Articles | Volume 20, issue 3
https://doi.org/10.5194/hess-20-1241-2016
https://doi.org/10.5194/hess-20-1241-2016
Research article
 | 
29 Mar 2016
Research article |  | 29 Mar 2016

Modeling the distributed effects of forest thinning on the long-term water balance and streamflow extremes for a semi-arid basin in the southwestern US

Hernan A. Moreno, Hoshin V. Gupta, Dave D. White, and David A. Sampson

Related authors

Can discharge be used to inversely correct precipitation?
Ashish Manoj J, Ralf Loritz, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-375,https://doi.org/10.5194/hess-2024-375, 2024
Revised manuscript under review for HESS
Short summary
Toward interpretable LSTM-based modeling of hydrological systems
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024,https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Towards Interpretable LSTM-based Modelling of Hydrological Systems
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura E. Condon
EGUsphere, https://doi.org/10.5194/egusphere-2023-666,https://doi.org/10.5194/egusphere-2023-666, 2023
Preprint archived
Short summary
Deep learning rainfall–runoff predictions of extreme events
Jonathan M. Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shalev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022,https://doi.org/10.5194/hess-26-3377-2022, 2022
Short summary
A universal multifractal approach to assessment of spatiotemporal extreme precipitation over the Loess Plateau of China
Jianjun Zhang, Guangyao Gao, Bojie Fu, Cong Wang, Hoshin V. Gupta, Xiaoping Zhang, and Rui Li
Hydrol. Earth Syst. Sci., 24, 809–826, https://doi.org/10.5194/hess-24-809-2020,https://doi.org/10.5194/hess-24-809-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Extended-range forecasting of stream water temperature with deep-learning models
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025,https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025,https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Projections of streamflow intermittence under climate change in European drying river networks
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025,https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary

Cited articles

Allen, C. D., Savage, M., Falk, D. A., Suckling, K. F., Swetnam, T. W., Schulke, T., Stacey, P. B., Morgan, P., Hoffman, M., and Klingel, J. T.: Ecological restoration of Southwestern ponderosa pine ecosystems: A broad perspective, Ecol. Appl., 12, 1418–1433, 2002.
Arizona Department of Water Resources: Arizona Water Atlas, State of Arizona, http://www.azwater.gov/AzDWR/StatewidePlanning/WaterAtlas/ (last access: February 2016), 2010.
Armstrong, A.: Increase in Ponderosa pine density in the Nebraska sandhills: Impacts on grassland plant diversity and productivity, University of Nebraska Thesis, 2012.
Baker, M. B.: Changes in streamflow in an herbicide-treated pinyon-juniper watershed in Arizona, Water Resour. Res., 20, 1639–1642, 1984.
Baker, M. M. B.: Effects of Ponderosa Pine Treatments on Water Yield in Arizona, Water Resour. Res., 22, 67–73, 1986.
Download
Short summary
We use a distributed hydrologic model to document the potential impacts of a forest restoration project on the mean and extreme hydrologic conditions on a water-supply, semi-arid basin. Results show shifts in spatio-temporal patterns of interception, soil moisture, evapotranspiration, snow persistence and runoff production differently in contrasting aspect slopes. Forest thinning leads to net loss of surface water storage and to a less regulated runoff response during hydrologic extremes.
Share