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Abstract. Anthropogenic climate change is projected to en-

rich the atmosphere with carbon dioxide, change vegetation

dynamics and influence the availability of water at the catch-

ment scale. This study combines a nonlinear model for es-

timating changes in leaf area index (LAI) due to climatic

fluctuations with the variable infiltration capacity (VIC) hy-

drological model to improve catchment streamflow predic-

tion under a changing climate. The combined model was ap-

plied to 13 gauged sub-catchments with different land cover

types (crop, pasture and tree) in the Goulburn–Broken catch-

ment, Australia, for the “Millennium Drought” (1997–2009)

relative to the period 1983–1995, and for two future peri-

ods (2021–2050 and 2071–2100) and two emission scenar-

ios (Representative Concentration Pathway (RCP) 4.5 and

RCP8.5) which were compared with the baseline histori-

cal period of 1981–2010. This region was projected to be

warmer and mostly drier in the future as predicted by 38 Cou-

pled Model Intercomparison Project Phase 5 (CMIP5) runs

from 15 global climate models (GCMs) and for two emis-

sion scenarios. The results showed that during the Millen-

nium Drought there was about a 29.7–66.3 % reduction in

mean annual runoff due to reduced precipitation and in-

creased temperature. When drought-induced changes in LAI

were included, smaller reductions in mean annual runoff of

between 29.3 and 61.4 % were predicted. The proportional

increase in runoff due to modeling LAI was 1.3–10.2 % rel-

ative to not including LAI. For projected climate change

under the RCP4.5 emission scenario, ignoring the LAI re-

sponse to changing climate could lead to a further reduc-

tion in mean annual runoff of between 2.3 and 27.7 % in the

near-term (2021–2050) and 2.3 to 23.1 % later in the century

(2071–2100) relative to modeling the dynamic response of

LAI to precipitation and temperature changes. Similar results

(near-term 2.5–25.9 % and end of century 2.6–24.2 %) were

found for climate change under the RCP8.5 emission sce-

nario. Incorporating climate-induced changes in LAI in the

VIC model reduced the projected declines in streamflow and

confirms the importance of including the effects of changes

in LAI in future projections of streamflow.

1 Introduction

Recently, climate changes have been observed in different

parts of Australia (Chiew et al., 2011; Cai and Cowan, 2008;

Hughes et al., 2012; Lockart et al., 2009; Potter and Chiew,

2011). Specifically, southeastern Australian catchments have

experienced changes in streamflow due to fluctuations in cli-

mate as observed during the recent “Millennium Drought”

(1997–2009) which lasted more than a decade (Chiew et

al., 2011; Verdon-Kidd and Kiem, 2009). This drought may

be representative of future climatic conditions in this region.

The projected water availability for future climates derived

from downscaled outputs from global and regional climate

models indicate increases of mean annual runoff by 10–40 %

in some parts of the world (high northern latitudes) and 10–

30 % reduction elsewhere (southern Europe, Middle East and

southeastern Australia) (Milly et al., 2005). More recently,

Roderick and Farquhar (2011) examined climate and catch-

ment characteristics for sensitivity to changes in runoff in

the Murray–Darling Basin in southeast Australia from a the-

oretical point of view and estimated that a 10 % change in

precipitation would lead to a 26 % change in runoff and a
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10 % change in potential evaporation would lead to a 16 %

change in runoff with all other variables being constant. In

southeastern Australia it has been projected that there will be

a reduction in mean annual runoff of 10 % on average when

different climate models are used as input to hydrological

models (Cai and Cowan, 2008; Chiew et al., 2009; Roder-

ick and Farquhar, 2011; Teng et al., 2012a; Vaze and Teng,

2011). These studies assessed the possible impacts of climate

change on total runoff based on rainfall–runoff relationships

which only considered first-order effects of changes in pre-

cipitation and temperature with subsequent impacts on evap-

orative demand.

There is evidence that such relationships are not station-

ary over time (Chiew et al., 2014; Peel and Blöschl, 2011;

Vaze et al., 2010), which implies that the studies discussed in

the previous paragraph may be missing an important factor.

One approach to improving modeling under changing con-

ditions is to use a year-to-year variable monthly leaf area in-

dex (LAI) in the hydrological model. Using observed climate

variability and streamflow responses, observed monthly LAI

has been shown to improve soil moisture prediction (Ford

and Quiring, 2013). The improvements are largest under ei-

ther relatively wet or dry climatic conditions, i.e., in wet and

dry years, rather than average years. In most of southeastern

Australia, LAI primarily responds to the availability of water

and changes in vegetation type, such as conversion of forest

to cropland or pasture, but also responds, to a lesser extent,

to changes in temperature and rising atmospheric CO2 con-

centrations. Most of these LAI responses are expected to be

affected by projected climate change. These climate-induced

changes in vegetation LAI may impact on evapotranspira-

tion and runoff and hence should be considered when making

runoff projections for climate change scenarios.

Dynamic global vegetation models (DGVMs) have been

used to assess the vegetation effect of climate change on

large-scale hydrological processes and patterns (Murray et

al., 2012, 2011). A list of available DGVMs and their pro-

cess representations (photosynthesis, respiration, allocation,

and phenology) can be found in Wullschleger et al. (2014),

while Scheiter et al. (2013) provides a review of the possible

sources of uncertainty related to representation of plant func-

tional type (PFT) in DGVMs. Most DGVMs overestimate

runoff, which is mainly due to model structure problems

and operating at low spatial and temporal resolution (Mur-

ray et al., 2013). While the relationships between LAI and

climatic fluctuation have been modeled (Ellis and Hatton,

2008; O’Grady et al., 2011; Jahan and Gan, 2011; Palmer et

al., 2010; Tesemma et al., 2014; White et al., 2010), none

of them have been incorporated into hydrological models

for the purpose assessing future climate change impacts on

streamflow. The poor hydrological sub-models in DGVMs

and the static vegetation in most hydrological models mean

that importance of the indirect vegetation-related (LAI) ef-

fects relative to the direct effects of changes in precipita-

tion and temperature on hydrological response at catchment

scale have rarely been studied. This limits understanding of

the linkages between climatic fluctuations and vegetation dy-

namics, and their combined impacts on hydrological pro-

cesses.

The main objective of this study is to examine the rel-

ative effects on mean annual runoff of changes in direct

climate forcing (mainly precipitation and temperature) and

direct climate forcing combined with climate-induced LAI

changes under changed climate scenarios. Comparative anal-

ysis of these two cases enables the effect on mean annual

runoff of allowing LAI to respond to a changing climate to be

identified. Specifically, our study combined the LAI–Climate

model developed in Tesemma et al. (2014) with the Vari-

able Infiltration Capacity (VIC) model to assess the impact

on catchment runoff of how LAI is modeled (year-to-year

constant monthly LAI or year-to-year variable mothly LAI

in response to climate) under changing climatic conditions.

As noted above, this combined model showed significant im-

provements in runoff simulations under historical conditions.

Here we investigate two sets of changing climatic conditions:

(1) the observed Millennium Drought (1997–2009), which is

a persistent (> 10 years) large change in climate; and (2) pro-

jected climate change for both wet and dry catchments using

38 Coupled Model Intercomparison Project Phase 5 (CMIP5)

runs from 15 different global climate models (GCMs) for two

future periods, 2021–2050 and 2071–2100, for two emission

scenarios, Representative Concentration Pathway (RCP) 4.5

and RCP8.5. The results obtained from this study are ex-

pected to demonstrate whether modeling LAI in a way that

responds to changing climatic conditions is important for

modeling runoff during projected climate change in the study

area.

2 Research approach

This section provides details about the data set, the character-

istics of the selected catchments and the modeling exercises.

