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Abstract. The objective of this paper is to identify better

performing Coupled Model Intercomparison Project phase 3

(CMIP3) global climate models (GCMs) that reproduce grid-

scale climatological statistics of observed precipitation and

temperature for input to hydrologic simulation over global

land regions. Current assessments are aimed mainly at exam-

ining the performance of GCMs from a climatology perspec-

tive and not from a hydrology standpoint. The performance

of each GCM in reproducing the precipitation and tempera-

ture statistics was ranked and better performing GCMs iden-

tified for later analyses. Observed global land surface precip-

itation and temperature data were drawn from the Climatic

Research Unit (CRU) 3.10 gridded data set and re-sampled

to the resolution of each GCM for comparison. Observed and

GCM-based estimates of mean and standard deviation of an-

nual precipitation, mean annual temperature, mean monthly

precipitation and temperature and Köppen–Geiger climate

type were compared. The main metrics for assessing GCM

performance were the Nash–Sutcliffe efficiency (NSE) index

and root mean square error (RMSE) between modelled and

observed long-term statistics. This information combined

with a literature review of the performance of the CMIP3

models identified the following better performing GCMs

from a hydrologic perspective: HadCM3 (Hadley Centre for

Climate Prediction and Research), MIROCm (Model for In-

terdisciplinary Research on Climate) (Center for Climate

System Research (The University of Tokyo), National Insti-

tute for Environmental Studies, and Frontier Research Cen-

ter for Global Change), MIUB (Meteorological Institute of

the University of Bonn, Meteorological Research Institute of

KMA, and Model and Data group), MPI (Max Planck Insti-

tute for Meteorology) and MRI (Japan Meteorological Re-

search Institute). The future response of these GCMs was

found to be representative of the 44 GCM ensemble mem-

bers which confirms that the selected GCMs are reasonably

representative of the range of future GCM projections.

1 Introduction

Our primary objective in this paper is to identify better per-

forming GCMs from a hydrologic perspective. To do this

we assess how well 22 global climate models (GCMs) from

the World Climate Research Programme’s (WCRP) Cou-

pled Model Intercomparison Project phase 3 (CMIP3) multi-

model data set (Meehl et al., 2007) are able to reproduce

GCM grid-scale climatological statistics of observed precip-

itation and temperature over global land regions. We recog-

nise that GCMs model different variables with a range of

success and that no single model is best for all variables

and/or for all regions (Lambert and Boer, 2001; Gleckler et

al., 2008). The approach adopted here is not inconsistent with

Dessai et al. (2005) who regarded the first step in evaluat-

ing GCM projection skill is to assess how well observed cli-

matology is simulated. We also recognise there have been

assessments published in peer-reviewed journals, but all ap-

pear to be assessed from a climate science perspective. This

review concentrates on GCM variables and statistical tech-

niques that are relevant to engineering hydrologic practice.

GCM runs for the observed period do not seek to repli-

cate the observed monthly record at any point in time and

space. Rather a better performing GCM is expected to pro-
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duce long-term mean annual statistics that are broadly simi-

lar to observed conditions across a wide range of locations.

Here, the assessment of CMIP3 GCMs is made by compar-

ing their long-term mean annual precipitation (MAP), stan-

dard deviation of annual precipitation (SDP), mean annual

temperature (MAT), mean monthly patterns of precipitation

and temperature and Köppen–Geiger climate type (Peel et

al., 2007) with concurrent observed data for 616 to 11 886

terrestrial grid cells worldwide (the number of grid cells de-

pends on the resolution of the GCM under consideration).

These variables were chosen to assess GCM performance

because they provide insight into the mean annual, inter-

annual variability and seasonality of precipitation and tem-

perature, which are sufficient to estimate the mean and vari-

ability of annual runoff from a traditional monthly rainfall–

runoff model (Chiew and McMahon, 2002) or from a top–

down annual rainfall–runoff model (McMahon et al., 2011)

for hydrologic simulation purposes.

The GCMs included in this assessment are detailed in Ta-

ble 1 (model acronyms adopted are listed in the table). Al-

though no quantitative assessment of the BCCR (Bjerknes

Centre for Climate Research) model is made, this model is

included in Table 1 as details of its performance are available

in the literature which is discussed in Sect. 2. Other details

in the table include the originating group for model devel-

opment, country of origin, model name given in the CMIP3

documentation (Meehl et al., 2007), the number of 20C3M

runs available for analysis, the model resolution and the num-

ber of terrestrial grid cells used in the precipitation and tem-

perature comparisons.

Readers should note that when this project began as a com-

ponent of a larger study in 2010, runs from the CMIP5 were

not available. We are of the view that the approach adopted

here is equally applicable to evaluating CMIP5 runs for hy-

drologic simulations. Conclusions about better performing

models drawn from this analysis may prove similar to a

comparable analysis of CMIP5 runs since most models in

CMIP5 are, according to Knutti et al. (2013), “strongly tied

to their predecessors”. Analysis of the CMIP5 models indi-

cates that the CMIP3 simulations are of comparable quality

to the CMIP5 simulations for temperature and precipitation

at regional scales (Flato et al., 2013).

This study is part of a larger research project that seeks to

enhance our understanding of the uncertainty of future an-

nual river flows worldwide through catchment-scale hydro-

logic simulation, leading to more informed decision-making

for the sustainable management of scarce water resources,

nationally and internationally. To achieve this, it is necessary

to determine, as a minimum, how the mean and variability

of annual streamflows will be affected by climate change.

Other factors of less importance are changes in the auto-

correlation of annual streamflow, changes in net evaporation

from reservoir water surfaces and changes in monthly flow

patterns, with the latter being more important for relatively

small reservoirs. In this paper we deal with the key drivers of

streamflow production, namely the mean and the standard de-

viation of annual precipitation and mean annual temperature,

the latter is adopted here as a surrogate for potential evapo-

transpiration (PET), along with secondary factors, the mean

monthly patterns of precipitation and temperature. Adopting

temperature as a surrogate for PET is contentious. We pro-

vide a detailed discussion of this issue in the Supplementary

Material associated with this paper. Suffice to say that a more

complex PET formulation requires additional GCM variables

other than temperature which are less reliable. This simplic-

ity comes at the expense of potentially inadequate represen-

tation of future changes in PET, which may have important

negative consequences when modelling streamflow in energy

limited catchments. Nevertheless, in the following discus-

sion we concentrate on mean annual temperature as the GCM

variable representing PET.

Computer models of most water resource systems that rely

on surface reservoirs to offset streamflow variability adopt a

monthly time step to ensure that seasonal patterns in demand

and reservoir inflows are adequately accounted for. However,

in a climate change scenario it is more likely that an absolute

change in streamflow will have a greater impact on system

yield than shifts in the monthly inflow or demand patterns.

This will certainly be the case for reservoirs that operate as

carryover systems rather than as within-year systems (for an

explanation see McMahon and Adeloye, 2005). Therefore, in

this paper we assess the GCMs in terms of annual precipita-

tion and annual temperature, and patterns of mean monthly

precipitation and temperature.

Following this introduction we describe, and summarise

in the next section, several previous assessments of CMIP3

GCM performance. We also include some general comments

on GCM assessment procedures. In Sect.3, data (observed

and GCM based) used in the analysis are described. Details

and results of the subsequent analyses comparing GCM esti-

mates of present climate mean and standard deviation of an-

nual precipitation, mean annual temperature, mean monthly

precipitation and temperature patterns and Köppen–Geiger

climate type against observed data are set out in Sect. 4. In

Sect. 5, we review the results and compare the literature in-

formation with our assessments of the GCMs. The final sec-

tion of the paper presents several conclusions.

2 Literature

As noted above, to assess the impact of climate change on

surface water resources of a region through hydrologic sim-

ulation, it is necessary to assess, as a minimum, the per-

formance of the mean and the standard deviation of annual

precipitation and mean annual temperature, and the mean

monthly patterns of precipitation and temperature. Noting

this background we describe in the next section procedures

that have been adopted in the literature to assess GCM per-

formance.
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Table 1. Details of 23 GCMs considered in this paper.

Acronym Originating group Country Model name

in CMIP3

Number

of

20C3M

runs

avail-

able

Resolution Number

of prec.

grid

cellsc

Number

of temp.

grid

cellsb

Lat (◦) Long (◦)

BCCR Bjerknes Centre for Climate Research Norway bccr-bcm2.0 naa 1.9 1.9 na na

CCCMA-t47 Canadian Centre for Climate Modeling and

Analysis

Canada cccma_cgm3_1_t47 1 ∼ 3.75 3.75 631 916

CCCMA-t63 Canadian Centre for Climate Modeling and

Analysis

Canada cccma_cgm3_1_t63 1 ∼ 2.8 2.8125 1169 1706

CCSM National Centre for Atmospheric Research USA ccsm 8 ∼ 1.4 1.40625 5184 7453

CNRM Météo-France/Centre National de Recherches

Météorologiques

France cnrm 1 ∼ 2.8 2.8125 1169 1706

CSIRO Australia CSIRO Australia csiro_mk3_0 1 ∼ 1.87 1.875 2820 4068

GFDL2.0 NOAA Geophysical Fluid Dynamics Laboratory USA gfdl2_cm2_0 1 2 2.5 1937 2828

GFDL2.1 NOAA Geophysical Fluid Dynamics Laboratory USA gfdl2_cm2_1 1 ∼ 2 2.5 1911 2758

GISS-AOM NASA Goddard Institute of Space Studies USA giss_aom_r1, 2 2 3 4 754 1076

GISS-EH NASA Goddard Institute of Space Studies USA giss_eh1, 2,3 3 3 and 4 5 425 616

GISS-ER NASA Goddard Institute of Space Studies USA giss_model_e_r 3 3 and 4 5 425 616

HadCM3 Hadley Centre for Climate Prediction and

Research

UK hadcm3 1 2.5 3.75 982 1421

HadGEM Hadley Centre for Climate Prediction and

Research

UK HadGem 1 1.25 1.875 4316 6239

IAP Institute of Atmospheric Physics, Chinese Acad.

