335–6352, 1999.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U., Cozzini, S., Guttler, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A., Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.: RegCM4: model description and preliminary tests over multiple CORDEX domains, Clim. Res., 52, 7–29, https://doi.org/10.3354/cr01018, 2012.
Goldewijk, K. K.: Estimating global land use change over the past 300 years: the HYDE database, Global Biogeochem. Cy., 15, 417–433, 2001.
Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., and Xavier, P. K.: Increasing trend of extreme rain events over India in a warming environment, Science, 314, 1442–1445, https://doi.org/10.1126/science.1132027, 2006.
Grell, G. A.: Prognostic evaluation of assumptions used by cumulus parameterization, Mon. Weather. Rev., 121, 764–787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2, 1993.
Haerter, J. O. and Berg, P.: Unexpected rise in extreme precipitation caused by a shift in rain type?, Nat. Geosci., 2, 372–373, https://doi.org/10.1038/ngeo523, 2009.
Halder, S., Dirmeyer, P., and Saha, S. K.: Uncertainty in the mean and variability of Indian summer monsoon due to land atmosphere feedback in RegCM4, J. Geophys. Res., 120, 9437–9458, https://doi.org/10.1002/2015JD023101, 2015.
Holtslag, A. A. M., Bruijn, E. I. F. D., and Pan, H. L.: A high resolution air mass transformation model for short-range weather forecasting, Mon. Weather. Rev., 118, 1561–1575, https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2, 1999.
Hurtt, G. C., Frolking, S., Fearon, M., Moore, B., Shevliakova, E., Malyshev, S., Pacala, S., and Houghton, R.: The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands, Global Change Biol., 12, 1208–1229, https://doi.org/10.1111/j.1365-2486.2006.01150.x, 2006.
Jaswal, A. K., Rao, G. P., and De, U.: Spatial and temporal characteristics of evaporation trends over India during 1971–2000, Mausam, 59, 149–158, 2008.
Jaswal, A. K., Rao, P. C. S., and Singh, V.: Climatology and trends of summer high temperature days in India during 1969–2013, J. Earth Syst. Sci., 124, 1–15, 2015.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–470, 1996.
Kang, I.-S., Yang, Y. M., and Tao, W. K.: GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency, Clim. Dynam., 45, 325–335, https://doi.org/10.1007/s00382-014-2376-1, 2014.
Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Briegleb, B. P., Williamson, D. L., and Rasch, P. J.: Description of the NCAR Community Climate Model (CCM3), Tech. Rep. NCAR/TN-420+STR, NCAR, Boulder, Colorado, USA, 152 pp., 1996.
Kishtawal, C., Niyogi, D., Tewari, M., Pielke Sr., R. A., and Shepherd, M.: Urbanization signature in the observed heavy rainfall climatology over India, Int. J. Climatol., 30, 1908–1916, https://doi.org/10.1002/joc.2044, 2009.
Koster, R. D., Suarez, M. J., and Heiser, M.: Variance and predictability of precipitation at seasonal-to-interannual timescales, J. Hydrometeorol., 1, 26–46, https://doi.org/10.1175/1525-7541(2000)001<0026:VAPOPA>2.0.CO;2, 2000.
Kothawale, D. R. and Rupa Kumar, K.: On the recent changes in surface temperature trends over India, Geophys. Res. Lett., 32, L18714, https://doi.org/10.1029/2005GL023528, 2005.
Kothawale, D. R., Munot, A. A., and Kumar, K. K.: Surface air temperature variability over India during 1901–2007, and its association with ENSO, Clim. Res., 42, 89–104, https://doi.org/10.3354/cr00857, 2010.
Krishnan, R. and Ramanathan, V.: Evidence of surface cooling from absorbing aerosols, Geophys. Res. Lett., 29, 89–104, https://doi.org/10.1029/2002GL014687, 2002.
Krishnan, R., Sabin, T. P., Vellore, R., Mujumdar, M., Sanjay, J., Goswami, B. N., Hourdin, F., Dufresne, J. -L., and Terray, P.: Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world, Clim. Dynam., 1–21, https://doi.org/10.1007/s00382-015-2886-5, 2015.
Laprise, R., de Elía, R., Caya, D., Biner, S., Lucas-Picher, P., Diaconescu, E., Leduc, M., Alexandru, A., and Separovic, L.: Challenging some tenets of regional climate modeling, Meteorol. Atmos. Phys., 100, 3–22, 2008.