The catchment characteristics and data set used in this study

are briefly described in Sect. 2.1. The application of multi-

ple outputs from GCMs and emission scenario methods is

explained in Sect. 2.2. The relationship between LAI and cli-

matic variables is presented in Sect. 2.3, and the hydrological

modeling experiment approach used to assess the impact of

changes in climate on runoff is described in Sect. 2.4.

2.1 Catchment characteristics and data set

All the study sub-catchments are located in the Goulburn–

Broken catchment which is a tributary of the Murray–

Darling Basin, Australia. The Goulburn–Broken catchment

extends between 35.8 and 37.7◦ S and between 144.6 and

146.7◦ E (Fig. 1a) with a range of altitude from approxi-

mately 1790 m on the southern side to 86 m a.m.s.l. on the

northern side of the catchment. The mean annual precipi-
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tation of the study sub-catchment ranges from 659 (in the

north) to 1407 mm year−1 (in the south) calculated for the

period 1982–2012. The majority of the precipitation (about

60 %) occurs during winter and spring. The reference poten-

tial evapotranspiration (PET) calculated using the Food and

Agricultural Organization (FAO56) method ranges from 903

(in the north) to 1046 mmyear−1 (in the south). Hence, the

dryness index (mean annual reference potential evapotran-

spiration divided by mean annual precipitation) varies from

0.64 to 1.6 (Fig. 1b). The dominant land cover type in most of

the catchments is forest (mainly tall open Eucalyptus forest

and Eucalyptus woodlands) with some pasture in all catch-

ments. A small amount of cropland is located in some of the

catchments (Fig. 1c).

Gridded input data used for the hydrological modeling in-

clude the daily precipitation, maximum and minimum tem-

perature, vapor pressure and solar exposure data obtained

from the Australian Water Availability Project (AWAP) of

the Bureau of Meteorology (Jones et al., 2009) and gridded

daily wind run data from McVicar et al. (2008) that were

generated from point measurements. All data have a spa-

tial resolution of 0.05◦×0.05◦ (approximately 5km×5km),

and the period from 1982 to 2012 was selected for this

study. The daily streamflow data at the outlet of the se-

lected calibration sub-catchments were obtained from the

Victorian Water Resources Warehouse (http://data.water.vic.

gov.au/monitoring.htm). The missed streamflow data were

filled by regressing between neighboring catchments. The

elevation data were collected from the GEODATA 9 Sec-

ond Digital Elevation Model (DEM-9S) Version 3 (Geo-

science Australia, 2008). The elevation data were resam-

pled to a resolution of 0.05◦× 0.05◦ using the spatial av-

erage. The land cover input data were derived from the

National Dynamic Land Cover Data set which provides a

land cover map for the whole of Australia at a resolution

of 0.00235◦× 0.00235◦ (approximately 250m× 250m) and

can be accessed at http://www.ga.gov.au/metadata-gateway/

metadata/record/gcat_71071. LAI data were collected from

the Global Land Surface Satellite (GLASS) product which

is available for download from Beijing Normal University

(http://www.bnu-datacenter.com). The soil parameters in the

VIC model running resolution were derived from the 5’ res-

olution Food and Agriculture Organization data set (FAO,

1995). The root distribution in three soil layers was derived

from the global ecosystem root distribution data set (Schenk

and Jackson, 2002).

2.2 Applying multiple GCMs and multiple emission

scenarios

Outputs from 15 GCM from the CMIP5 (Taylor et al., 2012)

were used as input into VIC model. CMIP5 contains model

runs for four representative concentration pathways (RCPs),

which provide radiative forcing scenarios over the 21st cen-

tury (Moss et al., 2010; Vuuren et al., 2011). In this study

Figure 1. Location map of the study area (a), dryness index (mean

annual reference evapotranspiration divided by mean annual precip-

itation) (b) and land cover type (c).

two emission scenarios were chosen: a midrange mitigation

scenario, referred to as RCP4.5 and a high emissions sce-

nario RCP8.5 (Meinshausen et al., 2011). RCP4.5 results in

a radiative forcing value of 4.5 Wm−2 at the end of the 21st

century relative to the preindustrial value, while RCP8.5 pro-

vides a radiative forcing increase throughout the 21st century

to a maximum of 8.5 Wm−2 at the end of the century.

CMIP5 GCM data were obtained from http://climexp.

knmi.nl (last accessed 28 February 2014). These data were

re-sampled to a common grid resolution of 2.5◦ since each

GCM has a different spatial resolution (some are the same,

but most are different). A total of 38 RCP4.5 and 38 RCP8.5

runs from 15 different GCMs have been used in this study

to include the possible uncertainty among climate models.

For each of the 38 runs, daily precipitation, minimum and

maximum temperature data were collected for three periods:

1981–2010 (historical run), 2021–2050 and 2071–2100 (fu-

ture runs). An assessment of the ability of the CMIP5 runs to

reproduce the observed baseline seasonality of precipitation,

minimum and maximum temperature is shown in Fig. 2. The

seasonality in precipitation and temperature were well cap-

tured by most CMIP5 runs, with biases which require cor-

rection.

Low-spatial-resolution GCM outputs require downscaling

for application in catchment hydrology studies. Here the

“delta-change” statistical downscaling technique was used

to downscale and bias-correct the GCM outputs (Fowler et

al., 2007). Delta-change was selected due to its low com-

putational intensiveness and easy applicability to a range of

GCMs. We acknowledge the limitations of this method in-

clude an assumption of stationarity in change factors, that

climate feedbacks are not incorporated and an inability to

capture changes in extreme events and year-to-year variabil-

ity. Dynamic downscaling, which solves some of these prob-
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Figure 2. Long-term mean monthly climate observations plotted

with the 38 CMIP5 runs during the baseline period (1980–2010)

for the Goulburn–Broken catchment (a) long-term mean monthly

precipitation, (b) long-term mean monthly maximum temperature,

and (c) long-term mean monthly minimum temperature.

lems, was not used as it has high computational demand and

is not readily available for a range of GCM runs and sce-

narios (Fowler et al., 2007). A simple statistical downscal-

ing method was appropriate for this study as we were inter-

ested in the impact of including climate-induced LAI change

on the runoff results. In the study area, the monthly LAI is

strongly related to 6-month and/or 9-month moving average

moisture state (precipitation minus reference potential evap-

otranspiration) (Tesemma et al., 2014). Therefore, so long

as the precipitation is consistent between the two runs, we

can assess the importance of the change in LAI representa-

tion between model runs. It has been suggested that extreme

precipitation might change differently to mean precipitation

under climate change (Harrold et al., 2005) and the delta-

change method does not capture this. Nevertheless, delta-

change was used as this study concentrates on average runoff,

which is strongly linked to overall catchment wetness, rather

than floods, which are linked to a combination of catchment

wetness and extreme precipitation. Hence, consideration of

extreme precipitation events is less important in this study.

Statistical downscaling was applied to each of the GCM

outputs and emission scenarios. Since the study area is cov-

ered by four GCM grid cells, the area weighted average

precipitation, minimum and maximum temperatures of the

GCM grid cells covering the study area were computed. The

area-weighted average values were then statistically down-

scaled using the delta-change approach. Delta changes were

calculated separately for each of the 12 months. For temper-

atures the delta changes were calculated using

1T(j)= T projn(j)− T baseline(j), (1)

where 1T (j) is the delta change in the 30-year mean

monthly minimum or maximum temperature as simulated by

the climate model for the future period and RCP of interest

(2021–2050 or 2071–2100, RCP4.5 or RCP8.5), T projn(j),

relative to the mean for the baseline period (1981–2010) cli-

mate model simulation, T baseline(j). j represents the month.