Sciences

China iap_fgoals1.0_g 3 6.1∼ 2.8 2.8125 1159 1664

INGV National Institute of Geophysics and Vulcanology,

Italy

Italy ingv20c

ECHAM4.6

1 ∼ 1.1 1.125 8291 11 886

INM Institute for Numerical Mathematics, Russia Russia inmcm3.0 1 4 5 420 620

IPSL Institut Pierre Simon Laplace France ipsl_cm4 1 ∼ 2.5 3.75 980 1403

MIROCh Model for Interdisciplinary Research on Climate,

Center for Climate System Research (The Uni-

versity of Tokyo), National Institute for Environ-

mental Studies, and Frontier Research Center for

Global Change

Japan miroc3_2_hires

(mirochi)

1 ∼ 1.1 1.125 8291 11 886

MIROCm Model for Interdisciplinary Research on Climate,

Center for Climate System Research (The Uni-

versity of Tokyo), National Institute for Environ-

mental Studies, and Frontier Research Center for

Global Change

Japan miroc3_2_medres

(mirocmedr)

3 ∼ 2.8 2.8125 1169 1706

MIUB Meteorological Institute of the University of

Bonn, Meteorological Research Institute of KMA,

and Model and Data group

Germany

South

Korea

miub_echo_g 3 ∼ 3.7 3.75 631 916

MPI Max Planck Institute for Meteorology Germany mpi_echam5

(mpi)

3 ∼ 1.8 1.875 2820 4068

MRI Japan Meteorological Research Institute Japan mri_cgcm2_3_2a

(mri)

5 ∼ 2.8 2.8125 1169 1706

PCM National Center for Atmospheric Research USA pcm 1 ∼ 2.8 2.8125 1169 1706

a na: not available. b Based on mean annual temperature comparison between GCM and CRU. c Based on mean annual precipitation comparison between GCM and CRU.

2.1 Procedures to assess GCM performance

Ever since the first GCM was developed by Phillips (1956)

(see Xu, 1999), attempts have been made to assess the ade-

quacy of GCM modelling. Initially, these evaluations were

simple side-by-side comparisons of individual monthly or

seasonal means or multi-year averages (Chervin, 1981). To

assess model performance, Chervin (1981) extended the

evaluation procedure by examining statistically the agree-

ment or otherwise of the ensemble average and standard de-

viation between the GCM modelled climate and the observed

data using the vertical transient heat flux in an example appli-

cation. Legates and Willmott (1992) compared observed with

simulated average precipitation rates by 10◦ latitude bands.

On a two-dimensional plot, Taylor (2001) developed a dia-

gram in which each point consisted of the spatial correlation

coefficient and the spatial root mean square (RMS) along

with the ratio of the variances of the modelled and the ob-

served variables. Recently, some authors have used the Tay-

lor diagram (Covey et al., 2003; Bonsal and Prowse, 2006) or

a similar approach (Lambert and Boer, 2001; Boer and Lam-

bert, 2001). Murphy et al. (2004) introduced a climate predic-

tion index (CPI) which is based on a broad range of present-

day climates. This index was later used by Johns et al. (2006)

for a different set of climate variables than those used by
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Murphy et al. (2004). Whetton et al. (2005) introduced a

demerit point system in which GCMs were rejected when a

specified threshold was exceeded. Min and Hense (2006) in-

troduced a Bayesian approach to evaluate GCMs and argued

that a skill-weighted average with Bayes factors is more in-

formative than moments estimated by conventional statistics.

Shukla et al. (2006) suggested that differences in observed

and GCM simulated variables should be examined in terms

of their probability distributions rather than individual mo-

ments. They proposed the differences could be examined us-

ing relative entropy. Perkins et al. (2007) also claimed that

assessing the performance of a GCM through a probability

density function (PDF) rather than using the first or a sec-

ond moment would provide more confidence in model as-

sessment. To compare the reliability of variables (in time and

space) rather than individual models, Johnson and Sharma

(2009a, b) developed the variable convergence score which is

used to rank a variable based on the ensemble coefficient of

variation. They observed the variables with the highest scores

were pressure, temperature and humidity. Reichler and Kim

(2008) introduced a model performance index by first esti-

mating a normalised error variance based on the square of the

grid-point differences between simulated (interpolated to the

observational grid) and the observed annual climate weighted

and standardised with respect to the variance of the annual

observations. The error variance was scaled by the average

error found in the reference models and, finally, averaged

over all climates.

It is clear from this brief review that no one procedure

has been universally accepted to assess GCM performance,

which is consistent with the observations of Räisänen (2007).

We also note the comments of Smith and Chandler (2010,

p. 379) who said “It is fair to say that any measure of per-

formance can be subjective, simply because it will tend to

reflect the priorities of the person conducting the assessment.

When different studies yield different measures of perfor-

mance, this can be a problem when deciding on how to in-

terpret a range of results in a different context. On the other

hand, there is evidence that some models consistently per-

form poorly, irrespective of the type of assessment. This

would tend to indicate that these model results suffer from

fundamental errors which render them inappropriate.”

In 1992, Legates and Willmott (1992) assessed the ade-

quacy of GCMs based mainly on January and July precipi-

tation fields. Although a number of GCM assessments were

carried out during the following one and a half decades, it

was not until 2008 that mean precipitation, either absolute

or bias, was included in GCM published assessments. In that

year, Reichler and Kim (2008, p. 303) argued that the mean

bias is an important component of model error.

In Table 2a and b we summarize the application of the

numerical metrics and the ranking metrics of precipitation

and temperature respectively applied to CMIP3 data sets at

the global or country scales. These references cover the pe-

riod from 2006 to 2014. Across these 15 papers, we observe

that for precipitation and temperature the spatial root mean

square error, either using raw data (root mean square error –

RMSE) or normalised data as a percentage of the mean value

(RRMSE), is adopted in 7 of the 15 studies. (The data are

normalised by the corresponding standard deviation of the

reference or observed data.) This spatial root mean square

metric, as well as the bias in the mean of the data, is relevant

to hydrologists as it provides an indication of the uncertainty

in the climate variables of interest to them. Of more rele-

vance to hydrologists is the uncertainty in temporal mean

and variance of climatic variables, which for precipitation

are only reported in 4 of the 15 studies. Although spatial

correlation is not used directly in general hydrologic inves-

tigations, in GCM assessments it is often combined with the

variance and spatial RMSE through the Taylor diagram (Tay-

lor, 2001) which is an excellent summary of the performance

of a GCM projected variable. As noted in Table 2, three pa-

pers utilise this approach. Lambert and Boer (2001, p. 89) ex-

tended the Taylor diagram to display the relative mean square

differences, the pattern correlations and the ratio of variances

for modelled and observed data. This approach to displaying

the second-order statistics appears not to have been widely

adopted. It is noted in Table 2a that only four papers include

the mean or bias of the raw precipitation data in the GCM as-

sessments which is important from a hydrologic perspective.

The second set of metrics listed in Table 2b is used essentially

for ranking GCMs by performance. Several other assessment

tools not included in Table 2b are the climate prediction in-

dex (Murphy et al., 2004) and Bayesian approaches (Min and

Hense, 2006).

Specific climate features like the preservation of the ENSO

(El Niño–Southern Oscillation) signal (van Oldenborgh et

al., 2005) would also be considered to be a non-numerical

measure of GCM performance, but in some regions to be

no less important to hydrologists than the numerical mea-

sures. Most of these ranking metrics have been developed

for specific purposes with respect to GCMs and several have

little utility for the practicing hydrologist who is primarily

interested in bias, variance and uncertainty in projected es-

timates of precipitation and temperature (plus net radiation,

wind speed and humidity to derive potential ET) as input to

drive stand-alone global and catchment hydrologic models.

2.2 Results of CMIP3 GCMs assessments

Table 2a indicates that only two papers (Räisänen, 2007;

Gleckler et al., 2008) detail numerical measures for both

mean annual precipitation and temperature for 21 and 22

CMIP3 GCMs, respectively, at a global scale. Reifen and

Toumi (2009) (17 GCMs) and Knutti et al. (2010) (23 GCMs)

address, inter alia only mean annual temperature. Hagemann

et al. (2011) used three GCMs to estimate precipitation and

temperature characteristics, but the paper includes only pre-

cipitation results.
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Table 2b. Ranking measures of performance assessment of CMIP3 GCMs.