Lawrence, P. J. and Chase, T. N.: Investigating the climate impacts of global land cover change in the community climate system model, Int. J. Climatol., 30, 2066–2087, https://doi.org/10.1002/joc.2061, 2010.
Leduc, M. and Laprise, R.: Regional climate model sensitivity to domain size, Clim. Dynam., 32, 833–854, 2009.
Lee, E., Chase, T. N., Rajagopalan, B., Barry, R. G., Biggs, T. W., and Lawrence, P. J.: Effects of irrigation and vegetation activity on early Indian summer monsoon variability, Int. J. Climatol., 29, 573–581, https://doi.org/10.1002/joc.1721, 2009.
Lei, M., Niyogi, D., Kishtawal, C., Pielke Sr., R. A., Beltrán-Przekurat, A., Nobis, T. E., and Vaidya, S. S.: Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India, Atmos. Chem. Phys., 8, 5975–5995, https://doi.org/10.5194/acp-8-5975-2008, 2008.
Lohar, D. and Pal, B.: The effect of irrigation on premonsoon season over South West Bengal, India, J. Climate, 8, 2567–2570, https://doi.org/10.1175/1520-0442(1995)008<2567:TEOIOP>2.0.CO;2, 1995.
Mahmood, R., Pielke Sr., R. A., Hubbard, K., Niyogi, D., Dirmeyer, P., McAlpine, C., Carleton, A., Hale, R., Gameda, S., Beltran-Przekurat, A., Baker, B., McNider, R., Legates, D. R., Shepherd, M., Du, J., Blanken, P., Frauenfeld, O. W., Nair, U. S., and Fall, S.: Land cover changes and their biogeophysical effects on climate, Int. J. Climatol., 34, 929–953, 2014.
Nayak, S. and Mandal, M.: Impact of land-use and land-cover changes on temperature trends over Western India, Curr. Sci. India, 102, 1166–1173, 2012.
Niranjan, Kumar, K., Rajeevan, M., Pai, D. S., Srivastava, A. K., and Preethi, B.: On the observed variability of monsoon droughts over India, Weather Clim. Extr., 1, 42–50, https://doi.org/10.1016/j.wace.2013.07.006, 2013.
Niyogi, D., Chang, H. -I., Chen, F., Gu, L., Kumar, A., Menon, S., and Pielke Sr., R., A.: Potential impacts of aerosol-land-atmosphere interactions on the Indian monsoonal rainfall characteristics, Natural Hazards, Special Issue on Monsoons, Invited Contrib., 42, 345–359, https://doi.org/10.1007/s11069-006-9085-y, 2007.
Niyogi, D., Kishtawal, C. M., Tripathi, S., and Govindaraju, R. S.: Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall, Water Resour. Res., 46, W03533, https://doi.org/10.1029/2008WR007082, 2010.
Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stockli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T.: Improvements to the Community Land Model and their impact on the hydrological cycle, J. Geophys. Res., 113, G01021, https://doi.org/10.1029/2007JG000563, 2008.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J. F., Mahowald, N., Niu, G. Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stockli, R., Wang, A., Yang, Z. L., Zeng, X., and Zeng, X.: Technical description of version 4.0 of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-387+STR, NCAR, Boulder, Colorado, USA, 257 pp., 2010.
Pai, D. S. and Sridhar, L.: Long term trends in the extreme rainfall events over India, in: High-Impact Weather Events over the SAARC Region, edited by: Ray, K., Mohapatra, M., Bandyopadhyay, B. K., and Rathore, L. S., Springer International Publishing, Cham, Switzerland with Capital Publishing Company, New Delhi, India, 229–240, 2015.
Pai, D. S., Nair, S. A., and Ramanathan, A. N.: Long term climatology and trends of heat waves over India during the recent 50 years (1961–2010), Mausam, 64, 585–604, 2013.
Panda, D. K. and Kumar, A.: The changing characteristics of monsoon rainfall in India during 1971–2005 and links with large scale circulation, Int. J. Climatol., 3881–3899, https://doi.org/10.1002/joc.3948, 2014.
Pielke Sr., R. A.: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall, Rev. Geophys., 39, 151–177, https://doi.org/10.1029/1999RG000072, 2001.