1T (j) is then applied to the daily baseline (1980–2010) ob-

servations, Tobs(j, i), for each pixel of the climate-gridded

data (which is the same as in the VIC model grid pixels)

to obtain the statistically downscaled minimum or maximum

daily temperature, T 1(j, i), for month j and day i.

T1(j, i)= Tobs(j, i)+1T(j) (2)

For precipitation, the delta-changes value is computed as a

proportional change rather than a shift:

1p(j)=
P projn(j)

P baseline(j)
. (3)

And is then applied to the observations using

P1(j, i)= Pobs(j, i) ·1p(j). (4)

Here 1P (j) is the delta change in 30-year mean monthly

precipitation as simulated by the climate model P projn(j) for

two future periods (2021–2050 and 2071–2100) relative to

the baseline simulation P baseline(j); P1(j, i) is the statisti-

cally downscaled daily precipitation for the projected future

climate change scenario for month j and day i, Pobs(j, i) is

observed daily precipitation for the historical period (1981–

2010) for month j and day i for each of the precipitation pix-

els of the gridded climate data. The delta-change approach

maintains a similar (but shifted or scaled) spatial variation

of temperature and precipitation as that in the historical, ob-

served gridded data. The daily pattern of weather variation

and the relationships between the various weather variables

are also maintained. Because historical weather data provides

the basis for the temporal patterns, the well-recognized issue

of “GCM drizzle” is eliminated. The delta-change method

also corrects for differences between the mean elevation of

the four GCM grid cells by scaling up or down the historical

spatial variation of temperature and precipitation across the

catchment.
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2.3 Relationship between LAI and climatic variables

Tesemma et al. (2014) showed that monthly LAI of each

vegetation type was closely related to changes in moisture

state (precipitation minus reference evapotranspiration) of 6-

month moving averages for crop and pasture, and 9-month

moving averages for trees. Differences in LAI response for

the same change in moisture state among the three vegeta-

tion types were also observed as differences in model param-

eters of the LAI–Climate relationship. Tesemma et al. (2014)

provide details on the derivation of the LAI–Climate rela-

tionship for the Goulburn–Broken catchment. The three LAI

models developed for crop, pasture and tree are given below.

LAI=



136.4836

1+exp

(
−

(
(P−PET)−159.4555

42.5607

)) , if crop

6.2495

1+exp

(
−

(
(P−PET)−43.6157

62.8487

)) , if pasture

4.2091

1+exp

(
−

(
(P−PET)+57.1849

36.9481

)) , if tree,

(5)

where LAI is the leaf area index of the cover type

(tree/pasture/crop), P is the 6-month moving average of pre-

cipitation for crop and pasture, and the 9-month moving av-

erage for trees, and PET is the respective reference potential

evapotranspiration.

The monthly LAI was then simulated for both historical

and future climate scenarios using the LAI–Climate model

(Eq. 5) driven with the appropriate climatic inputs. In this

study monthly average PET (mmday−1) was estimated us-

ing the standard FAO Penman–Monteith daily computations

(Allen et al., 1998) and then aggregating to monthly val-

ues. PET for future climate scenarios was computed using

the projected minimum and maximum temperatures,while

incoming shortwave radiation and vapor pressure were de-

rived from the daily temperature range using the algorithms

of Kimball et al. (1997) and Thornton and Running (1999).

The wind speed was kept the same as in the historical obser-

vations. A significant literature exists (see discussion in Sup-

plementary Material of McMahon et al., 2015) around the

issue of using temperature to drive future changes in PET.

We acknowledge this assumption and note that it is likely

to have limited impact on our runoff results in the mainly

water-limited catchments modeled here. The historical or fu-

ture precipitation was used in Eq. (5) according to the sce-

nario being modeled. Potential LAI variations in the baseline

years (1981–2010) and the two future periods (2021–2050

and 2071–2100), for each of the two future emission sce-

narios, were simulated using the downscaled outputs from

the 38 CMIP5 runs of the 15 GCMs, as input into the LAI–

Climate model (Eq. 5). The uncertainty ranges in modeled

LAI that come from the difference in climate input were de-

termined by using the downscaled 38 CMIP5 runs individu-

ally in Eq. (5).

2.4 Hydrological model and experimental design

In this study we used the three-layers VIC model (ver-

sion 4.1.2g) to simulate streamflow. The VIC macroscale

model is a spatially distributed conceptual hydrological

model that balances both water and energy budgets over

a grid cell. It simulates soil moisture, evapotranspiration,

snowpack, runoff, baseflow and other hydrological properties

at daily or sub-daily time steps by solving both the govern-

ing water and energy balance equations (Liang et al., 1996).

VIC estimates infiltration and runoff using the variable infil-

tration curve that represents the sub-grid spatial variability in

soil moisture capacity (Liang et al., 1994; Zhao et al., 1980)

and Penman–Monteith for potential evapotranspiration com-

putation. The ability of the model to incorporate the spatial

representation of climate and inputs of soil, vegetation and

other landscape properties make it applicable for climate and

land use/land cover change impact studies. The VIC model

has been widely used for a number of hydrological studies in

different climatic zones across the globe (Zhao et al., 2012a,

b; Cuo et al., 2013).

The seven most sensitive model parameters (b, Ds, Ws,

Dsmax, d2, d3 and exp) in the VIC model (Demaria et

al., 2007) were calibrated against observed streamflow from

13 selected sub-catchments with different climate and land

cover composition that are representative of the main runoff

generating regions of the Goulburn–Broken catchment. The

model parameters were calibrated separately for each se-

lected unregulated sub-catchment and applied uniformly

within a sub-catchment (Fig. 1). The Multi-Objective Com-

plex Evolution (MOCOM-UA) algorithm (Yapo et al., 1998)

was used to calibrate the model. This algorithm was imple-

mented on each of the selected catchments separately to cal-

ibrate the model against the observed runoff. The model was

first calibrated for the entire period (1982–2012); then, using

the calibrated parameters as initial guesses, the model was

re-calibrated for the period 1982–1997 and evaluated for the

period 1998–2012. During the calibration, VIC ran on a daily

basis but the objective function was calculated on a monthly

basis. Three criteria (objective functions) were used to eval-

uate the model’s performance during calibration: the Nash–

Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) be-

tween observed and simulated flow, the logarithm of Nash–

Sutcliffe efficiency (logNSE) which penalizes errors at peak

flow, and the percentage bias from the observed mean flow

(PBIAS).

The VIC model was run at daily time steps with in-

put data at 5km× 5km spatial grid resolution for 30 years,

from January 1981 to December 2010, to produce the base-

line run. Two model experiments were run: the first ex-

periment considered the recent historical climate (Millen-

nium Drought, 1997–2009) and LAI estimates using the

simple LAI–Climate model against the relatively normal

historical climate period (1983–1995). The second experi-

ment considered the future climate from 38 CMIP5 runs and
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corresponding LAI derivatives for two periods (2021–2050

and 2071–2100) and two emission scenarios RCP4.5 and

RCP8.5 with respect to the historical period (1981–2010).

Both sets of simulations were performed over the 13 cali-

brated sub-catchments within the Goulburn–Broken catch-

ment (Fig. 1b). A flowchart of the modeling method is given

in Fig. 3.