Reference Global, country,

large region

GCMs PDF

and

related

mea-

sures

Performance

index

based on

variance

Entropy Skill

score

Variance

convergence

score

Signal

noise

ratio

Shukla et al. (2006) Global 13 GCMs yes

Perkins et al. (2007) Australia 16 GCMs yes yes

Gleckler et al. (2008) Global 22 GCMs yes

Reichler and Kim (2008) Global 21 GCMs yes

Watterson (2008) Australia 23 GCMs yes

Johnson and Sharma (2009b) Australia 9 GCMs yes

Knutti et al. (2010) Global 23 GCMs yes

Heo et al. (2014) East Asia 21 GCMs yes yes

Number of references 8 3 1 2 2 1 1

Räisänen (2007) results illustrate the wide range

of model performances that exist: for precipitation,

RMSE= 1.35 mm day−1 with a range of 0.97–1.86 and for

temperature, RMSE= 2.32 ◦C with a range of 1.58–4.56.

Reichler and Kim (2008) considered 14 variables covering

mainly the period 1979–1999 to assess the performance of

CMIP3 models using their model performance index. They

concluded that there was a continuous improvement in model

performance from the CMIP1 models compared to those

available in CMIP3 but there are still large differences in the

CMIP3 models’ ability to match observed climates. Gleck-

ler et al. (2008) normalised the data in Taylor diagrams for

a range of climate variables and concluded that some mod-

els performed substantially better than others. However, they

also concluded that it is not yet possible to answer the ques-

tion: what is the best model?

Reifen and Toumi (2009) (Table 2b) using temperature

anomalies observed that “. . . there is no evidence that any

subset of models delivers significant improvement in predic-

tion accuracy compared to the total ensemble”. On the other

hand, Macadam et al. (2010) (Table 2a) assessed the per-

formance of 17 CMIP3 GCMs comparing the observed and

modelled temperatures over five 20-year periods and con-

cluded that GCM rankings based on anomalies can be in-

consistent over time, whereas rankings based on actual tem-

peratures can be consistent over time.

In summary, Gleckler et al. (2008) stated that the best

GCM will depend on the intended application. In the over-

arching project of which this study is a component, we are

interested in the uncertainty in annual streamflow estimated

through hydrologic simulation using GCM precipitation and

temperature and how that uncertainty will affect estimates

of future yield from surface water reservoir systems. Con-

sequently, we are interested in which GCMs reproduce pre-

cipitation and temperature satisfactory. Based on the refer-

ences of Reichler and Kim (2008), Gleckler et al. (2008)

and Macadam et al. (2010), the performance of 23 CMIP3

GCMs assessed at a global scale are ranked in Table 3. In Ta-

ble 3 eight models that meet the Reichler and Kim (2008)

criterion are also ranked in the upper 50 % based on the

Macadam et al. (2010) and Gleckler et al. (2008) references.

These models are CCCMA-t47 (Canadian Centre for Climate

Modeling and Analysis), CCSM (Community Climate Sys-

tem Model), GFDL2.0 (Geophysical Fluid Dynamics Lab-

oratory), GFDL2.1, HadCM3 (Hadley Centre for Climate

Prediction and Research), MIROCm (Model for Interdisci-

plinary Research on Climate), MPI (Max Planck Institute for

Meteorology) and MRI (Japan Meteorological Research In-

stitute).

3 Data

Two data sets are used in the GCM assessment that follows

in Sect. 4. One is based on observed data and the other on

GCM simulations of present climate (20C3M). It should be

noted that of the 22 GCMs examined herein, multiple runs or

projections were available for nine models. The resulting 46

runs are identified in the tables summarising the results.

The first data set is based on monthly observed precipita-

tion and temperature gridded at 0.5◦× 0.5◦ resolution over

the global land surface from Climatic Research Unit (CRU)

3.10 (New et al., 2002) for the period January 1950 to De-

cember 1999. For grid cells where monthly observations are

not available, the CRU 3.10 data set is based on interpola-

tion of observed values within a correlation decay distance of

450 km for precipitation and 1200 km for temperature. The

CRU 3.10 data set provides information about the number

of observations within the correlation decay distance of each

grid cell for each month. In this analysis we defined a grid

cell as observed if ≥ 90 % of months at that grid cell has at

least one observation within the correlation decay distance

for the period January 1950 to December 1999. Only ob-

served grid cells are used to compute summary statistics in

the following analysis.

The second data set is monthly precipitation and temper-

ature data for the present climate (20C3M) from 22 of the
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Table 3. Summary of performance of 23 CMIP3 GCMs in simulating present climate based on literature review.

Macadam Gleckler Reichler

GCM Source et al. (2010) et al. (2008) and Kim (2008)

Variables Temperature Precipitation Overall Many

method rankingb relative error ranking rank performance index*

BCCR 15 = 13# 14 No

CCCMA-t47 9 = 1 = 3 Yes

CCCMA-t63 naa
= 3 na Yes

CCSM 6 = 13 = 10 Yes

CNRM 8 = 19 13 No

CSIRO 12 = 3 7 No

GFDL2.0 16 = 3 = 10 Yes

GFDL2.1 5 = 3 2 Yes

GISS-AOM na = 13 na No

GISS-EH na = 19 na No

GISS-ER 1 = 17 9 No

HadCM3 2 = 9 5 Yes

HadGEM 14 = 17 15 Yes

IAP na = 9 na No

INGV na na na Yes

INM 13 = 19 16 No

IPSL 10 = 9 = 10 No

MIROCh na = 9 na Yes

MIROCm 7 = 3 = 3 Yes

MIUB 4 = 1 1 na

MPI 3 = 13 8 Yes

MRI 11 = 3 6 Yes

PCM 17 22 17 No

* As summarised in Smith and Chandler (2010) (The performance index is based on the error variance between modelled and observed climate

for 14 climate and ocean variables. “Yes” indicates the variance error is less than the median across the GCMs.) a na: not available or not

applicable. b Rank 1 is best rank. # more than one GCM with this rank.

23 GCMs listed in Table 1 and consists of 46 GCM runs.

The 20C3M monthly data for precipitation and temperature

were extracted from the CMIP3 data set. As shown in Ta-

ble 1 the GCMs have a wide range of spatial resolutions,

all of which are coarser than the observed CRU data. In or-

der to make comparisons between observed and GCM data

either the CRU and/or GCM data must be re-sampled to

the same resolution. To avoid re-sampling coarse resolution

data to a finer resolution we only re-sampled the CRU data

here. Thus, in the following analysis the performance of each

GCM is assessed at the resolution of the GCM and the CRU

data are re-sampled to match the GCM resolution. There-

fore, the number of grid cells in each comparison varies with

the GCM resolution and ranged from 616 to 11 886 for the

temperature comparisons and 425 to 8291 for the precipi-

tation comparisons. The difference in number of grid cells

between temperature and precipitation is due to more terres-

trial grid cells having observed temperature data than precip-

itation data over the period 1950–1999.

In the following analysis comparisons are made between

observed and GCM values of mean and standard deviation

of annual precipitation and mean annual temperature. The

GCM values are based on concurrent raw (that is, not down-

scaled nor bias corrected) data from the 20C3M simulation.

For example, if a grid cell has observed calendar-year data

from 1953 to 1994, then the comparison will be made with

GCM values from the 20C3M run for the concurrent calendar

years 1953–1994. Although the aim of a 20C3M run from a

given GCM is not to strictly replicate the observed monthly

record, we expect better performing GCMs to reproduce

mean annual statistics that are broadly similar to observed

conditions. Average monthly precipitation and temperature

patterns are also compared to assess how well GCM runs re-

produce observed seasonality. Finally, we assess how well

the Köppen–Geiger climate classification (Peel et al., 2007)

estimated from the CMIP3 data compares with present-day

gridded observed climate classification.

4 Comparison of present climate GCM data with

observed data

In the analyses that follow, GCM estimates of mean annual

precipitation and temperature and the standard deviation of

annual precipitation are compared against observed estimates
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for terrestrial grid cells with≥ 90 % observed data during the

period 1950–1999.

Eight standard statistics – Nash–Sutcliffe efficiency (NSE)

(Nash and Sutcliffe, 1970), product moment coefficient

of determination (R2) (MacLean, 2005), standard error

of regression (Maidment, 1992), bias (MacLean, 2005),

percentage bias (Maidment, 1992), absolute percentage

bias (MacLean, 2005), root mean square error (RMSE)

(MacLean, 2005) and mean absolute error (MacLean, 2005)

– were computed as the basis of comparison, but we report

only the NSE, R2 and RMSE in the following discussion. For

our analysis, the NSE is the most useful statistic as it shows

the proportion of explained variance relative to the 1 : 1 line

in a comparison of two estimates of the same variable. R2 is

included because many analysts are familiar with its interpre-

tation. Both NSE and R2 were computed in arithmetic (un-

transformed) and natural log space. We have also included

RMSE values (computed from the untransformed values) as

many GCM analyses include this measure.