Pielke Sr., R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., Goldewijk, K. K., Nair, U., Betts, R., Fall, S., Reichstein, M., Kabat, P., and de Noblet, N.: Land use/land cover changes and climate: modeling analysis and observational evidence, WIREs Climate Change, 2, 828–850, https://doi.org/10.1002/wcc.144, 2011.
Pitman, A. J., de Noblet-Ducoudré, N., Avila, F. B., Alexander, L. V., Boisier, J.-P., Brovkin, V., Delire, C., Cruz, F., Donat, M. G., Gayler, V., van den Hurk, B., Reick, C., and Voldoire, A.: Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations, Earth Syst. Dynam., 3, 213–231, https://doi.org/10.5194/esd-3-213-2012, 2012.
Rajeevan, M., Bhate, J., Kale, J. D., and Lal, B.: High resolution daily gridded rainfall data for Indian region: analysis of break and active monsoon spells, Curr. Sci. India, 9, 296–306, 2006.
Rajeevan, M., Bhate, J., and Jaswal, A. K.: Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data, Geophys. Res. Lett., 35, L18707, https://doi.org/10.1029/2008GL035143, 2008.
Ramankutty, N. and Foley, J. A.: Estimating historical changes in global land cover: croplands from 1700 to 1992, Global Biogeochem. Cy., 13, 997–1027, https://doi.org/10.1029/1999GB900046, 1999.
Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J. A.: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000, Global Biogeochem. Cy., 22, GB1003, https://doi.org/10.1029/2007GB002952, 2008.
Ratnam, J. V., Giorgi, F., Kaginalkar, A., and Cozzini, S.: Simulation of the Indian monsoon using the RegCM3-ROMS regional coupled model, Clim. Dynam., 33, 119–139, https://doi.org/10.1007/s00382-008-0433-3, 2009.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Roxy, K. M., Kapoor, R., Terray, P., Murtugudde, R., Ashok, K., and Goswami, B. N.: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient, Nat. Commun., 6, 7423, https://doi.org/10.1038/ncomms8423, 2015.
Saeed, F., Hagemann, S., and Jacob, D.: Impact of irrigation on the South Asian summer monsoon, Geophys. Res. Lett., 36, L20711, https://doi.org/10.1029/2009GL040625, 2009.
Saha, S. K., Halder, S., Kumar, K. K., and Goswami, B. N.: Pre-onset land surface processes and “internal” interannual variabilities of the Indian summer monsoon, Clim. Dynam., 36, 2077–2089, https://doi.org/10.1029/2011JD017291, 2011.
Saha, S. K., Halder, S., Rao, A. S., and Goswami, B. N.: Modulation of ISOs by land–atmosphere feedback and contribution to the interannual variability of Indian summer monsoon, J. Geophys. Res., 117, D1301, https://doi.org/10.1029/2011JD017291, 2012.
Sampaio, G., Nobre, C. A., Costa, M. H., Satyamurty, P., Soares-Filho, B. S., and Cardoso, M.: Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion, Geophy. Res. Let., 34, L17709, https://doi.org/10.1029/2007GL030612, 2007.
Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and their impacts on the natural physical environment, in: SREX: Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 109–230, 2012.
Sen Roy, S., Mahmood, R., Niyogi, D., Lei, M., Foster, S. A., Hubbard, K. G., Douglas, E. M., and Pielke Sr., R. A.: Impacts of the agricultural Green Revolution induced land use changes on air temperatures in India, J. Geophys. Res., 112, D21108, https://doi.org/10.1029/2007JD008834, 2007.
Sen Roy, S., Mahmood, R., Quintanar, A. I., and Gonzalez, A.: Impacts of irrigation on dry season precipitation in India, Theor. Appl. Climatol., 104, 193–207, https://doi.org/10.1007/s00704-010-0338-z, 2011.
Sheikh, M. M., Manzoor, N., Ashraf, J., Adnan, M., Collins, D., Hameed, S., Manton, M. J., Ahmed, A. U., Baidya, S. K., Borgaonkar, H. P., Islam, N., Jayasinghearachchi, D., Kothawale, D. R., Premalal, K. H. M. S., Revadekar, J. V., and Shrestha, M. L: Trends in extreme daily rainfall and temperature indices over South Asia, Int. J. Climatol., 35, 1625–1637, https://doi.org/10.1002/joc.4081, 2014.