To identify the effect on mean annual runoff of allowing

LAI to respond to a changing climate, compared with LAI

not responding, we used the following steps: (1) the cali-

brated model was forced with inputs of historical climate

data and LAI data modeled from using the historical climate

data (1981–2010) to establish baseline streamflow estimates;

(2) the model was forced with projected future climate in-

puts and corresponding modeled LAI to produce projected

streamflow for future scenarios; (3) the future climates were

input along with the LAI data used in step 1 to produce pro-

jected streamflow that ignores projected LAI changes. The

difference in mean annual runoff between steps 3 and 1 repre-

sents the climate effect (CC effect) on mean annual runoff of

only precipitation and temperature. Whereas the difference in

mean annual runoff between steps 2 and 1 represents the net

effect (CC + LAI effect) on mean annual runoff of allowing

LAI to respond to a changing climate in addition to the di-

rect climate forcing (precipitation and temperature). The dif-

ference in mean annual runoff between steps 2 and 3 repre-

sents the component of the runoff response related to climate-

induced changes in LAI. For the Millennium Drought (1997–

2009), the above two changes in mean annual runoff were es-

timated in a similar fashion, taking the 1983–1995 time pe-

riod as a relatively normal period. The percentage change of

mean annual runoff against the historical mean annual runoff

for climate change effect (Qclim) (Eq. 6), climate change and

LAI effect (Qnet) (Eq. 7), and the percentage of CC effect

offset by LAI effect (Qlai) (Eq. 8) were estimated as follows:

Qclim =

[
100 ·

(
Qfuture climate

historical LAI−Qhistorical climate
historical LAI

)
Qhistorical climate

historical LAI

]
, (6)

Qnet =

[
100 ·

(
Qfuture climate

future LAI −Qhistorical climate
historical LAI

)
Qhistorical climate

historical LAI

]
, (7)

Qlai =

[
100 · (Qclim−Qnet)

Qnet

]
. (8)

3 Results

This section provides results from the modeling exercises.

First the model calibration and evaluation are discussed in

Sect. 3.1. The change in climatic variables during (1) the

recent observed prolonged drought and (2) future climate

change projections for the study catchments are presented in

Sect. 3.2. The impact on both LAI (Sect. 3.3) and catchment

streamflow (Sect. 3.4) of changes in climate input during the

Figure 3. Flowchart showing the modeling experiments and calcu-

lation of effects: CC effect indicates the climate change effect of

precipitation and temperature with unchanged LAI, CC + LAI ef-

fect indicates the climate change effect of precipitation, temperature

and leaf area index.

Millennium Drought and future climate change projections

are also provided. These results provide readers with a com-

parison of the anticipated future change in climate with the

recently observed drought.

3.1 Model calibration and evaluation results

The calibrated model parameters and model performance

during calibration (1982–1997) and evaluation (1998–2012)

periods for each sub-catchment are listed in Table 1. Most

of the calibrated catchments have a NSE of more than 70 %

during both calibration and evaluation periods (Table 1). In

most of the selected sub-catchments the simulated runoff

for both calibration and evaluation periods met the “sat-

isfactory” criteria according to Moriasi et al. (2007), with

a NSE > 50 % and the percentage absolute bias generally

less than 25 % during calibration and evaluation periods. Al-

though VIC captured the temporal variability of runoff well,

there were some systematic biases in the runoff simulated.

The model overestimates peak flow in a few cases and un-

derestimates low flow in most of the sub-catchments. The

sources of these biases need to be investigated in order to

understand the performance of the model. To do this, the es-

timated monthly biases are plotted against the monthly cli-

matic inputs: precipitation, temperature and LAI (not shown

here). The calibrated sub-catchments showed no relationship

between AWAP gridded climate data and simulated runoff

biases. The biases are likely related to the model structure

(Kalma et al., 1995) rather than the model inputs.
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Table 1. Calibrated model parameters and model performance during calibration (1982–1997) and evaluation (1998–2012) periods.

ID River and station name Model parameters Calibration Evaluation

(1982–1997) (1998–2012)

b Ds Ws d2 d3 Dsmax exp Nash logNash Bias Nash logNash Bias

(%) (%) (%) (%) (%) (%)

1 Moonee Creek – Lima 0.149 0.598 0.170 1.99 0.47 0.13 2.98 82.7 80.2 2.2 86.1 78.1 8.0

2 Delatite River – Tonga Bridge 0.062 0.014 0.755 0.81 1.88 0.30 2.95 82.7 91.9 6.4 84.2 89.4 −5.4

3 Howqua River – Glen Esk 0.244 0.291 0.006 1.65 0.28 11.60 1.15 90.4 89.4 −2.5 89.3 90.3 −0.8

4 Goulburn River – Dohertys 0.206 0.891 0.035 1.43 0.45 22.01 1.42 95.9 91.0 2.2 92.4 90.8 −2.4

5 Big river – Jamieson 0.183 0.610 0.736 1.70 0.81 0.01 2.19 89.7 86.5 8.9 81.5 85.7 11.9

6 Rubicon River – Rubicon 0.216 0.059 0.200 0.52 1.77 19.29 1.28 93.8 94.9 −2.4 87.4 92.0 3.4

7 Acheron River – Taggerty 0.168 0.030 0.293 1.97 1.84 0.16 2.59 82.6 85.8 9.5 82.4 84.4 −2.4

8 Murrindindi River – above Colwells 0.130 0.801 0.297 1.97 1.89 1.11 2.67 68.9 62.8 14.6 79.7 84.7 3.9

9 Yea River – Devlins Bridge 0.072 0.428 0.646 1.93 1.27 0.05 2.99 79.8 78.3 26.4 68.0 69.3 34.1

10 King Parrot Creek – Flowerdale 0.071 0.041 0.665 0.71 1.95 0.73 2.87 61.5 66.1 45.8 73.0 62.6 41.1

11 Sugarloaf Creek – Ash Bridge 0.001 0.592 0.804 1.31 1.18 0.00 1.39 78.6 73.4 −3.5 59.0 40.0 127.5

12 Hughes Creek – Tarcombe road 0.043 0.215 0.514 1.04 1.88 0.07 3.20 82.5 89.3 9.2 62.7 58.9 39.2

13 Home Creek – Yarck 0.0004 0.415 0.524 0.66 1.91 0.01 2.97 81.7 87.1 −12.7 75.6 64.7 30.7

Table 2. Vegetation type distributions for each sub-catchment and changes in mean annual precipitation, temperature, LAI and streamflow

during the Millennium Drought of 1997–2009 relative to 1983–1995.

Variables∗ Catchments ID

1 2 3 4 5 6 7 8 9 10 11 12 13

Crop cover (%) 0.6 1.0 – – – – – – – – 1.5 1.2 1.2

Pasture cover (%) 14.4 32.7 3.3 6.4 0.92 5.5 9.94 2.57 25.9 7.62 63.5 56.3 48.8

Tree cover (%) 85.0 66.3 96.7 93.6 99.1 94.5 90.1 97.4 74.1 92.4 35 42.6 50.1

P (%) −23.2 −23.6 −21.1 −18.0 −17.9 −21.0 −20.1 −20.1 −19.4 −21.7 −19.5 −22.6 −24.1

T (◦C) 0.2 0.3 0.3 0.4 0.4 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.3

LAI crop (%) −44.2 −48.0 – – – – – – – – −38.1 −41.8 −41.4

LAI pasture (%) −20.5 −21.6 −19.5 −16.9 −16.7 −18.7 −19.0 −19.1 −19.5 −19.7 −19.6 −20.2 −20.8

LAI tree (%) −11.4 −10.3 −8.2 −6.6 −5.7 −5.9 −7.0 −6.3 −9.1 −9.2 −14.0 −12.5 −13.9

LAI total (%) −12.9 −14.4 −8.6 −7.3 −5.8 −6.6 −8.2 −6.6 −11.8 −10.0 −17.9 −17.2 −17.6

Qclim (%) −49.3 −61.5 −43.7 −39.1 −42.9 −29.7 −44.0 −41.2 −55.2 −57.1 −66.3 −61.8 −57.9

Qnet (%) −48.0 −59.7 −42.8 −38.3 −42.3 −29.3 −43.2 −40.6 −53.3 −55.2 −61.4 −56.1 −53.2

Qlai (%) 2.6 3.0 2.1 2.1 1.5 1.3 1.9 1.4 3.6 3.4 8.0 10.2 8.9

∗ P is the change in mean annual precipitation in percentage (%), T is the change in mean annual temperature in degrees Celsius (◦C), Qclim indicates the climate effect on runoff, Qnet is

the net effect of climate and LAI on runoff and Qlai is the proportion of the climate effect (Qclim) that is offset by the LAI effect.