In the following sub-sections comparisons between the

concurrent raw GCM data and observed values for MAP,

SDP, MAT, long-term average monthly precipitation and

temperature patterns and Köppen–Geiger climate classifica-

tion at the grid cell scale are presented and discussed. Al-

though we rank the models by each selection criteria and

combine the ranks by addition, we note the warning of Stain-

forth et al. (2007) who argue that model response should not

be weighted but ruled in or out. We follow this approach

in this paper by identifying better performing GCMs to be

used for hydrologic simulations reported in a companion

paper (Peel et al., 2015). This approach is consistent with

the concept recognised by Randall et al. (2007, p. 608) that

“. . . for models to predict future climatic conditions reliably,

they must simulate the current climatic state with some as

yet unknown degree of fidelity. Poor model skill in simu-

lating present climate could indicate that certain physical or

dynamical processes have been misrepresented”. It is noted

that our comparisons are conducted over the global terrestrial

land surface rather than focussing on a single catchment, re-

gion or continent. This allows us to assess whether a GCM

performs consistently well across a large area and reduces

the chance of a GCM being selected due to a random high

performance over a small area.

4.1 Mean annual precipitation

Comparisons of mean annual precipitation and the standard

deviation of annual precipitation between GCM estimates

and observed data for the grid cells across the 46 runs are pre-

sented in Table 4. For MAP, the NSE varied from a maximum

of 0.68 (R2
= 0.69) with a RMSE value of 335 mm year−1

for model MIUB(3) (Meteorological Institute of the Univer-

sity of Bonn) to −0.54 for GISS-EH(3) (NASA Goddard

Institute of Space Studies). (GCM run number is enclosed

by parenthesis, for example MIUB(3) is run 3 for the GCM
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Figure 1. Comparison of MIUB(3) model estimates of observed

mean annual precipitation with CRU estimates. (Based on untrans-

formed precipitation NSE = 0.678, rank 1 of 46 runs, and R2
=

0.691.)
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Figure 2. Comparison of GISS-EH(3) model estimates of observed

mean annual precipitation with CRU estimates. (Based on untrans-

formed precipitation NSE = −0.535, rank 46 of 46 runs, and

R2
= 0.368.)

MIUB.) The MAP values for MIUB(3) are compared with

the observed CRU MAP values in Fig. 1. Each data point

in this figure represents a MAP comparison at one of the

632 MIUB(3) terrestrial grid cells where observed CRU 3.10

data were available for the period January 1950 to Decem-

ber 1999. The relationship between GCM and observed MAP

shown in this figure is representative of the other GCMs

where high MAP is underestimated and low MAP is over-

estimated. GISS-EH(3), shown in Fig. 2, is an example of a

poorly performing GCM in terms of mean annual precipita-

tion. Here, based on untransformed data, the NSE is −0.54

(R2
= 0.37) with a RMSE value of 697 mm year−1.

The range of NSE values for the MAP comparisons across

the 46 GCM runs is plotted in Fig. 3. The results may be

classified into four groups: 5 runs exhibiting NSE > 0.6, 27

runs 0.4 < NSE≤ 0.6, 6 runs 0 < NSE≤ 0.4 and 8 runs ≤ 0,

where the predictive power of the GCM is less than using
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Table 4. Performance statistics comparing CMIP3 GCM mean and standard deviation of annual precipitation, mean annual temperature, and

mean monthly patterns of precipitation and temperature with concurrent observed data. (Analysis based on untransformed data.)

GCM Name
MAP SDP MAT Monthly pattern

R2 NSE RMSE R2 NSE RMSE R2 NSE RMSE NSE Prec NSE Temp

CCCMA-t47 0.498 0.457 435 0.342 0.252 63 0.984 0.953 3.14 0.409 0.838

CCCMA-t63 0.519 0.458 447 0.397 0.328 65 0.984 0.940 3.59 0.364 0.797

CCSM(1)* 0.496 0.483 460 0.426 0.413 71 0.982 0.981 2.06 −0.178 0.910

CCSM(2) 0.488 0.473 464 0.423 0.411 71 0.982 0.981 2.03 −0.210 0.912

CCSM(3) 0.493 0.479 462 0.418 0.403 71 0.981 0.980 2.08 −0.195 0.908

CCSM(4) 0.500 0.488 457 0.426 0.410 71 0.982 0.980 2.08 −0.174 0.911

CCSM(5) 0.493 0.480 461 0.423 0.410 71 0.983 0.981 2.02 −0.210 0.909

CCSM(6) 0.494 0.480 461 0.437 0.426 70 0.982 0.981 2.04 −0.181 0.909

CCSM(7) 0.496 0.483 460 0.429 0.420 71 0.982 0.981 2.06 −0.173 0.907

CCSM(9) 0.500 0.488 457 0.400 0.393 72 0.982 0.980 2.08 −0.157 0.910

CNRM 0.445 0.246 527 0.479 0.321 65 0.979 0.967 2.67 −0.631 0.879

CSIRO 0.387 0.363 503 0.462 0.452 65 0.971 0.959 2.99 0.034 0.825

GFDL2.0 0.544 0.528 434 0.588 0.460 63 0.980 0.934 3.79 −0.092 0.760

GFDL2.1 0.534 0.518 436 0.570 0.196 77 0.979 0.970 2.54 0.071 0.884

GISS-AOM(1) 0.330 −0.093 624 0.142 0.039 73 0.972 0.969 2.55 −0.325 0.873

GISS-AOM(2) 0.330 −0.087 623 0.132 0.027 74 0.972 0.970 2.54 −0.306 0.876

GISS-EH(1) 0.373 −0.510 692 0.210 −0.397 78 0.963 0.956 3.03 −0.856 0.858

GISS-EH(2) 0.375 −0.502 690 0.176 −0.589 83 0.962 0.955 3.07 −0.920 0.852

GISS-EH(3) 0.368 −0.535 697 0.181 −0.521 81 0.962 0.955 3.06 −0.858 0.856

GISS-ER(1) 0.386 −0.347 653 0.254 −0.115 70 0.970 0.960 2.87 −0.819 0.854

GISS-ER(2) 0.381 −0.357 656 0.203 −0.372 77 0.970 0.959 2.90 −0.739 0.850

GISS-ER(4) 0.386 −0.340 652 0.223 −0.214 72 0.970 0.960 2.88 −0.742 0.854

HadCM3 0.662 0.630 363 0.618 0.572 51 0.988 0.973 2.43 0.227 0.893

HadGEM 0.571 0.302 531 0.457 0.178 82 0.977 0.953 3.22 0.046 0.824

IAP(1) 0.496 0.438 456 0.191 0.096 75 0.963 0.894 4.64 −0.910 0.777

IAP(2) 0.493 0.433 458 0.188 0.041 77 0.962 0.895 4.61 −0.989 0.779

IAP(3) 0.499 0.440 455 0.186 0.048 77 0.963 0.896 4.60 −0.922 0.781

INGV 0.681 0.672 371 0.492 0.468 70 0.983 0.973 2.45 −0.263 0.882

INM 0.450 0.439 431 0.287 0.099 65 0.969 0.952 3.21 −0.247 0.833

IPSL 0.394 0.116 563 0.421 0.223 68 0.967 0.957 3.05 −0.147 0.846

MIROCh 0.588 0.370 514 0.583 0.570 63 0.974 0.971 2.54 0.107 0.906

MIROCm(1) 0.555 0.512 424 0.477 0.454 58 0.970 0.969 2.58 0.061 0.899

MIROCm(2) 0.552 0.508 425 0.525 0.501 56 0.970 0.969 2.58 0.054 0.900

MIROCm(3) 0.549 0.505 427 0.459 0.428 60 0.971 0.970 2.52 0.041 0.902

MIUB(1) 0.689 0.676 336 0.527 0.510 51 0.979 0.960 2.92 0.166 0.870

MIUB(2) 0.684 0.671 338 0.529 0.513 51 0.979 0.962 2.85 0.155 0.867

MIUB(3) 0.691 0.678 335 0.524 0.515 51 0.979 0.958 2.99 0.167 0.860

MPI(1) 0.543 0.538 429 0.464 0.437 66 0.985 0.984 1.88 0.014 0.939

MPI(2) 0.541 0.536 430 0.462 0.415 67 0.985 0.983 1.90 −0.002 0.939

MPI(3) 0.542 0.536 430 0.507 0.479 63 0.986 0.984 1.87 0.007 0.940

MRI(1) 0.617 0.535 414 0.507 0.499 56 0.977 0.969 2.57 0.217 0.912

MRI(2) 0.615 0.537 413 0.513 0.491 56 0.976 0.968 2.64 0.216 0.907

MRI(3) 0.617 0.541 411 0.523 0.505 55 0.977 0.969 2.57 0.222 0.911

MRI(4) 0.619 0.539 412 0.532 0.523 54 0.977 0.969 2.60 0.195 0.911

MRI(5) 0.615 0.538 412 0.503 0.487 56 0.977 0.968 2.62 0.211 0.907

PCM 0.360 0.190 546 0.336 0.135 73 0.975 0.943 3.49 −0.415 0.798

* In parentheses after a GCM name, throughout this paper, indicates the run number.
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Figure 3. Nash–Sutcliffe efficiency (NSE) values for modelled ver-

sus observed MAP untransformed estimates for 46 CMIP3 GCM

runs.
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Figure 4. Comparison of MIUB(3) model estimates of the standard

deviation of annual precipitation with CRU observed estimates.