Shkol'nik, I., Meleshko, V., Efimov, S., and Stafeeva, E.: Changes in climate extremes on the territory of Siberia by the middle of the 21st century: an ansemble forecast based on the MGO Regional Climate Model, Russ. Meteorol. Hydrol., 37, 71–84, 2012.
Singh, D., Tsiang, M., Rajaratnam, B., and Diffenbaugh, N. S.: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season, Nat. Clim. Change, 4, 456–461, https://doi.org/10.1038/nclimate2208, 2014.
Snyder, P. K.: The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections, Earth Interact., 14, 1–32, https://doi.org/10.1175/2010EI280.1, 2010.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L. (Eds.): Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, 996 pp., 2007.
Srinivasan, J. and Smith, G. L.: The role of heat fluxes and moist static energy in tropical convergence zones, Mon. Weather Rev., 124, 2089–2099, https://doi.org/10.1175/1520-0493(1996)124<2089:TROHFA>2.0.CO;2, 1996.
Srivastava, A. K., Rajeevan, M., and Kshirsagar, S. R.: Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region, Atmos. Sci. Lett., 10, 249–254, https://doi.org/10.1002/asl.232, 2009.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp., 2013.
Stockli, R., Lawrence, D. M., Niu, G. Y., Oleson, K. W., Thornton, P. E., Yang, Z. L., Bonan, G. B., Denning, A. S., and Running, S. W.: Use of FLUXNET in the Community Land Model development, J. Geophys. Res., 113, G01025, https://doi.org/10.1029/2007JG000562, 2008.
Sud, Y., Shukla, J., and Mintz, Y.: Influence of land surface roughness on atmospheric circulation and precipitation: a sensitivity study with a general circulation model, J. Appl. Meteorol., 27, 1036–1054, https://doi.org/10.1175/1520-0450(1988)027<1036:IOLSRO>2.0.CO;2, 1998.
Takata, K., Saito, K., and Yasunari, T.: Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation, P. Natl. Acad. Sci. USA, 106, 9586–9589, https://doi.org/10.1073/pnas.0807346106, 2009.
Tian, H., Banger, K., Bo, T., and Dadhwal, V. K.: History of land use in India during 1880–2010: large-scale land transfprmations reconstructed from satellite data and historical archives, Global Planet. Change, 121, 76–88, https://doi.org/10.1016/j.gloplacha.2014.07.005, 2014.
Tuinenburg, O. A., Hutjes, R. W. A., Jacobs, C. M. J., and Kabat, P.: Diagnosis of local land–atmosphere feedbacks in India, J. Climate, 24, 251–266, https://doi.org/10.1175/2010JCLI3779.1, 2011.
Wang, B., Ding, Q., and Joseph, P. V.: Objective definition of the Indian Summer Monsoon onset, J. Climate, 22, 3303–3316, https://doi.org/10.1175/2008JCLI2675.1, 2009.
Xavier, P. K., Marzin, C., and Goswami, B. N.: An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship, Q. J. Roy. Meteorol. Soc., 133, 749–764, https://doi.org/10.1002/qj.45, 2007.
Xue, Y., Janjic, Z., Dudhia, J., Vasic, R., and De Sales, F.: A review on regional dynamical downscaling on intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability, Atmos. Res., 147–148, 68–85, 2014.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges, B. Am. Meteorol. Soc., 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.
Zeng, X. and Beljaars, A.: A prognostic scheme of sea surface skin temperature for modeling and data assimilation, Geophys. Res. Lett., 32, L14605, https://doi.org/10.1029/2005GL023030, 2005.
Zeng, X., Shaikh, M., Dai, Y., Dickinson, R. E., and Myneni, R.: Coupling of the Common Land Model to the NCAR Community Climate Model, J. Climate, 15, 1832–1854, 2002.
Short summary
Regional climate model (RegCM4) simulations demonstrate that part of the observed decrease in moderate rainfall events during the summer monsoon season over central India from 1951 to 2005 is attributed to anthropogenically induced land-use land-cover change (LULCC). LULCC also partly explains the observed warming trend in the daily mean and maximum temperatures over India. This study demonstrates the importance of LULCC in the context of regional climate change over India.
Regional climate model (RegCM4) simulations demonstrate that part of the observed decrease in...