Articles | Volume 19, issue 1
https://doi.org/10.5194/hess-19-361-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-361-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation
T. A. McMahon
Department of Infrastructure Engineering, University of Melbourne, Victoria, 3010, Australia
Department of Infrastructure Engineering, University of Melbourne, Victoria, 3010, Australia
D. J. Karoly
School of Earth Sciences and ARC Centre of Excellence for Climate System Science, University of Melbourne, Victoria, 3010, Australia
Related authors
M. C. Peel, R. Srikanthan, T. A. McMahon, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 1615–1639, https://doi.org/10.5194/hess-19-1615-2015, https://doi.org/10.5194/hess-19-1615-2015, 2015
Short summary
Short summary
We present a proof-of-concept approximation of within-GCM uncertainty using non-stationary stochastic replicates of monthly precipitation and temperature projections and investigate the impact of within-GCM uncertainty on projected runoff and reservoir yield. Amplification of within-GCM variability from precipitation to runoff to reservoir yield suggests climate change impact assessments ignoring within-GCM uncertainty would provide water resources managers with an unjustified sense of certainty
T. A. McMahon, M. C. Peel, and J. Szilagyi
Hydrol. Earth Syst. Sci., 17, 4865–4867, https://doi.org/10.5194/hess-17-4865-2013, https://doi.org/10.5194/hess-17-4865-2013, 2013
T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar
Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, https://doi.org/10.5194/hess-17-1331-2013, 2013
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Wouter J. M. Knoben, Jim E. Freer, Keirnan J. A. Fowler, Murray C. Peel, and Ross A. Woods
Geosci. Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-2463-2019, https://doi.org/10.5194/gmd-12-2463-2019, 2019
Short summary
Short summary
Computer models are used to predict river flows. A good model should represent the river basin to which it is applied so that flow predictions are as realistic as possible. However, many different computer models exist, and selecting the most appropriate model for a given river basin is not always easy. This study combines computer code for 46 different hydrological models into a single coding framework so that models can be compared in an objective way and we can learn about model differences.
Kane A. Stone, Olaf Morgenstern, David J. Karoly, Andrew R. Klekociuk, W. John French, N. Luke Abraham, and Robyn Schofield
Atmos. Chem. Phys., 16, 2401–2415, https://doi.org/10.5194/acp-16-2401-2016, https://doi.org/10.5194/acp-16-2401-2016, 2016
Short summary
Short summary
This paper describes the set-up and evaluation of the Australian Community Climate and Earth System Simulator – chemistry-climate model.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
Z. K. Tesemma, Y. Wei, M. C. Peel, and A. W. Western
Hydrol. Earth Syst. Sci., 19, 2821–2836, https://doi.org/10.5194/hess-19-2821-2015, https://doi.org/10.5194/hess-19-2821-2015, 2015
M. C. Peel, R. Srikanthan, T. A. McMahon, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 1615–1639, https://doi.org/10.5194/hess-19-1615-2015, https://doi.org/10.5194/hess-19-1615-2015, 2015
Short summary
Short summary
We present a proof-of-concept approximation of within-GCM uncertainty using non-stationary stochastic replicates of monthly precipitation and temperature projections and investigate the impact of within-GCM uncertainty on projected runoff and reservoir yield. Amplification of within-GCM variability from precipitation to runoff to reservoir yield suggests climate change impact assessments ignoring within-GCM uncertainty would provide water resources managers with an unjustified sense of certainty
Z. K. Tesemma, Y. Wei, M. C. Peel, and A. W. Western
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-10515-2014, https://doi.org/10.5194/hessd-11-10515-2014, 2014
Revised manuscript not accepted
T. A. McMahon, M. C. Peel, and J. Szilagyi
Hydrol. Earth Syst. Sci., 17, 4865–4867, https://doi.org/10.5194/hess-17-4865-2013, https://doi.org/10.5194/hess-17-4865-2013, 2013
T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar
Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, https://doi.org/10.5194/hess-17-1331-2013, 2013
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Uncertainty analysis
Actionable human–water system modelling under uncertainty
Robust multi-objective optimization under multiple uncertainties using the CM-ROPAR approach: case study of water resources allocation in the Huaihe River basin
Evaluating the impact of post-processing medium-range ensemble streamflow forecasts from the European Flood Awareness System
Coupled effects of observation and parameter uncertainty on urban groundwater infrastructure decisions
Disentangling sources of future uncertainties for water management in sub-Saharan river basins
Possibilistic response surfaces: incorporating fuzzy thresholds into bottom-up flood vulnerability analysis