(Based on untransformed precipitation NSE = 0.515, rank 4 of 46

runs, and R2
= 0.524.)

the average observed MAP across all grid cells (Gupta et al.,

2009).

4.2 Standard deviation of annual precipitation

For the standard deviation of annual precipitation, HadCM3

was the best performing model with a NSE of 0.57, R2 of

0.62 and a RMSE of 51 mm year−1. MIROCh also yielded

a NSE of 0.57 and an R2 of 0.58 but with a RMSE of

63 mm year−1. These results along with other standard de-

viation values are listed in Table 4. Figure 4 is a plot for

MIUB(3), which is representative (rank 4, that is the fourth

best performance of the 46 runs) of the relationship between

GCM and observed SDP, and shows the model underesti-

mates the standard deviation of annual precipitation for high

values and overestimates at low values of standard deviation

compared with observed values.
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Figure 5. Comparison of MIUB(3) model estimates of mean annual

temperature with CRU estimates. (Based on untransformed temper-

ature NSE = 0.958, rank 33 of 46 runs, and R2
= 0.979.)

4.3 Mean annual temperature

The comparison of the GCM mean annual temperatures with

concurrent observed data for the grid cells are listed for each

model run in Table 4. In contrast to the precipitation mod-

elling, the mean annual temperatures are simulated satis-

factorily by most of the GCMs. Except for the IAP (Insti-

tute of Atmospheric Physics, Chinese Acad. Sciences) and

the GFDL2.0 models (NSE=∼ 0.90 and 0.93, respectively),

all model runs exhibit NSE values ≥ 0.94 with 17 of the

46 GCM runs having a NSE value ≥ 0.97. A comparison

between MIUB(3) estimates of mean annual temperature

(NSE= 0.96, rank 33) and observed values from the CRU

data set is presented in Fig. 5. Also shown in Fig. 5 is a lin-

ear fit between GCM and observed MAT. The average fit for

the 46 GCM runs (not shown) exhibited a small negative bias

of −1.03 ◦C and a slope of 1.01.

4.4 Average monthly precipitation and temperature

patterns

Because a monthly rainfall–runoff model is applied in the

next phase of our analysis (reported in a companion paper)

it is considered appropriate to assess how well the GCMs

simulate the observed mean monthly patterns of precipita-

tion and temperature (see also the argument of Charles et

al., 2007). The NSE was used for the assessment by com-

paring the 12 long-term average monthly values. For each

GCM run the average precipitation and temperature values

for each month were calculated for each grid cell. NSEs

were computed between the equivalent 12 GCM-based and

12 CRU-based monthly averages. The median NSE values

across terrestrial grid cells where observed CRU 3.10 data

were available for the period January 1950 to December 1999

for each GCM run are summarised in Table 4. As shown in

Table 4 average monthly patterns of precipitation are poorly

modelled. In fact, 57 % of the 46 model runs have a median
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Table 5. Köppen–Geiger climate classification (adapted from Peel

et al., 2007).

Köppen– Description

Geiger class of climate

Af Tropical, rainforest

Am Tropical, monsoon

Aw Tropical, savannah

BWh Arid, desert hot

BWk Arid, desert cold

BSh Arid, steppe hot

BSk Arid, steppe cold

Csa Temperate, dry and hot summer

Csb Temperate, dry and warm summer

Csc Temperate, dry and cold summer

Cwa Temperate, dry winter and hot summer

Cwb Temperate, dry winter and warm summer

Cwc Temperate, dry winter and cold summer

Cfa Temperate, without dry season and hot summer

Cfb Temperate, without dry season and warm summer

Cfc Temperate, without dry season and cold summer

Dsa Cold, dry and hot summer

Dsb Cold, dry and warm summer

Dsc Cold, dry and cool summer

Dsd Cold, dry summer and very cold winter

Dwa Cold, dry winter and hot summer

Dwb Cold, dry winter and warm summer

Dwc Cold, dry winter and cool summer

Dwd Cold, dry winter and very cold winter

Dfa Cold, without dry season and hot summer

Dfb Cold, without dry season and warm summer

Dfc Cold, without dry season and cool summer

Dfd Cold, without dry season and very cold winter

ET Polar, tundra

EF Polar, frost

NSE value of < 0. For these GCMs their predictive power for

the monthly precipitation pattern is less than using the aver-

age of the 12 monthly values at each of the terrestrial grid

cells. Only two GCMs have NSE values > 0.25. In contrast,

the median NSEs of all monthly temperature patterns are

> 0.75, with 41 % > 0.90. The NSE metric reflects how well

the GCM replicates both the monthly pattern and the over-

all average monthly value (bias). Thus, the monthly pattern

of temperature is generally well reproduced by the GCMs,

whereas the monthly pattern of precipitation is not, which is

mainly due to the bias in the GCM average monthly precipi-

tation.

4.5 Köppen–Geiger classification

The Köppen–Geiger climate classification (Peel et al., 2007)

(see Table 5) provides an alternate way to assess the ad-

equacy of how well a GCM represents climate because

the classification is based on a combination of annual and

monthly precipitation and temperature data. Two compar-

isons between the MPI(3) model and CRU observed data are

presented in Table 6. The MPI(3) was chosen as an example

here as over the three levels of climate classes it estimated the

observed climate correctly more often than the other model

runs. In Table 6a a comparison at the first letter level of the

Köppen–Geiger climate classification is shown. This com-

parison reveals how well the GCM reproduces the distribu-

tion of broad climate types: tropical, arid, temperate, cold and

polar over the terrestrial surface. In Table 6b the comparison

shown is for the second letter level of the Köppen–Geiger

climate classification, which assesses how well the GCM re-

produces finer detail within the broad climate types; for ex-

ample, the seasonal distribution of precipitation or whether a

region is semi-arid or arid. The bold diagonal values shown

in Table 6a and b represent the number of grid cells correctly

classified by the GCM, whereas the off-diagonal values are

the number of grid cells incorrectly classified by the GCM for

the one- and two-letter level. At the first letter level MPI(3)

reproduces the correct climate type at 81 % of the terrestrial

grid cells. Within this good performance the MPI(3) pro-

duces more polar climate and fewer tropical and cold grids

cells than observed. At the second letter level, MPI(3) repro-

duces the correct climate type at 67 % of the terrestrial grid

cells. The model produces fewer grid cells of tropical rain-

forest, cold with a dry winter and cold without a dry season

than expected and more cold with a dry summer and polar

tundra than expected.

Table 7 summarises the overall proportion of GCM grid

cells that were classified correctly for each GCM run across

the three levels of classification. As we wish to have a

ranking of the comparisons we adopted this simple mea-

sure as it is regarded as “. . . one of the most basic and

widely used measures of accuracy. . . ” for comparing the-

matic maps (Foody, 2004, p. 632). From Table 7 we observe

that GCM accuracy in reproducing the climate classifica-

tion decreases as one moves from coarse to fine detail cli-

mate classification. The average accuracy (and range) for the

three classes are 0.48 (0.36–0.60) for the three-letter classifi-

cation, 0.57 (0.47–0.68) for the two-letter classification and

for one-letter 0.77 (0.66–0.82). In other words, at the three-

letter scale nearly 50 % of GCM Köppen–Geiger estimates

are correct, increasing to nearly 60 % at the two-letter level

and, finally, at the one-letter aggregation more than 75 %

are correct across the 46 GCM runs. Using these average

values across the three classes, the following seven models

performed satisfactorily in identifying Köppen–Geiger cli-

mate class correctly: CNRM (Météo-France/Centre National

de Recherches Météorologiques), CSIRO (Commonwealth

Scientific and Industrial Research Organisation), HadCM3,

HadGEM, MIUB, MPI and MRI. Of these models the least

successful run was for CSIRO with the percentage correct for

each class as follows: three-letter 51 %, two-letter 60 % and

one-letter 78 %.
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Table 6. Köppen–Geiger climate estimated by MPI(3) compared with the observed Köppen–Geiger climate for (a) the one-letter and (b) the

two-letter climate classification. Bold values are correctly classified grid cells.

(a) CRU

Land surface A B C D E Sum

GCM A 414 19 8 0 0 441

B 68 339 52 17 0 476

C 24 62 319 27 0 432

D 0 76 16 1085 17 1194

E 0 6 7 143 121 277

Sum 506 502 402 1272 138 2820

(b) CRU

Land surface Af Am Aw BW BS Cs Cw Cf Ds Dw Df ET EF Sum

GCM Af 57 0 2 0 0 0 0 0 0 0 0 0 0 59

Am 24 19 13 0 0 0 0 0 0 0 0 0 0 56

Aw 25 49 225 0 19 0 4 4 0 0 0 0 0 326

BW 2 1 2 134 50 3 4 0 0 0 2 0 0 198

BS 4 11 48 50 105 13 19 13 4 0 11 0 0 278

Cs 0 0 0 10 18 35 9 20 1 0 6 0 0 99

Cw 0 1 17 0 5 0 62 1 0 1 0 0 0 87

Cf 2 2 2 3 26 1 35 156 0 0 19 0 0 246

Ds 0 0 0 0 33 2 1 1 38 1 40 0 0 116

Dw 0 0 0 0 5 0 1 0 0 102 2 0 0 110

Df 0 0 0 3 35 0 4 7 2 57 843 17 0 968

ET 0 0 0 0 6 2 2 3 8 22 113 93 0 249

EF 0 0 0 0 0 0 0 0 0 0 0 11 17 28

Sum 114 83 309 200 302 56 141 205 53 183 1036 121 17 2820

y = 5E-06x + 0.4519 
R² = 0.0102 

y = -2E-06x + 0.9648 
R² = 0.0986 
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Figure 6. Relating 22 CMIP3 GCM resolutions (as the number

of terrestrial grid cells for MAP) to model performance based on

Nash–Sutcliffe efficiency (NSE) for mean annual precipitation and

mean annual temperature. (The trend lines are fitted to data with

> 1500 grid cells.)