3.2 Change in the climate variables from change in

climate

3.2.1 Millennium Drought

The Millennium Drought brought a decline in the mean an-

nual precipitation over the selected sub-catchments which

ranged from 17.9 to 24.1 %, with a mean of 20.9 % when

compared with the period 1983–1995. It also brought an in-

crease in mean annual temperature which ranged from 0.2 to

0.4 ◦C, with an average of 0.3 ◦C as compared to the temper-

ature in the period 1983–1995. All 13 study sub-catchments

experienced a similar change in both precipitation and tem-

perature (Table 2).

3.2.2 Future climate

Averaged over all 38 CMIP5 runs, the mean annual precipi-

tation in 2021–2050 over the selected sub-catchments is pro-

jected to decline by 2.9 and 3.7 %, relative to the historical

period 1981–2010 under the RCP4.5 and RCP8.5 scenarios

respectively. By the end of the century (2071–2100) mean an-

nual precipitation is projected to decline by 5 and 5.2 % un-

der the RCP4.5 and RCP8.5 scenarios respectively (Table 3).

The mean annual temperature is also projected to increase in

both future periods and emission scenarios (Table 3).

Most precipitation projections showed a shift towards drier

climates in all seasons except summer in both emission

scenarios and periods. The variability in projected mean

monthly precipitation among climate models indicates great

uncertainty between GCMs (Fig. 4a–d). The mean monthly

temperature of all climate models clearly deviated from

the baseline period (1981–2010), underlining the consistent

change signal between GCMs (Fig. 4e–h). The median of

the 38 CMIP5 mean monthly precipitation data over the

Goulburn–Broken catchment in the RCP4.5 emission sce-

nario showed declines in most of the months. The decreases

were up to 6 % in 2021–2050 (Fig. 4a) and up to 11 % in
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Table 3. Impacts on mean annual precipitation, temperature, LAI and streamflow of projected climate change averaged over 38 CMIP5 runs

relative to 1981–2010.

Periods Variables∗ Catchment ID

1 2 3 4 5 6 7 8 9 10 11 12 13

P (%) −2.9 −2.9 −2.9 −2.9 −2.9 −2.9 −2.9 −2.9 −2.9 −2.9 −2.9 −2.9 −2.9

T (◦C) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

LAI crop (%) −12.9 −13.0 – – – – – – – – −12.9 −13.0 −12.8

2021–2050 LAI pasture (%) −5.9 −5.6 −5.4 −5.6 −5.3 −4.8 −5.4 −5.4 −6.1 −6.1 −6.7 −6.3 −6.3

RCP4.5 LAI tree (%) −3.9 −2.9 −2.5 −2.4 −2.0 −1.7 −2.1 −1.9 −3.0 −3.0 −5.4 −4.6 −4.8

LAI total (%) −4.2 −3.9 −2.6 −2.6 −2.0 −1.8 −2.5 −1.9 −3.8 −3.2 −6.3 −5.6 −5.7

Qclim (%) −12.3 −17.6 −11.4 −11.5 −13.5 −6.8 −12.4 −12.6 −17.4 −18.4 −20.3 −18.9 −14.2

Qnet (%) −11.4 −16.3 −10.9 −11.1 −13.2 −6.6 −11.9 −12.2 −15.8 −17.0 −16.3 −14.8 −11.7

Qlai (%) 7.9 8.0 4.6 3.6 2.3 3.0 4.2 3.3 10.1 8.2 24.5 27.7 21.4

P (%) −3.7 −3.7 −3.7 −3.7 −3.7 −3.7 −3.7 −3.7 −3.7 −3.7 −3.7 −3.7 −3.7

T (◦C) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

LAI crop (%) −15.7 −15.7 – – – – – – – – −15.7 −15.7 −15.5

2021–2050 LAI pasture (%) −7.2 −6.9 −6.7 −6.8 −6.5 −5.9 −6.6 −6.6 −7.4 −7.5 −8.1 −7.7 −7.7

RCP8.5 LAI tree (%) −4.8 −3.7 −3.1 −3.0 −2.5 −2.1 −2.7 −2.3 −3.7 −3.7 −6.6 −5.6 −5.9

LAI total (%) −5.2 −4.8 −3.3 −3.2 −2.5 −2.3 −3.1 −2.4 −4.7 −4.0 −7.7 −6.9 −6.9

Qclim (%) −14.6 −20.7 −13.7 −13.8 −16.3 −8.3 −14.8 −15.0 −20.1 −21.3 −23.3 −21.4 −16.1

Qnet (%) −13.6 −19.2 −13.2 −13.3 −15.8 −8.1 −14.3 −14.5 −18.3 −19.7 −19.0 −17.0 −13.4

Qlai (%) 7.4 7.8 3.8 3.8 3.2 2.5 3.5 3.4 9.8 8.1 22.6 25.9 20.1

P (%) −5.0 −5.0 −5.0 −5.0 −5.0 −5.0 −5.0 −5.0 −5.0 −5.0 −5.0 −5.0 −5.0

T (◦C) 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6

LAI crop (%) −21.1 −21.3 – – – – – – – – −20.8 −21.0 −20.7

2071–2100 LAI pasture (%) −9.8 −9.5 −9.2 −9.4 −9.0 −8.2 −9.2 −9.2 −10.2 −10.3 −11.0 −10.4 −10.5

RCP4.5 LAI tree (%) −6.6 −5.1 −4.4 −4.2 −3.5 −3.0 −3.9 −3.4 −5.3 −5.3 −9.2 −7.8 −8.2

LAI total (%) −7.2 −6.7 −4.6 −4.5 −3.6 −3.3 −4.4 −3.5 −6.6 −5.7 −10.5 −9.4 −9.5

Qclim (%) −19.7 −27.5 −18.6 −18.8 −22.1 −11.5 −20.3 −20.7 −26.9 −28.1 −30.1 −27.7 −21.7

Qnet (%) −18.3 −25.7 −17.9 −18.1 −21.6 −11.2 −19.6 −20.1 −24.7 −26.2 −25.2 −22.5 −18.6

Qlai (%) 7.7 7.0 3.9 3.9 2.3 2.7 3.6 3.0 8.9 7.3 19.4 23.1 16.7

P (%) −5.2 −5.2 −5.2 −5.2 −5.2 −5.2 −5.2 −5.2 −5.2 −5.2 −5.2 −5.2 −5.2

T (◦C) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

LAI crop (%) −28.3 −28.3 – – – – – – – – −28.5 −28.5 −28.1

2071–2100 LAI pasture (%) −13.6 −13 −12.5 −12.9 −12.2 −11.1 −12.5 −12.5 −14 −14.1 −15.4 −14.6 −14.7

RCP8.5 LAI tree (%) −9.5 −7.4 −6.3 −6.0 −5.1 −4.3 −5.5 −4.8 −7.6 −7.6 −13.2 −11.2 −11.8

LAI total (%) −10.2 −9.4 −6.5 −6.5 −5.2 −4.7 −6.2 −5.0 −9.2 −8.1 −14.9 −13.3 −13.4

Qclim (%) −24.0 −33.5 −23.9 −24.2 −27.4 −14.5 −25.0 −25.6 −32.0 −33.0 −35.1 −32.8 −25.3

Qnet (%) −22.3 −31.3 −23.0 −23.3 −26.7 −14.1 −24.0 −24.8 −29.4 −30.8 −29.2 −26.4 −21.7

Qlai (%) 7.6 7.0 3.9 3.9 2.6 2.8 4.2 3.2 8.8 7.1 20.2 24.2 16.6

∗ P is the change in mean annual precipitation in percentage (%), T is the change in mean annual temperature in degrees Celsius (◦C), Qclim indicates the climate effect on runoff, Qnet is the net effect of

climate and LAI on runoff and Qlai is the proportion of the climate effect (Qclim) that is offset by the LAI effect.