Future hot-spots for hydro-hazards in Great Britain: a probabilistic assessment
Evaluation of impacts of future climate change and water use scenarios on regional hydrology
Planning for climate change impacts on hydropower in the Far North
Describing the interannual variability of precipitation with the derived distribution approach: effects of record length and resolution
Dissolved oxygen prediction using a possibility theory based fuzzy neural network
Projected changes in US rainfall erosivity
Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data
Robust global sensitivity analysis of a river management model to assess nonlinear and interaction effects
Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin
Irrigation efficiency and water-policy implications for river basin resilience
On an improved sub-regional water resources management representation for integration into earth system models
Statistical analysis of error propagation from radar rainfall to hydrological models
The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin
Prioritization of water management under climate change and urbanization using multi-criteria decision making methods
Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications
Laura Gil-García, Nazaret M. Montilla-López, Carlos Gutiérrez-Martín, Ángel Sánchez-Daniel, Pablo Saiz-Santiago, Josué M. Polanco-Martínez, Julio Pindado, and Carlos Dionisio Pérez-Blanco
Hydrol. Earth Syst. Sci., 28, 4501–4520, https://doi.org/10.5194/hess-28-4501-2024, https://doi.org/10.5194/hess-28-4501-2024, 2024
Short summary
Short summary
This paper presents an interdisciplinary model for quantifying uncertainties in water allocation under climate change. It combines climate, hydrological, and microeconomic experiments with a decision support system. Multi-model analyses reveal potential futures for water management policies, emphasizing non-linear climate responses. As illustrated in the Douro River basin, minor water allocation changes have significant economic impacts, stresssing the need for adaptation strategies.
Jitao Zhang, Dimitri Solomatine, and Zengchuan Dong
Hydrol. Earth Syst. Sci., 28, 3739–3753, https://doi.org/10.5194/hess-28-3739-2024, https://doi.org/10.5194/hess-28-3739-2024, 2024
Short summary
Short summary
Faced with the problem of uncertainty in the field of water resources management, this paper proposes the Copula Multi-objective Robust Optimization and Probabilistic Analysis of Robustness (CM-ROPAR) approach to obtain robust water allocation schemes based on the uncertainty of drought and wet encounters and the uncertainty of inflow. We believe that this research article not only highlights the significance of the CM-ROPAR approach but also provides a new concept for uncertainty analysis.
Gwyneth Matthews, Christopher Barnard, Hannah Cloke, Sarah L. Dance, Toni Jurlina, Cinzia Mazzetti, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 2939–2968, https://doi.org/10.5194/hess-26-2939-2022, https://doi.org/10.5194/hess-26-2939-2022, 2022
Short summary
Short summary
The European Flood Awareness System creates flood forecasts for up to 15 d in the future for the whole of Europe which are made available to local authorities. These forecasts can be erroneous because the weather forecasts include errors or because the hydrological model used does not represent the flow in the rivers correctly. We found that, by using recent observations and a model trained with past observations and forecasts, the real-time forecast can be corrected, thus becoming more useful.
Marina R. L. Mautner, Laura Foglia, and Jonathan D. Herman
Hydrol. Earth Syst. Sci., 26, 1319–1340, https://doi.org/10.5194/hess-26-1319-2022, https://doi.org/10.5194/hess-26-1319-2022, 2022
Short summary
Short summary
Sensitivity analysis can be harnessed to evaluate effects of model uncertainties on planning outcomes. This study explores how observation and parameter uncertainty propagate through a hydrogeologic model to influence the ranking of decision alternatives. Using global sensitivity analysis and evaluation of aquifer management objectives, we evaluate how physical properties of the model and choice of observations for calibration can lead to variations in decision-relevant model outputs.
Alessandro Amaranto, Dinis Juizo, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 26, 245–263, https://doi.org/10.5194/hess-26-245-2022, https://doi.org/10.5194/hess-26-245-2022, 2022
Short summary
Short summary
This study aims at designing water supply strategies that are robust against climate, social, and land use changes in a sub-Saharan river basin. We found that robustness analysis supports the discovery of policies enhancing the resilience of water resources systems, benefiting the agricultural, energy, and urban sectors. We show how energy sustainability is affected by water availability, while urban and irrigation resilience also depends on infrastructural interventions and land use changes.