5 Discussion

5.1 Relating GCM resolution to performance

In the analysis presented in the previous section each GCM’s

performance in reproducing observed climatological statis-

tics was assessed at the resolution of the individual GCM.

The question of whether GCMs with a finer resolution out-

perform GCMs with a coarser resolution is addressed in

Fig. 6, where GCM performance in reproducing observed

terrestrial MAP and MAT, based on the NSE, is related to

GCM resolution, defined as the number of grid cells used in

the comparison. The plot suggests there is no significant re-

lationship between GCM resolution and GCM performance

beyond 1500 grid cells for either MAP or MAT. Interest-

ingly, some lower resolution GCMs, < 1500 grid cells, per-

form as well as higher resolution GCMs for MAP and MAT,

yet for others, they perform poorly. While it is sometimes

assumed that higher resolution should normally lead to im-

proved performance, there are many other factors that affect

performance. These include the sophistication of the parame-

terisation schemes for different sub-grid-scale processes, the

time spent in developing and testing the individual schemes

and their interactions. Our purpose here is to report this ob-

servation rather than speculate what it might mean for GCM
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Table 7. Proportion of CMIP3 GCM grid cells (20C3M) that repro-

duce observed CRU Köppen–Geiger climate classification over the

period January 1950–December 1999.

GCM Name
Köppen–Geiger climate class*

Three-letter Two-letter One-letter

CCCMA-t47 0.498 0.620 0.753

CCCMA-t63 0.429 0.558 0.709

CCSM(1) 0.488 0.558 0.749

CCSM(2) 0.489 0.563 0.748

CCSM(3) 0.424 0.545 0.744

CCSM(4) 0.466 0.549 0.749

CCSM(5) 0.444 0.519 0.727

CCSM(6) 0.490 0.563 0.757

CCSM(7) 0.488 0.556 0.749

CCSM(9) 0.489 0.560 0.755

CNRM 0.539 0.602 0.775

CSIRO 0.506 0.601 0.775

GFDL2.0 0.430 0.563 0.726

GFDL2.1 0.508 0.590 0.781

GISS-AOM(1) 0.460 0.559 0.773

GISS-AOM(2) 0.456 0.561 0.773

GISS-EH(1) 0.407 0.487 0.751

GISS-EH(2) 0.402 0.482 0.741

GISS-EH(3) 0.400 0.473 0.744

GISS-ER(1) 0.426 0.478 0.732

GISS-ER(2) 0.424 0.468 0.722

GISS-ER(4) 0.426 0.478 0.732

HadCM3 0.549 0.624 0.797

HadGEM 0.563 0.676 0.818

IAP(1) 0.362 0.484 0.790

IAP(2) 0.368 0.480 0.784

IAP(3) 0.369 0.490 0.784

INGV 0.495 0.616 0.815

INM 0.452 0.526 0.731

IPSL 0.459 0.544 0.749

MIROCh 0.496 0.631 0.806

MIROCm(1) 0.477 0.597 0.749

MIROCm(2) 0.477 0.594 0.759

MIROCm(3) 0.469 0.583 0.748

MIUB(1) 0.528 0.604 0.783

MIUB(2) 0.528 0.604 0.783

MIUB(3) 0.520 0.610 0.778

MPI(1) 0.599 0.666 0.801

MPI(2) 0.593 0.657 0.805

MPI(3) 0.602 0.669 0.808

MRI(1) 0.534 0.644 0.808

MRI(2) 0.521 0.625 0.798

MRI(3) 0.527 0.632 0.798

MRI(4) 0.528 0.634 0.799

MRI(5) 0.532 0.641 0.803

PCM 0.397 0.481 0.660

* The three-, two- and one-letter climate classes are listed in Table 5.

Table 8. CMIP3 GCM run rank (rank 1= best) based on Nash–

Sutcliffe efficiency (NSE) values from comparison of 20C3M and

concurrent observed grid cell data.

GCM MAP SDP MAT Monthly Rank Overall

Name rank rank rank pattern rank* sum GCM rank

CCCMA-t47 28 30 38 19 115 12

CCCMA-t63 27 28 42 22 119 13

CCSM(1) 21 22 7 18 68 8

CCSM(2) 26 23 5 17 71

CCSM(3) 25 26 10 21 82

CCSM(4) 20 25 11 16 72

CCSM(5) 24 24 4 21 73

CCSM(6) 23 19 6 20 68

CCSM(7) 22 20 8 19.5 69.5

CCSM(9) 19 27 9 17 72

CNRM 36 29 26 30.5 121.5 14

CSIRO 34 16 32 28.5 110.5 11

GFDL2.0 14 14 43 34 105 10

GFDL2.1 15 32 15 17.5 79.5 9

GISS-AOM(1) 40 39 20 30.5 129.5

GISS-AOM(2) 39 40 17 29.5 125.5 15

GISS-EH(1) 45 44 35 35.5 159.5 22

GISS-EH(2) 44 46 37 39 166

GISS-EH(3) 46 45 36 36.5 163.5

GISS-ER(1) 42 41 28 36 147 19

GISS-ER(2) 43 43 31 36.5 153.5

GISS-ER(4) 41 42 29 36 148

HadCM3 5 1 13 12 31 1

HadGEM 35 33 39 28 135 17

IAP(1) 31 36 46 44 157

IAP(2) 32 38 45 45 160

IAP(3) 29 37 44 44 154 21

INGV 3 13 12 28 56 5

INM 30 35 40 35 140 18

IPSL 38 31 34 29.5 132.5 16

MIROCh 33 2 14 14.5 63.5 7

MIROCm(1) 16 15 22 17 70

MIROCm(2) 17 8 21 17 63 6

MIROCm(3) 18 18 16 17.5 69.5

MIUB(1) 2 6 30 18.5 56.5

MIUB(2) 4 5 27 19.5 55.5 4

MIUB(3) 1 4 33 19 57

MPI(1) 9 17 2 10.5 38.5

MPI(2) 12 21 3 12 48

MPI(3) 11 12 1 10.5 34.5 2

MRI(1) 13 9 18 5 45

MRI(2) 10 10 25 10.5 55.5

MRI(3) 6 7 19 5.5 37.5 3

MRI(4) 7 3 23 8 41

MRI(5) 8 11 24 11.5 54.5

PCM 37 34 41 38.5 150.5 20

* Monthly pattern rank is the rank of the average of the monthly pattern NSEs for precipitation and

temperature.

model development. Our observation is consistent with Mas-

son and Knutti (2011) who comment that “. . . model reso-

lution in CMIP3 seems to only affect performance in sim-

ulating present-day temperature for small scales over land”

(p. 2691) and for precipitation they comment that “. . . no

clear relation seems to exist at least within the relatively nar-

row range of resolutions covered by CMIP3“ (p. 2686).

5.2 Joint comparison of precipitation and temperature

In using GCM climate scenarios in a water resources study,

it is appropriate to ensure consistency between precipitation

and temperature by adopting projections of these variables
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Table 9. Better performing CMIP3 GCMs identified from the liter-

ature and our analyses.

Grid cells Literature Better performing

(Tables 4 and 8) (Table 3) GCMs

(Col. 1) (Col. 2) (Col. 3)

CCCMA-t47

CCSM

GFDL2.0

GFDL2.1

HadCM3 HadCM3 HadCM3

INGV

MIROCh*

MIROCm MIROCm MIROCm

MIUB MIUB* MIUB

MPI MPI MPI

MRI MRI MRI

* Added to list – see Section 5.3 for explanation.

from the same GCM run. Grid cell based NSEs for mean an-

nual temperature and mean annual precipitation from each

GCM are compared in Fig. 7, which illustrates the perfor-

mance of each GCM for both variables. Models that have

relatively high NSEs for precipitation do not necessarily have

relatively high values for temperature. It is interesting to note

that the rank of the models based on NSE of the MAP is

unrelated to the ranking of the models based on MAT. For-

tunately, however, most of the NSEs for MAT are relatively

high and the acceptance or rejection of a GCM as a better

performing model is largely dependent on its precipitation

characteristics.