2071–2100 (Fig. 4c). Similarly, under the RCP8.5 emission

scenario the median monthly precipitation, other than in Jan-

uary and February for both periods, showed decreases of up

to 7 % in 2021–2050 (Fig. 4b) and of up to 18 % in 2071–

2100 (Fig. 4d). The simulations for January and February

showed median increases of up to 4 and 5 % respectively in

2071–2100 from the historical baseline. Some climate mod-

els projected very wet future climates while others projected

relatively dry climates. There are relatively high uncertainties

in the projected mean monthly precipitation results in sum-

mer when compared with the mean monthly precipitation in

winter among the climates models.

In contrast to precipitation, the projected mean monthly

temperatures from all CMIP5 runs showed increases; the me-

dian of the mean monthly temperatures of all 38 CMIP5 runs

increased by about 0.8 ◦C in winter and 1 ◦C in summer in

2021–2050 (Fig. 4e) and by about 1.3 ◦C in winter and 1.8 ◦C

in summer in 2071–2100 (Fig. 4g) under the RCP4.5 sce-

nario. Under the RCP8.5 emission scenario the temperatures

increased by 1 ◦C in winter and by 1.4 ◦C in summer during

2021–2050 (Fig. 4f) and by 2 and 3 ◦C in winter and summer

respectively by the end of the 21st century (Fig. 4h). After

precipitation the second variable that drives water availabil-

ity is potential evapotranspiration. Here PET is expected to

increase among all CMIP5 runs as it is being driven solely

by changes in temperature, given that actual vapor pressure

and solar radiation were also simulated as a function of tem-

perature. In the near-future period (2021–2050) the median

of all CMIP5 mean monthly PET projections increase by 5–

13 % in both emission scenarios, with the largest change in

winter and the smallest in summer. In the future period of

2071–2100, the mean monthly PET increased by 7 % in sum-
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Figure 4. Box plots of percentage changes in the mean monthly

precipitation (a, b, c, d) and changes in mean monthly temperatures

(e, f, g, h) in the Goulburn–Broken catchment for the future periods

2021–2050 and 2071–2100 for the 38 CMIP5 runs of climate pro-

jections. Changes are relative to the historical (1981–2010) mean

monthly precipitation and temperatures. The lower boundary of the

box indicates the 25th percentile, a line within the box marks the

median, the upper boundary of the box indicates the 75th percentile

and the whiskers are delimited by the maximum and minimum.

mer and 25 % in winter under the RCP4.5 emission scenario,

and by 10 % in summer and 28 % in winter under the RCP8.5

emission scenario.

3.3 Impact on LAI from change in climate

3.3.1 Millennium Drought

The effects of the Millennium Drought (1997–2009) on mod-

eled crop LAI were very severe with reductions in mean an-

nual LAI between sub-catchments of 38.1–48.0 %, with a

mean of 42.7 % (Table 2). The reduction in LAI of pasture

was between 16.7 and 21.6 % across the 13 selected sub-

catchments, with a spatial average of 19.4 % (Table 2). The

LAI of trees responded less than crop and pasture, and reduc-

tions were in the range of 5.7–14.0 %, with a spatial mean of

9.2 % (Table 2). A significant reduction in each cover type

also brought an overall decline in the areal-weighted sum

of all land cover type LAIs in the selected sub-catchments,

which ranged from 5.8 to 17.9 % (Table 2), which is similar

to the reduction for trees, where trees are the dominant land

cover type.

3.3.2 Future climate

The changes in mean monthly LAI of crop, pasture and trees

averaged over the whole Goulburn–Broken catchment un-

der future climates vary between the CMIP5 runs and global

warming scenarios. Averaged over all 38 CMIP5 runs, the

near-future (2021–2050) results for the study sub-catchments

showed that the mean annual LAI of cropland, pasture and

trees declined by up to 13, 6.7, and 5.4 % under the RCP4.5

scenario, and by up to 16, 8, and 6.6 % under the RCP8.5

scenario (Table 3). A further reduction in the mean annual

LAI of each land cover was simulated by the end of the 21st

century for both emission scenarios (Table 3).

The effect of projected climate change on monthly total

LAI (area-weighted sum of all land cover types LAI) for

the study catchment is given in (Fig. 5). The median of the

38 CMIP5-runs-simulated mean-monthly LAI showed de-

clines in all three land cover types. Despite similar percent-

age changes in mean monthly precipitation and temperature

forcing, the mean monthly total LAI across the catchment

shows the largest decline in autumn and the smallest decline

in spring during both future periods and scenarios. This dif-

ference reflects the seasonality of moisture availability influ-

encing plant growth. Based on the median of the 38 CMIP5

runs, the predicted decline in the mean monthly LAI for crop,

pasture and trees was 18.1, 10.3, and 7.9 % respectively in the

period 2021–2050 (Fig. 5a, e, i) and 27.7, 16.6, and 12.8 %

respectively in the period 2071–2100 under RCP4.5 (Fig. 5c,

g, k). Larger reductions were simulated under the RCP8.5

emission scenario with 21.4, 12.7, and 9.5 % in the period

2021–2050 (Fig. 5b, f, j) and 36.5, 22.5, and 17.9 % respec-

tively for crop, pasture and trees in the period 2071–2100

(Fig. 5d, h, l).

3.4 Impacts on runoff from change in climate

3.4.1 Millennium Drought

The impact of the Millennium Drought on streamflow due to

changes in precipitation and temperature alone and changes

in precipitation and temperature and modeled LAI were sim-

ulated using the VIC model. The simulated reductions in

mean annual streamflow during the Millennium Drought

(1997–2009) as compared with the relatively normal period

(1983–1995) across the selected sub-catchments due to the

change in climate alone ranged from 29.7 to 66.3 %, with a

mean of 50 % (Table 2). The reductions in LAI resulting from

the decline in precipitation and increase in temperature in-

creased mean annual streamflow by between 1.3 and 10.2 %

relative to the direct climate effect above (Table 2, Fig. 6).
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Figure 5. Box plots of changes in mean monthly LAI derived from

the 38 CMIP5 runs for climate projections during 2021–2050 and

2071–2100 under RCP4.5 and RCP8.5 scenarios for crop (a, b, c,

d), pasture (e, f, g, h) and trees (i, j, k, l) in the Goulburn–Broken

catchment. Changes are relative to LAI calculated using climate

time series for the 1981–2010 baseline. The lower boundary of the

box indicates the 25th percentile, a line within the box marks the

median, the upper boundary of the box indicates the 75th percentile

and the whiskers are delimited by the maximum and minimum.

Figure 6. Impacts on catchment mean annual streamflow of the Mil-

lennium Drought (1997–2009) relative to the period 1983–1995.

CC effect indicates precipitation and temperature effect with un-

changed LAI; CC + LAI effect indicates precipitation, temperature

and LAI effect. The proportional LAI effect indicates the LAI effect

as a percentage of the CC effect.