Thibaut Lachaut and Amaury Tilmant
Hydrol. Earth Syst. Sci., 25, 6421–6435, https://doi.org/10.5194/hess-25-6421-2021, https://doi.org/10.5194/hess-25-6421-2021, 2021
Short summary
Short summary
Response surfaces are increasingly used to identify the hydroclimatic conditions leading to a water resources system's failure. Partitioning the surface usually requires performance thresholds that are not necessarily crisp. We propose a methodology that combines the inherent uncertainty of response surfaces with the ambiguity of performance thresholds. The proposed methodology is illustrated with a multireservoir system in Canada for which some performance thresholds are imprecise.
Lila Collet, Shaun Harrigan, Christel Prudhomme, Giuseppe Formetta, and Lindsay Beevers
Hydrol. Earth Syst. Sci., 22, 5387–5401, https://doi.org/10.5194/hess-22-5387-2018, https://doi.org/10.5194/hess-22-5387-2018, 2018
Short summary
Short summary
Floods and droughts cause significant damages and pose risks to lives worldwide. In a climate change context this work identifies hotspots across Great Britain, i.e. places expected to be impacted by an increase in floods and droughts. By the 2080s the western coast of England and Wales and northeastern Scotland would experience more floods in winter and droughts in autumn, with a higher increase in drought hazard, showing a need to adapt water management policies in light of climate change.
Seungwoo Chang, Wendy Graham, Jeffrey Geurink, Nisai Wanakule, and Tirusew Asefa
Hydrol. Earth Syst. Sci., 22, 4793–4813, https://doi.org/10.5194/hess-22-4793-2018, https://doi.org/10.5194/hess-22-4793-2018, 2018
Short summary
Short summary
It is important to understand potential impacts of climate change and human water use on streamflow and groundwater levels. This study used climate models with an integrated hydrologic model to project future streamflow and groundwater level in Tampa Bay for a variety of future water use scenarios. Impacts of different climate projections on streamflow were found to be much stronger than the impacts of different human water use scenarios, but both were significant for groundwater projection.
Jessica E. Cherry, Corrie Knapp, Sarah Trainor, Andrea J. Ray, Molly Tedesche, and Susan Walker
Hydrol. Earth Syst. Sci., 21, 133–151, https://doi.org/10.5194/hess-21-133-2017, https://doi.org/10.5194/hess-21-133-2017, 2017
Short summary
Short summary
We know that climate is changing quickly in the Far North (the Arctic and sub-Arctic). Hydropower continues to grow in this region because water resources are perceived to be plentiful. However, with changes in glacier extent and permafrost, and more extreme events, will those resources prove reliable into the future? This study amasses the evidence that quantitative hydrology modeling and uncertainty assessment have matured to the point where they should be used in water resource planning.
Claudio I. Meier, Jorge Sebastián Moraga, Geri Pranzini, and Peter Molnar
Hydrol. Earth Syst. Sci., 20, 4177–4190, https://doi.org/10.5194/hess-20-4177-2016, https://doi.org/10.5194/hess-20-4177-2016, 2016
Short summary
Short summary
We show that the derived distribution approach is able to characterize the interannual variability of precipitation much better than fitting a probabilistic model to annual rainfall totals, as long as continuously gauged data are available. The method is a useful tool for describing temporal changes in the distribution of annual rainfall, as it works for records as short as 5 years, and therefore does not require any stationarity assumption over long periods.
Usman T. Khan and Caterina Valeo
Hydrol. Earth Syst. Sci., 20, 2267–2293, https://doi.org/10.5194/hess-20-2267-2016, https://doi.org/10.5194/hess-20-2267-2016, 2016
Short summary
Short summary
This paper contains a new two-step method to construct fuzzy numbers using observational data. In addition an existing fuzzy neural network is modified to account for fuzzy number inputs. This is combined with possibility-theory based intervals to train the network. Furthermore, model output and a defuzzification technique is used to estimate the risk of low Dissolved Oxygen so that water resource managers can implement strategies to prevent the occurrence of low Dissolved Oxygen.