5.3 Identifying better performing GCMs

To identify the better performing GCMs across the differ-

ent variables assessed, the results in Table 4 are ranked by

NSE and summarised in Table 8. The monthly patterns of

precipitation and temperature are combined by ranking the

average of their respective NSE values. The overall rank

for each GCM run is based on combining, by addition, the

ranks for the individual variables and, finally, identifying the

best performing run from each GCM. Selection of the bet-

ter performing GCMs using these rankings is not inconsis-

tent with Stainforth et al. (2007) who argued that model re-

sponse should not be weighted but ruled in or out. From Ta-

ble 8 we identify several GCMs, listed in Table 9, as bet-

ter performing models. These selected GCMs were based

on the assumption that performance across the four vari-

ables (MAP, SDP, MAT and combined monthly pattern) is

equally weighted. GCMs that achieved MAP NSE > 0.50,

SDP NSE > 0.45, MAT NSE > 0.95 and mean monthly pat-

tern of precipitation NSE > 0.0 (Table 4) were identified as

better performing. (Because nearly all the GCM runs mod-

elled mean monthly patterns of temperature satisfactorily,
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Figure 7. Comparison of Nash–Sutcliffe efficiency (NSE) values

between CMIP3 GCM and observed mean annual temperatures

with NSE values between CMIP3 GCM and observed mean annual

precipitation.

this measure was not considered in the selection of models

listed in column 1, Table 9.) The following GCMs were se-

lected (Table 9): HadCM3, INGV (National Institute of Geo-

physics and Vulcanology, Italy), MIROCm, MIUB, MPI and

MRI. INGV was included although it failed the monthly pre-

cipitation pattern criterion. The above criteria were selected

to identify a small number of GCMs that would require less

bias correction to produce annual precipitation and tempera-

ture consistent with observations.

In Table 9, we summarise our observations from the liter-

ature review in Sect. 2 and the results from our analyses in

Tables 4 and 8, where we identified six GCMs that satisfied

our selection criteria (Table 9, column 1). From the litera-

ture review (Table 3), eight GCMs were identified as being

satisfactory. We have added MIUB because in the literature

review it ranked first overall, although no guidance was avail-

able from Reichler and Kim (2008). We also added MIROCh

to this list as it performed better according to Gleckler et

al. (2008) than several models in the above list and met the

performance index of Reichler and Kim (2008). Columns 1

and 2 of Table 9 suggest there is some consistency between

our analyses from a hydrologic perspective and that reported

in the literature from a climatological perspective. From the

table, we identify that, in terms of our objective to assess

how well the CMIP3 GCMs are able to reproduce observed

annual precipitation and temperature statistics and the mean

monthly patterns of precipitation and temperature, the fol-

lowing models are deemed acceptable for the next phase of

our project: HadCM3, MIROCm, MIUB, MPI and MRI. Al-

though not used in the selection criteria we observe our se-

lected GCMs performed well in the Köppen–Geiger climate

assessment. We note here that INGV also performed satisfac-

torily but it was not included in our adopted GCMs as it was

not reviewed in the papers of Gleckler et al. (2008), Reichler

and Kim (2008) and Macadam et al. (2010).
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Figure 8. Ratio of 2015–2034 to 1965–1994 mean annual precipita-

tion compared with the change in mean annual temperature (2015–

2034 to 1965–1994) for the selected five CMIP3 GCMs runs com-

pared with the 23 CMIP3 GCMs including all ensemble members

for the global land surface.

5.4 Comparing future responses of selected GCMs

In order to confirm that the selected GCM runs are represen-

tative of the range of future responses to climate change in

the CMIP3 ensemble, we plot in Fig. 8 the ratio of mean an-

nual precipitation for the period 2015–2034 (from the A1B

scenario) to 1965–1994 against the mean annual temperature

difference between 2015–2034 and 1965–1994 for the global

land surface. The five selected GCM runs are well distributed

amongst the 44 GCM ensemble members, which indicates

that the selected GCMs are reasonably representative of the

range of future GCM projections if all the runs were consid-

ered. We observe that most GCM runs are clustered around

the median response, except for the seven CCSM runs in the

top right quadrant with a precipitation ratio >∼ 1.04.

6 Conclusions

Our primary objective in this paper is to identify better per-

forming GCMs from a hydrologic perspective over global

land regions. The better performing GCMs were identified

by their ability to reproduce observed climatological statis-

tics (mean and the standard deviation of annual precipitation

and mean annual temperature, and the mean monthly patterns

of precipitation and temperature) for hydrologic simulation.

The GCM selection process was informed by our results pre-

sented here and by a literature review of CMIP3 GCM perfor-

mance. In terms of the NSE there was a large spread in val-

ues for mean annual precipitation and the standard deviation

of annual precipitation over concurrent periods. The highest

NSE for mean annual precipitation was 0.68 and 0.57 for the

standard deviation of annual precipitation. On the other hand,

for mean annual temperatures, the NSEs between modelled

and observed data were very high, with median NSE being

0.97. Overall, all GCMs reproduced the Köppen–Geiger cli-

mate satisfactorily at the broad first letter level. From the lit-

erature, the following GCMs were identified as being suit-

able to simulate annual precipitation and temperature statis-

tics: CCCMA-T47, CCSM, GFDL2.0, GFDL2.1, HadCM3,

MIROCh, MIROCm, MIUB, MPI and MRI. After combin-

ing our results with the literature the following GCMs were

considered the better performing models from a hydrologic

perspective: HadCM3, MIROCm, MIUB, MPI and MRI. The

future response of the better performing GCMs was found to

be representative of the 44 GCM ensemble members which

confirms that the selected GCMs are reasonably representa-

tive of the range of future GCM projections. Our approach

for evaluating GCM performance for hydrologic simulation

could be applied to CMIP5 runs.

The Supplement related to this article is available online

at doi:10.5194/hess-12-361-2015-supplement.

Acknowledgements. This research was financially supported

by Australian Research Council grant LP100100756 and

FT120100130, Melbourne Water and the Australian Bureau of

Meteorology. Lionel Siriwardena, Sugata Narsey and Dr Ian Smith

assisted with extraction and analysis of CMIP3 GCM data. Lionel

Siriwardena also assisted with extraction and analysis of the CRU

3.10 data. We acknowledge the modelling groups, the Program

for Climate Model Diagnosis and Intercomparison (PCMDI) and

the WCRP’s Working Group on Coupled Modelling (WGCM) for

their roles in making available the WCRP CMIP3 multi-model data

set. Support of this data set is provided by the Office of Science,

U.S. Department of Energy. The authors thank two anonymous

reviewers who provided stimulating comments on the discussion

paper.

Edited by: A. Loew

References

Boer, G. J. and Lambert, S. J.: Second order space–time climate

difference statistics, Clim. Dynam., 17, 213–218, 2001.

Bonsal, B. T. and Prowse, T. D.: Regional assessment of GCM-

simulated current climate over Northern Canada, Arctic, 59,

115–128, 2006.

Charles, S. P., Bari, M. A., Kitsios, A., and Bates, B. C.: Effect

of GCM bias on downscaled precipitation and runoff projections

for the Serpentine catchment, Western Australia, Int. J. Climatol.,

27, 1673–1690, 2007.

Chervin, R. M.: On the Comparison of Observed and GCM Simu-

lated Climate Ensembles, J. Atmos. Sci., 38, 885–901, 1981.

Chiew, F. H. S. and McMahon, T. A.: Modelling the impacts of

climate change on Australian streamflow, Hydrol. Process., 16,

1235–1245, 2002.

www.hydrol-earth-syst-sci.net/19/361/2015/ Hydrol. Earth Syst. Sci., 19, 361–377, 2015

http://dx.doi.org/10.5194/hess-12-361-2015-supplement


376 T. A. McMahon et al.: CMIP3 global climate models for hydrologic simulation

Covey, C., Achutarao, K. M., Cubasch, U., Jones, P., Lambert S. J.,

Mann, M. E., Phillips, T. J., and Taylor, K. E.: An overview of

results from the Coupled Model Intercomparison Project, Global

Planet. Change, 37, 103–133, 2003.

Dessai, S., Lu, X., and Hulme, M.: Limited sensitivity analysis of

regional climate change probabilities for the 21st century, J. Geo-

phys. Res., 110, D19108, doi:10.1029/2005JD005919, 2005.

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C.,

Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest,

C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C.,

and Rummukainen, M.: Evaluation of Climate Models, in: Cli-

mate Change 2013: The Physical Science Basis. Contribution of

Working Group I to the Fifth Assessment Report of the Intergov-

ernmental Panel on Climate Change, edited by: Stocker, T. F.,

Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J.,

Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge Uni-

versity Press, Cambridge, United Kingdom and New York, NY,

USA, 2013.

Foody, G. M.: Thematic map comparison: Evaluating the statisti-

cal significance of differences in classification accuracy, Pho-

togramm. Eng. Remote S., 70, 627–633, 2004.

Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance met-

rics for climate models, J. Geophys. Res.-Atmos., 113, D06104,

doi:10.1029/2007JD008972, 2008.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-

position of the mean squared error and NSE performance criteria:

Implications for improving hydrological modelling, J. Hydrol.,

377, 80–91, 2009.

Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., and

Piani, C.: Impact of a statistical bias correction on the projected

hydrological changes obtained from three GCMs and two hydrol-

ogy models, J. Hydrometeorol. 12, 556–578, 2011.

Heo, K.-Y., Ha, K.-J., Yun, K.-S., Lee, S.-S., Kim, H.-J., and Wang,

B.: Methods for uncertainty assessment of climate models and

model predictions over East Asia, Int. J. Climatol., 34, 377–390,

doi:10.1002/joc.2014.34.issue-2, 2014.

