Articles | Volume 19, issue 6
https://doi.org/10.5194/hess-19-2821-2015
https://doi.org/10.5194/hess-19-2821-2015
Research article
 | 
19 Jun 2015
Research article |  | 19 Jun 2015

Including the dynamic relationship between climatic variables and leaf area index in a hydrological model to improve streamflow prediction under a changing climate

Z. K. Tesemma, Y. Wei, M. C. Peel, and A. W. Western

Related authors

Effect of year-to-year variability of leaf area index on variable infiltration capacity model performance and simulation of streamflow during drought
Z. K. Tesemma, Y. Wei, M. C. Peel, and A. W. Western
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-10515-2014,https://doi.org/10.5194/hessd-11-10515-2014, 2014
Revised manuscript not accepted

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025,https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025,https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025,https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025,https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025,https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary

Cited articles

Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant Cell Environ., 30, 258–270, https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, 1998.
Bunce, J. A.: Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions, Oecologia, 140, 1–10, https://doi.org/10.1007/s00442-003-1401-6, 2004.
Cai, W. and Cowan, T.: Evidence of impacts from rising temperature on inflows to the Murray–Darling Basin, Geophys. Res. Lett., 35, L07701, https://doi.org/10.1029/2008GL033390, 2008.
Chiew, F. H. S., Teng, J., Vaze, J., Post, D. A., Perraud, J. M., Kirono, D. G. C., and Viney, N. R.: Estimating climate change impact on runoff across southeast Australia: method, results, and implications of the modeling method, Water Resour. Res., 45, W10414, https://doi.org/10.1029/2008WR007338, 2009.
Download
Share