M. Biasutti and R. Seager
Hydrol. Earth Syst. Sci., 19, 2945–2961, https://doi.org/10.5194/hess-19-2945-2015, https://doi.org/10.5194/hess-19-2945-2015, 2015
Short summary
Short summary
We estimate future changes in US erosivity from the most recent ensemble projections of daily and monthly rainfall accumulation. The expectation of overall increase in erosivity is confirmed by these calculations, but a quantitative assessment is marred by large uncertainties. Specifically, the uncertainty in the method of estimation of erosivity is more consequential than that deriving from the spread in climate simulations, and leads to changes of uncertain sign in parts of the south.
M. C. Peel, R. Srikanthan, T. A. McMahon, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 1615–1639, https://doi.org/10.5194/hess-19-1615-2015, https://doi.org/10.5194/hess-19-1615-2015, 2015
Short summary
Short summary
We present a proof-of-concept approximation of within-GCM uncertainty using non-stationary stochastic replicates of monthly precipitation and temperature projections and investigate the impact of within-GCM uncertainty on projected runoff and reservoir yield. Amplification of within-GCM variability from precipitation to runoff to reservoir yield suggests climate change impact assessments ignoring within-GCM uncertainty would provide water resources managers with an unjustified sense of certainty
L. J. M. Peeters, G. M. Podger, T. Smith, T. Pickett, R. H. Bark, and S. M. Cuddy
Hydrol. Earth Syst. Sci., 18, 3777–3785, https://doi.org/10.5194/hess-18-3777-2014, https://doi.org/10.5194/hess-18-3777-2014, 2014
L. Zhuo, M. M. Mekonnen, and A. Y. Hoekstra
Hydrol. Earth Syst. Sci., 18, 2219–2234, https://doi.org/10.5194/hess-18-2219-2014, https://doi.org/10.5194/hess-18-2219-2014, 2014
C. A. Scott, S. Vicuña, I. Blanco-Gutiérrez, F. Meza, and C. Varela-Ortega
Hydrol. Earth Syst. Sci., 18, 1339–1348, https://doi.org/10.5194/hess-18-1339-2014, https://doi.org/10.5194/hess-18-1339-2014, 2014
N. Voisin, H. Li, D. Ward, M. Huang, M. Wigmosta, and L. R. Leung
Hydrol. Earth Syst. Sci., 17, 3605–3622, https://doi.org/10.5194/hess-17-3605-2013, https://doi.org/10.5194/hess-17-3605-2013, 2013
D. Zhu, D. Z. Peng, and I. D. Cluckie
Hydrol. Earth Syst. Sci., 17, 1445–1453, https://doi.org/10.5194/hess-17-1445-2013, https://doi.org/10.5194/hess-17-1445-2013, 2013
B. L. Harding, A. W. Wood, and J. R. Prairie
Hydrol. Earth Syst. Sci., 16, 3989–4007, https://doi.org/10.5194/hess-16-3989-2012, https://doi.org/10.5194/hess-16-3989-2012, 2012
J.-S. Yang, E.-S. Chung, S.-U. Kim, and T.-W. Kim
Hydrol. Earth Syst. Sci., 16, 801–814, https://doi.org/10.5194/hess-16-801-2012, https://doi.org/10.5194/hess-16-801-2012, 2012
S. Quiroga, Z. Fernández-Haddad, and A. Iglesias
Hydrol. Earth Syst. Sci., 15, 505–518, https://doi.org/10.5194/hess-15-505-2011, https://doi.org/10.5194/hess-15-505-2011, 2011
Cited articles
Boer, G. J. and Lambert, S. J.: Second order space–time climate difference statistics, Clim. Dynam., 17, 213–218, 2001.
Bonsal, B. T. and Prowse, T. D.: Regional assessment of GCM-simulated current climate over Northern Canada, Arctic, 59, 115–128, 2006.
Charles, S. P., Bari, M. A., Kitsios, A., and Bates, B. C.: Effect of GCM bias on downscaled precipitation and runoff projections for the Serpentine catchment, Western Australia, Int. J. Climatol., 27, 1673–1690, 2007.
Chervin, R. M.: On the Comparison of Observed and GCM Simulated Climate Ensembles, J. Atmos. Sci., 38, 885–901, 1981.