Johns, T. C., Durman, C. F., Banks, H. T., Roberts, M. J., Mclaren,

A. J., Ridley, J. K., Senior, C. A., Williams, K. D., Jones, A.,

Rickard, G. J., Cusack, S., Ingram, W. J., Crucifix, M., Sexton,

D. M. H., Joshi, M. M., Dong, B.-W., Spencer, H., Hill, R. S. R.,

Gregory, J. M., Keen, A. B., Pardaens, A. K., Lowe, J. A., Bodas-

Salcedo, A., Stark, S., and Searl, Y.: The new Hadley Centre cli-

mate model (HadGEM1): evaluation of coupled simulations, J.

Climate, 19, 1327–1353, 2006.

Johnson, F. M. and Sharma, A.: GCM simulations of a future cli-

mate: How does the skill of GCM precipitation simulations com-

pare to temperature simulations, 18th World IMACS/MODSIM

Congress, Cairns, Australia, 2009a.

Johnson, F. and Sharma, A.: Measurement of GCM skill in pre-

dicting variables relevant for hydroclimatological assessments,

J. Climate, 22, 4373–4382, 2009b.

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.:

Challenges in combining projections from multiple climate mod-

els, J. Climate, 23, 2739–2758, 2010.

Knutti, R., Masson, D., and Gettelman, A.: Climate model geneal-

ogy: Generation CMIP5 and how we got there, Geophys. Res.

Lett., 40, 1194–1199, 2013.

Lambert, S. J. and Boer, G. J.: CMIP1 evaluation and intercompari-

son of coupled climate models, Clim. Dynam., 17, 83–106, 2001.

Legates, D. R. and Willmott, C. J.: A comparison of GCM-

simulated and observed mean January and July precipitation,

Global Planet. Change, 5, 345–363, 1992.

Macadam, I., Pitman, A. J., Whetton, P. H., and Abramowitz, G.:

Ranking climate models by performance using actual values and

anomalies: Implications for climate change impact assessments,

Geophys. Res. Lett., 37, L16704, doi:10.1029/2010GL043877,

2010.

MacLean, A.: Statistical evaluation of WATFLOOD (Ms), Univer-

sity of Waterloo, Ontario, Canada, 2005.

Maidment, D. R.: Handbook of Hydrology, McGraw-Hill Inc., New

York, 1992.

Masson, D. and Knutti, R.: Spatial-scale dependence of climate

model performance in the CMIP3 ensemble, J. Climate, 24,

2680-2692, 2011.

McMahon, T. A. and Adeloye, A. J.: Water Resources Yield, Water

Resources Publications, CO, USA, 220 pp., 2005.

McMahon, T. A., Peel, M. C., Pegram, G. G. S., and Smith, I. N.:

A simple methodology for estimating mean and variability of an-

nual runoff and reservoir yield under present and future climates,

J. Hydrometeorol., 12, 135–146, 2011.

Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B.,

Mitchell, J. F. B., Stouffer, R. J., and Taylor, K. E.: The WCRP

CMIP3 multi-model dataset: A new era in climate change re-

search, B. Am. Meteorol. Soc., 88, 1383–1394, 2007.

Min, S.-K. and Hense, A.: A Bayesian approach to climate

model evaluation and multi-model averaging with an appli-

cation to global mean surface temperatures from IPCC AR4

coupled climate models, Geophys. Res. Lett., 33, L08708,

doi:10.1029/2006GL025779, 2006.

Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb,

M. J., Collins, M. J., and Stainforth, D. A.: Quantification of

modelling uncertainties in a large ensemble of climate change

simulations, Nature, 430, 768–772, 2004.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-

ceptual models Part 1 – A discussion of principles, J. Hydrol.,

10, 282–290, 1970.

New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution

data set of surface climate over global land areas, Clim. Res., 21,

1–25, 2002.

Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated

world map of the Köppen–Geiger climate classification, Hydrol.

Earth Syst. Sci., 11, 1633-1644, doi:10.5194/hess-11-1633-2007,

2007.

Peel, M. C., Srikanthan, R., McMahon, T. A., and Karoly, D. J.: Ap-

proximating uncertainty of annual runoff and reservoir yield us-

ing stochastic replicates of Global Climate Model data, Hydrol.

Earth Syst. Sci. Discuss., under review, 2015.

Perkins, S. E., Pitman, A. J., Holbrook, N. J., and McAneney, J.:

Evaluation of the AR4 climate models simulated daily maximum

temperature, minimum temperature and precipitation over Aus-

tralia using probability density functions, J. Climate, 20, 4356–

4376, 2007.

Phillips, N. A.: The general circulation of atmosphere: a numerical

experiment, Q. J. Roy. Meteorol. Soc., 82, 123–164, 1956.

Räisänen, J.: How reliable are climate models?, Tellus A, 59, 2–29,

2007.

Hydrol. Earth Syst. Sci., 19, 361–377, 2015 www.hydrol-earth-syst-sci.net/19/361/2015/

http://dx.doi.org/10.1029/2005JD005919
http://dx.doi.org/10.1029/2007JD008972
http://dx.doi.org/10.1002/joc.2014.34.issue-2
http://dx.doi.org/10.1029/2010GL043877
http://dx.doi.org/10.1029/2006GL025779
http://dx.doi.org/10.5194/hess-11-1633-2007


T. A. McMahon et al.: CMIP3 global climate models for hydrologic simulation 377

Raju, K. S. and Kumar, D. N.: Ranking of global climate models

for India using multicriterion analysis, Clim. Res., 60, 103–117,

2014.

Randall, R. A. and Wood, R. A. (Coordinating lead authors):

Climate models and their evaluation. Contribution of Working

Group I to the Fourth Assessment Report of the Intergovernmen-

tal Panel on Climate Change AR4, Chap. 8, 589–662, 2007.

Reichler, T. and Kim, J.: How well do coupled models simulate to-

day’s climate?, B. Am. Meteorol. Soc., 89, 303–311, 2008.

Reifen, C. and Toumi, R.: Climate projections: Past performance

no guarantee of future skill?, Geophys. Res. Lett., 36, L13704,

doi:10.1029/2009GL038082, 2009.

Shukla, J., DelSole, T., Fennessy, M., Kinter, J., and Paolino, D.:

Climate model fidelity and projections of climate change, Geo-

phys. Res. Lett., 33, L07702, doi:10.1029/2005GL025579, 2006.

Smith, I. and Chandler, E.: Refining rainfall projections for the Mur-

ray Darling Basin of south-east Australia – the effect of sampling

model results based on performance, Clima. Change, 102, 377–

393, 2010.

Stainforth, D. A., Allen, M. R., Tredger, E. R., and Smith, L. A.:

Confidence, uncertainty and decision-support relevance in cli-

mate predictions, Philos. T. R. Soc. A, 365, 2145–2161, 2007.

Suppiah, R., Hennessy, K. L., Whetton, P. H., McInnes, K.,

Macadam, I., Bathols, J., Ricketts, J., and Page, C. M.: Australian

climate change projections derived from simulations performed

for IPCC 4th Assessment Reportm Aust. Met. Mag, 56, 131–152,

2007.

Taylor, K. E.: Summarizing multiple aspects of model performance

in a single diagram, J. Geophys. Res., 106, 7183–7192, 2001.

van Oldenborgh, G. J., Philip, S. Y., and Collins, M: El Niño in

a changing climate: a multi-model study, Ocean Sci., 1, 81–95,

doi:10.5194/os-1-81-2005, 2005.

Watterson, I. G.: Calculation of probability density functions for

temperature and precipitation change under global warming, J.

Geophys. Res., 113, D12106, doi:10.1029/2007JD009254, 2008.

Whetton, P., McInnes, K. L., Jones, R. J., Hennessy, K. J., Suppiah,

R., Page, C. M., and Durack, P. J.: Australian Climate Change

Projections for Impact Assessment and Policy Application: A

Review, CSIRO Marine and Atmospheric Research Paper 001,

available at: www.cmar.csiro.au/e-print/open/whettonph_2005a.

pdf, 2005.

Xu, C. Y.: Climate change and hydrologic models: A review of

existing gaps and recent research developments, Water Resour.

Manag., 13, 369–382, 1999.

www.hydrol-earth-syst-sci.net/19/361/2015/ Hydrol. Earth Syst. Sci., 19, 361–377, 2015

http://dx.doi.org/10.1029/2009GL038082
http://dx.doi.org/10.1029/2005GL025579
http://dx.doi.org/10.5194/os-1-81-2005
http://dx.doi.org/10.1029/2007JD009254
www.cmar.csiro.au/e-print/open/whettonph_2005a.pdf
www.cmar.csiro.au/e-print/open/whettonph_2005a.pdf

	Abstract
	Introduction
	Literature
	Procedures to assess GCM performance
	Results of CMIP3 GCMs assessments

	Data
	Comparison of present climate GCM data with observed data
	Mean annual precipitation
	Standard deviation of annual precipitation
	Mean annual temperature
	Average monthly precipitation and temperature patterns
	Köppen--Geiger classification

	Discussion
	Relating GCM resolution to performance
	Joint comparison of precipitation and temperature
	Identifying better performing GCMs
	Comparing future responses of selected GCMs

	Conclusions
	Acknowledgements
	References