3.4.2 Future climate

The average of the 38 CMIP5 runs under the RCP4.5 sce-

nario produced declines in mean annual runoff due to the

Figure 7. Impact on catchment mean annual streamflow average

over the 38 CMIP5 runs of projected climate change for the fu-

ture periods 2021–2050 and 2071–2100 under RCP4.5 (a, b) and

RCP8.5 (c, d), relative to the 1981–2010 base period. CC effect in-

dicates precipitation and temperature effect with unchanged LAI;

CC + LAI effect indicates precipitation, temperature and LAI ef-

fect. The proportional LAI effect indicates the LAI effect as a per-

centage of the CC effect.

change in precipitation and temperature alone (Qclim), which

ranged from 6.8 to 20.3 % in the period 2021–2050 and from

11.5 to 30.1 % for the period 2071–2100 (Table 3 and Fig. 7).

For the higher emission scenario (RCP8.5), the reductions

were a little larger ranging from 8.3 to 23.3 % in 2021–2050

and from 14.5 to 35.1 % by the end the 21st century (Table 3,

Fig. 6). The reductions in runoff due to climate are offset

through the LAI effect (Qlai) that ranged from 2.3 to 27.7 %

and from 2.3 to 23.1 % in the near- and far-future periods re-

spectively under the RCP4.5 emission scenario. Similar off-

sets of 2.5–25.9 % and 2.6–24.2 % in the near- and far-future

periods respectively were also found under the RCP8.5 emis-

sion scenario (Table 3, Fig. 7).

The differences between GCMs in terms of the net cli-

mate change impacts (CC + LAI) on mean annual runoff

and the LAI contribution to that effect are shown in Figs. 8

and 9 respectively. While large uncertainty exists among the

38 CMIP5 runs, the median between the models showed de-

clines in the net climate change (CC + LAI) projections of

mean annual runoff in all catchments (Fig. 8). The median

decline in the mean annual runoff due to the net climate

change impact was 15.3 and 26.7 % in 2021–2050 and 2071–

2100 respectively, under RCP4.5. A larger decline of 21.6

and 31.8 % in 2021–2050 and 2071–2100 respectively oc-

curred under RCP8.5 (Fig. 8). The simulated LAI effects of

the climate change showed smaller variation between GCMs

than the net climate change (CC + LAI) effect on mean an-

nual runoff. The LAI effect works to offset the reduction in

mean annual runoff resulting from lower precipitation and

higher temperature. Figure 9 shows the magnitude of the
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Figure 8. Box plots of the net climate change (CC + LAI) effect

on mean annual runoff during 2021–2050 and 2071–2100 under

RCP4.5 (a, b) and RCP8.5 (c, d) emission scenarios from each of

the 38 CMIP5 runs. Changes are relative to the historical (1981–

2010) period. The lower boundary of the box indicates the 25th per-

centile, a line within the box marks the median, the upper boundary

of the box indicates the 75th percentile and the whiskers are delim-

ited by the maximum and minimum.

LAI effect as a percentage of the magnitude of direct climate

change effect (noting they work in opposite directions). The

median of this effect across the 38 CMIP5 runs increased up

to 20 %, depending on the month. The simulated LAI effect

on mean annual runoff showed less variation between GCMs

than the net climate change (CC + LAI) effect on mean an-

nual runoff.

The direct climate change (CC) effect, the LAI effect of

climate change and the net climate change (CC+ LAI) effect

on the mean monthly runoff for the selected sub-catchments

are given: catchment 6 (Fig. 10a, d, g, j), catchment 10

(Fig. 10b, e, h , k), and catchment 11 (Fig. 10c, f, i , l). Catch-

ments 6 and 10 are located in a high annual precipitation zone

with trees as the dominant vegetation cover, whereas catch-

ment 11 is covered mostly with pasture and has relatively

lower annual precipitation than catchments 6 and 10. De-

pending on the month, for the 38 CMIP5 runs in 2021–2050

the median reduction in mean monthly runoff (Qnet) was up

to 10, 24, and 34 % for catchment 6, 10, and 11 respectively

for both the RCP4.5 and RCP8.5 scenarios (Fig. 10). Further

reductions projected by the end of the 21st century were up

to 17, 37, and 52 % for catchments 6, 10, and 11 respectively

under both scenarios (Fig. 10). Catchment 6 showed the low-

est seasonality in the climate change effects for both emission

scenarios and the LAI-related effects of climate change also

showed the smallest seasonal variation. Catchment 11 runoff

was the most impacted by projected climate changes and had

the greatest benefit from LAI effects of climate change un-

der both emission scenarios and future periods. The seasonal

pattern of the LAI effect of climate change is similar under

Figure 9. Box plots of contributions of LAI to the climate change

effect on mean annual runoff for future (2021–2050, 2071–2100)

climate forcings under RCP4.5 (a, b) and RCP8.5 (c, d) emission

scenarios from each of the 38 CMIP5 runs as compared to the his-

torical (1981–2010) period. The LAI effect is normalized by the ef-

fect of precipitation and temperature with unchanged LAI (i.e., CC

effect) and expressed as a percentage. The lower boundary of the

box indicates the 25th percentile, a line within the box marks the

median, the upper boundary of the box indicates the 75th percentile

and the whiskers are delimited by the maximum and minimum.

both RCP scenarios. The magnitude of this effect is relatively

higher for drier projected future climates.

4 Discussion and conclusion

This study investigated the importance of incorporating the

relationship between changing climate, in terms of precipita-

tion and temperature, and vegetation LAI into a hydrological

model to estimate changes in mean monthly and mean annual

runoff under changing climatic conditions in the Goulburn–

Broken catchment, southeastern Australia. A combination of

VIC hydrological simulations with a simple model that re-

lates climatic fluctuations with LAI for three different veg-

etation types revealed that 21st century climate change im-

pacts on LAI significantly influence the projected runoff in

the study sub-catchments. LAIs of forest, pasture and crop

were predicted to decline in the 21st century due to reduc-

tions in precipitation and increases in temperature.

Reduced LAI in response to a drier and warmer climate

would reduce transpiration from vegetation and evaporative

losses from canopy interception, which leaves the soil rel-

atively wetter than if the LAI response to climate was not

included. This is important for the runoff generation pro-

cess as it promotes saturation excess runoff and sub-surface

flow, which are the dominant cause of runoff generation in

the study region (Western et al., 1999). Previous studies in

the region (Chiew et al., 2009, 2011; Teng et al., 2012a, b)

concluded that runoff would decrease due to increases in
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Figure 10. Box plots of impacts on mean monthly streamflow from 38 CMIP5 runs of catchment 6 (a, d, g and j), catchment 10 (b, e, h

and k), and catchment 11 (c, f, i and l) of projected climate change for future periods 2021–2050 and 2071–2100 under RCP4.5 and RCP8.5

respectively, relative to the 1981–2010 base period. CC effect indicates precipitation and temperature effect with unchanged LAI; CC+ LAI

effect indicates precipitation, temperature and LAI effect. The lower boundary of the box indicates the 25th percentile, a line within the box

marks the median, the upper boundary of the box indicates the 75th percentile and the whiskers are delimited by the maximum and minimum.

evaporative demand and decreases in precipitation as a re-

sult of ongoing warming in the 21st century. However, the

relationship between LAI and climatic fluctuations was not

taken into account in their modeling experiments. Therefore,

in these studies the LAI effect is ignored and there is con-

sequent overestimation of the runoff decline in the range of

2.3–27.7 % (Figs. 6, 7).