Chiew, F. H. S. and McMahon, T. A.: Modelling the impacts of climate change on Australian streamflow, Hydrol. Process., 16, 1235–1245, 2002.
Covey, C., Achutarao, K. M., Cubasch, U., Jones, P., Lambert S. J., Mann, M. E., Phillips, T. J., and Taylor, K. E.: An overview of results from the Coupled Model Intercomparison Project, Global Planet. Change, 37, 103–133, 2003.
Dessai, S., Lu, X., and Hulme, M.: Limited sensitivity analysis of regional climate change probabilities for the 21st century, J. Geophys. Res., 110, D19108, https://doi.org/10.1029/2005JD005919, 2005.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.: Evaluation of Climate Models, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Foody, G. M.: Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy, Photogramm. Eng. Remote S., 70, 627–633, 2004.
Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for climate models, J. Geophys. Res.-Atmos., 113, D06104, https://doi.org/10.1029/2007JD008972, 2008.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, 2009.
Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., and Piani, C.: Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models, J. Hydrometeorol. 12, 556–578, 2011.
Heo, K.-Y., Ha, K.-J., Yun, K.-S., Lee, S.-S., Kim, H.-J., and Wang, B.: Methods for uncertainty assessment of climate models and model predictions over East Asia, Int. J. Climatol., 34, 377–390, https://doi.org/10.1002/joc.2014.34.issue-2, 2014.
Johns, T. C., Durman, C. F., Banks, H. T., Roberts, M. J., Mclaren, A. J., Ridley, J. K., Senior, C. A., Williams, K. D., Jones, A., Rickard, G. J., Cusack, S., Ingram, W. J., Crucifix, M., Sexton, D. M. H., Joshi, M. M., Dong, B.-W., Spencer, H., Hill, R. S. R., Gregory, J. M., Keen, A. B., Pardaens, A. K., Lowe, J. A., Bodas-Salcedo, A., Stark, S., and Searl, Y.: The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations, J. Climate, 19, 1327–1353, 2006.
Johnson, F. M. and Sharma, A.: GCM simulations of a future climate: How does the skill of GCM precipitation simulations compare to temperature simulations, 18th World IMACS/MODSIM Congress, Cairns, Australia, 2009a.
Johnson, F. and Sharma, A.: Measurement of GCM skill in predicting variables relevant for hydroclimatological assessments, J. Climate, 22, 4373–4382, 2009b.
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges in combining projections from multiple climate models, J. Climate, 23, 2739–2758, 2010.
Knutti, R., Masson, D., and Gettelman, A.: Climate model genealogy: Generation CMIP5 and how we got there, Geophys. Res. Lett., 40, 1194–1199, 2013.
Lambert, S. J. and Boer, G. J.: CMIP1 evaluation and intercomparison of coupled climate models, Clim. Dynam., 17, 83–106, 2001.
Legates, D. R. and Willmott, C. J.: A comparison of GCM-simulated and observed mean January and July precipitation, Global Planet. Change, 5, 345–363, 1992.
Macadam, I., Pitman, A. J., Whetton, P. H., and Abramowitz, G.: Ranking climate models by performance using actual values and anomalies: Implications for climate change impact assessments, Geophys. Res. Lett., 37, L16704, https://doi.org/10.1029/2010GL043877, 2010.
MacLean, A.: Statistical evaluation of WATFLOOD (Ms), University of Waterloo, Ontario, Canada, 2005.
Maidment, D. R.: Handbook of Hydrology, McGraw-Hill Inc., New York, 1992.
Masson, D. and Knutti, R.: Spatial-scale dependence of climate model performance in the CMIP3 ensemble, J. Climate, 24, 2680-2692, 2011.
McMahon, T. A. and Adeloye, A. J.: Water Resources Yield, Water Resources Publications, CO, USA, 220 pp., 2005.
McMahon, T. A., Peel, M. C., Pegram, G. G. S., and Smith, I. N.: A simple methodology for estimating mean and variability of annual runoff and reservoir yield under present and future climates, J. Hydrometeorol., 12, 135–146, 2011.
Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., and Taylor, K. E.: The WCRP CMIP3 multi-model dataset: A new era in climate change research, B. Am. Meteorol. Soc., 88, 1383–1394, 2007.