Projections of climate-induced vegetation dynamics and

their hydrological impacts are influenced by various uncer-

tainties that arise from using downscaled GCM outputs as

inputs to the hydrological model. These include large un-

certainties in projections for precipitation from the various

CMIP5 simulations (Teng et al., 2012b). In addition, the

method used to downscale the GCM outputs really only cap-

tures changes in the mean; however, any change in variabil-

ity, which could have an effect on the projected future runoff,

is ignored. The ensemble of 38 CMIP5 simulations from

15 GCMs was used to determine the range of uncertainty be-

tween GCMs. The results showed that the range of future cli-

mate projections from the various GCMs is wide, one climate

model could project a very wet future climate while another a

relatively dry climate. This suggests future analyses in other

catchments should apply downscaled climate change scenar-

ios from several CMIP5 runs from a range of GCM models

to the study area in order to get a sense of the possible range

of climate change impact on both LAI and streamflow.

The results of this study illustrate that reduction of future

precipitation and increase in mean temperature lead to reduc-

tion of runoff in a general sense. However, if the hydrological

model incorporated dynamic LAI information, as a function

of changing climate, it would reduce the impact on runoff

that comes from the climate alone. Reduction of LAI due

to reduction of precipitation and increase in temperature de-

creases the evapotranspiration from vegetation and leaves the

soil relatively wetter than if climate-induced changes in LAI

were not represented in the modeling. The higher catchment

moisture contents slightly increased runoff and partially off-

set the reduction in runoff due to changes in climate.

In interpreting the results presented here it is important

to examine the assumptions that were made and the extent
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to which the results are dependent on those assumptions.

Runoff processes can also be triggered by other precipita-

tion characteristics (intensity, duration, inter-storm duration)

which have not been considered in this study. If inter-storm

durations are expected to increase, this will alter the hydro-

logical fluxes even if the mean precipitation is maintained.

However, the Climate–LAI model used in the study area

(Tesemma et al., 2014) is related mainly to precipitation and

potential evapotranspiration during the previous 6–9 months.

This limits the impact of changes in extreme precipitation

characteristics in terms of modeling the Climate–LAI rela-

tionship. In order to satisfy the aim of this paper, which is

to assess the impact of allowing LAI to respond to a chang-

ing climate, so long as the precipitation series is consistent

between the runs with and without LAI responding to cli-

mate, we can assess the importance of the change in LAI

on runoff simulation. Hence, in this study, consideration of

changing extreme precipitation events is less important, al-

though it would be important for studies with the objective

of predicting future floods or reservoir management.

Another assumption of this study was that the impact on

runoff of rising atmospheric CO2 concentrations, via changes

in LAI and stomatal conductance, is small relative to the

moisture availability effects. Therefore, here we assumed

LAI responded only to precipitation and PET changes, not

changes in CO2. Changes in atmospheric CO2 concentrations

could affect vegetation through increasing LAI and narrow-

ing stomata (Ainsworth and Rogers, 2007; Ewert, 2004; War-

ren et al., 2011). However, increased LAI may be limited by

the availability of nutrients, particularly nitrogen (Fernández-

Martínez et al., 2014; Körner, 2006). Most of the results on

this effect are derived from point experiments which could

not be extrapolated to the catchment scale where there is

a complex interaction between soil, vegetation and climate.

Increasing atmospheric CO2 could also have two other ef-

fects on vegetation dynamics. First, biomass allocation may

shift towards more above-ground plant structure (Obrist and

Arnone, 2003), which implies more canopy leaf than active

rooting area. This change could influence the water balance

in either direction by increasing evapotranspiration due to in-

terception losses or by decreasing evapotranspiration through

limiting plant water uptake. Second, rising atmospheric CO2

may favor C3 species over C4 species, which could lead to

more woody plants compared to some grass species (Yu et

al., 2014). This could influence the water balance by increas-

ing evapotranspiration and decreasing runoff. In addition, at

the canopy scale, the evapotranspiration effect of increased

LAI can be masked by shading among leaves, soil cover

and raised canopy humidity (Hikosaka et al., 2005; Bunce,

2004). A study that considered both effects suggested that

the fertilization effect of rising CO2 is larger than the stom-

atal pore reduction effect, and the net effect is decreases in

runoff (Piao et al., 2007). These two effects of increasing

atmospheric CO2 concentrations on vegetation work in op-

posite directions from a water balance perspective and may

offset each other if they are close in magnitude (Gerten et

al., 2008). In southeast Australia, it is known that vegetation

growth is highly controlled by precipitation (water supply),

and is less controlled by temperature and radiation (Nemani

et al., 2003). Hence, most vegetation dynamics can be ex-

plained by variation in climate, which formed the basis of

the LAI–Climate model developed in Tesemma et al. (2014).

We acknowledge changing CO2 levels could influence vege-

tation growth and water use efficiency and hence runoff, but

we expect the impact on runoff to be smaller (Huntington,

2008; Uddling et al., 2008) than that due to changes in mois-

ture state. Hence, exclusion of the fertilization and stomata

suppression effects of rising atmospheric CO2 on vegetation

may not change the results significantly. However, the impact

on runoff of CO2 fertilization at the catchment scale remains

an important area of ongoing research.

A further assumption was that any effect of climate change

on the spatial distribution of plant functional types (PFTs)

was ignored. That is, the same spatial distribution of veg-

etation was used but with changed LAI. We acknowledge

that changing climate (i.e increase in temperature) may shift

the spatial distribution of PFTs, which has been reported in

the Mediterranean climate region (e.g., Lenihan et al., 2003;

Crimmins et al., 2011). However, in our study area PFTs are

largely determined by historical land use change (human ac-

tivities), such as forest clearing for agriculture, rather than

natural responses of vegetation to changed climatic condi-

tions. Therefore, future changes in the spatial distribution

of agricultural crops and pastures are difficult to project as

they are not solely due to climate changes. In the forested

areas, it is likely that issues that change water use such as

changes in fire regime (Heath et al., 2014) and forest age

(Cornish and Vertessy, 2001) would dominate over differ-

ences between species. Eucalyptus species already occupy

high-altitude areas of the study catchment, which leaves little

room for PFT changes due to upslope migration in a warming

climate. Most over-story trees in our study area are Eucalypts

and while some movement of boundaries between dominant

species may be expected, water use characteristics are likely

to be relatively similar, and there is insufficient information

to represent species-specific details of either migration or wa-

ter use. Including these effects in the model may improve the

results, but there is insufficient understanding of the granu-

larity required to do so at present.

In summary, in this paper we use the VIC hydrological

model to assess the impact on mean annual streamflow of

ignoring climate-induced changes in LAI for two chang-

ing climatic situations: (1) the recently observed Millen-

nium Drought and (2) for downscaled projected future cli-

mate change scenarios from 38 CMIP5 runs in the Goulburn–

Broken catchment, Australia. In the Millennium Drought

(1997–2009), not modeling the response of LAI to chang-

ing climatic variables led to further reduction in mean annual

runoff, relative to the pre-drought period (1983–1995), of be-

tween 1.3 and 10.2 % relative to modeling the dynamic re-
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sponse of LAI to decreased precipitation and increased tem-

perature (Table 2, Fig. 6). For projected climate change under

the RCP4.5 emission scenario, ignoring the LAI response to

changing climate could lead to a further reduction in mean

annual runoff of between 2.3 and 27.7 %, relative to the base-

line period (1981–2010), in the near-term (2021–2050) and

2.3–23.1 % later in the century (2071–2100), relative to mod-

eling the dynamic response of LAI to precipitation and tem-

perature changes. Similar results (near-term 2.5–25.9 % and

end-of-century 2.6–24.2 %) were found for climate change

under the RCP8.5 emission scenario (Table 3, Fig. 7). Due to

the strong relationship between climatic variation and LAI,

the Climate–LAI interaction should be included in hydro-

logical models for improved climate change impact assess-

ments and modeling under changing climatic conditions, par-

ticularly in arid and semi-arid regions where vegetation is

strongly influenced by climate.
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