Min, S.-K. and Hense, A.: A Bayesian approach to climate model evaluation and multi-model averaging with an application to global mean surface temperatures from IPCC AR4 coupled climate models, Geophys. Res. Lett., 33, L08708, https://doi.org/10.1029/2006GL025779, 2006.
Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M. J., and Stainforth, D. A.: Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430, 768–772, 2004.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models Part 1 – A discussion of principles, J. Hydrol., 10, 282–290, 1970.
New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of surface climate over global land areas, Clim. Res., 21, 1–25, 2002.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen–Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633-1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Peel, M. C., Srikanthan, R., McMahon, T. A., and Karoly, D. J.: Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of Global Climate Model data, Hydrol. Earth Syst. Sci. Discuss., under review, 2015.
Perkins, S. E., Pitman, A. J., Holbrook, N. J., and McAneney, J.: Evaluation of the AR4 climate models simulated daily maximum temperature, minimum temperature and precipitation over Australia using probability density functions, J. Climate, 20, 4356–4376, 2007.
Phillips, N. A.: The general circulation of atmosphere: a numerical experiment, Q. J. Roy. Meteorol. Soc., 82, 123–164, 1956.
Räisänen, J.: How reliable are climate models?, Tellus A, 59, 2–29, 2007.
Raju, K. S. and Kumar, D. N.: Ranking of global climate models for India using multicriterion analysis, Clim. Res., 60, 103–117, 2014.
Randall, R. A. and Wood, R. A. (Coordinating lead authors): Climate models and their evaluation. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change AR4, Chap. 8, 589–662, 2007.
Reichler, T. and Kim, J.: How well do coupled models simulate today's climate?, B. Am. Meteorol. Soc., 89, 303–311, 2008.
Reifen, C. and Toumi, R.: Climate projections: Past performance no guarantee of future skill?, Geophys. Res. Lett., 36, L13704, https://doi.org/10.1029/2009GL038082, 2009.
Shukla, J., DelSole, T., Fennessy, M., Kinter, J., and Paolino, D.: Climate model fidelity and projections of climate change, Geophys. Res. Lett., 33, L07702, https://doi.org/10.1029/2005GL025579, 2006.
Smith, I. and Chandler, E.: Refining rainfall projections for the Murray Darling Basin of south-east Australia – the effect of sampling model results based on performance, Clima. Change, 102, 377–393, 2010.
Stainforth, D. A., Allen, M. R., Tredger, E. R., and Smith, L. A.: Confidence, uncertainty and decision-support relevance in climate predictions, Philos. T. R. Soc. A, 365, 2145–2161, 2007.
Suppiah, R., Hennessy, K. L., Whetton, P. H., McInnes, K., Macadam, I., Bathols, J., Ricketts, J., and Page, C. M.: Australian climate change projections derived from simulations performed for IPCC 4th Assessment Reportm Aust. Met. Mag, 56, 131–152, 2007.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183–7192, 2001.
van Oldenborgh, G. J., Philip, S. Y., and Collins, M: El Niño in a changing climate: a multi-model study, Ocean Sci., 1, 81–95, https://doi.org/10.5194/os-1-81-2005, 2005.
Watterson, I. G.: Calculation of probability density functions for temperature and precipitation change under global warming, J. Geophys. Res., 113, D12106, https://doi.org/10.1029/2007JD009254, 2008.
Whetton, P., McInnes, K. L., Jones, R. J., Hennessy, K. J., Suppiah, R., Page, C. M., and Durack, P. J.: Australian Climate Change Projections for Impact Assessment and Policy Application: A Review, CSIRO Marine and Atmospheric Research Paper 001, available at: www.cmar.csiro.au/e-print/open/whettonph_2005a.pdf, 2005.
Xu, C. Y.: Climate change and hydrologic models: A review of existing gaps and recent research developments, Water Resour. Manag., 13, 369–382, 1999.
Short summary
Here we assess GCM performance from a hydrologic perspective. We identify five better performing CMIP3 GCMs that reproduce grid-scale climatological statistics of observed precipitation and temperature over global land regions for future hydrologic simulation. GCM performance in reproducing observed mean and standard deviation of annual precipitation, mean annual temperature and mean monthly precipitation and temperature was assessed and ranked, and five better performing GCMs were identified.
Here we assess GCM performance from a hydrologic perspective. We identify five better performing...