Articles | Volume 19, issue 6
https://doi.org/10.5194/hess-19-2561-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/hess-19-2561-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Flood frequency analysis of historical flood data under stationary and non-stationary modelling
M. J. Machado
CORRESPONDING AUTHOR
Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, CSIC, Serrano 115 bis, 28006 Madrid, Spain
B. A. Botero
Facultad de Ingenierías, Universidad de Medellín, 65 Medellín, Colombia
J. López
Mexican Institute of Water Technology (IMTA), 62550 Jiutepec, Morelos, Mexico
F. Francés
Research Institute of Water and Environmental Engineering, Universitat Politècnica de València, 46022 Valencia, Spain
A. Díez-Herrero
Geological Hazards Division, Geological Survey of Spain, 28003 Madrid, Spain
G. Benito
Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, CSIC, Serrano 115 bis, 28006 Madrid, Spain
Related authors
No articles found.
Kelly Patricia Sandoval-Rincón, Julio Garrote-Revilla, Daniel Vázquez-Tarrío, Silvia Cervel, Jose Hernández-Manchado, Juan López-Vinielles, Rosa María Mateos, Juan Antonio Ballesteros-Cánovas, Gerardo Benito, and Andrés Díez-Herrero
Earth Syst. Sci. Data, 17, 6199–6216, https://doi.org/10.5194/essd-17-6199-2025, https://doi.org/10.5194/essd-17-6199-2025, 2025
Short summary
Short summary
Most published palaeoflood databases are outdated, lack hydrological data, and are difficult to access, especially for non-academic users such as flood risk managers. PaleoRiada, the first open palaeoflood database for Spain, addresses these issues by compiling data from 299 palaeoflood records, accessible through an open-access web platform. The database supports the revision of Potential Significant Flood Risk Areas and provides insights for regions not included in current national flood maps.
Marcos Marín-Martín, Ernesto Tejedor, Gerardo Benito, Miguel A. Saz, Mariano Barriendos, Edurne Martínez del Castillo, Jan Esper, and Martín de Luis
Clim. Past, 21, 2205–2223, https://doi.org/10.5194/cp-21-2205-2025, https://doi.org/10.5194/cp-21-2205-2025, 2025
Short summary
Short summary
The Mediterranean faces more extreme weather. To understand these changes beyond short modern records, we studied Spanish pine tree rings, reconstructing over 500 years of rainfall. Our findings show that while past centuries had wet and dry periods, recent decades have experienced an unprecedented surge in both severe droughts and extreme wet events. This long-term view helps assess current climate shifts and their impact on ecosystems and water resources, highlighting the need for adaptation.
Tamir Grodek and Gerardo Benito
Nat. Hazards Earth Syst. Sci., 25, 4343–4360, https://doi.org/10.5194/nhess-25-4343-2025, https://doi.org/10.5194/nhess-25-4343-2025, 2025
Short summary
Short summary
Protecting urbanized alluvial fan canals and levees from flooding requires effective sediment retention measures, such as check dams, terraces, and trees on steep basins. However, their effectiveness declines over time due to sedimentation and aging, increasing the risk of catastrophic breaching floods. To enhance urban resilience, we propose preserving natural mountain basins and allocating about 35 % of the alluvial fan to channel migration and sediment deposition corridors.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Gerardo Benito, Olegario Castillo, Juan A. Ballesteros-Cánovas, Maria Machado, and Mariano Barriendos
Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, https://doi.org/10.5194/hess-25-6107-2021, 2021
Short summary
Short summary
Climate change is expected to increase the intensity of floods, but changes are difficult to project. We compiled historical and modern flood data of the Rio Duero (Spain) to evaluate flood hazards beyond decadal climate cycles. Historical floods were obtained from documentary sources, identifying 69 floods over 1250–1871 CE. Discharges were calculated from reported flood heights. Flood frequency using historical datasets showed the most robust results, guiding climate change adaptation.
Cited articles
Barriendos, M. and Coeur, D.: Flood data reconstruction in historical times from noninstrumental sources in Spain and France. In: Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation. Methodological Guidelines, edited by: Benito, G. and Thorndycraft, V. R., Centro de Ciencias Medioambientales, Madrid, Spain, 29–42. 2004.
Benito, G., Díez-Herrero, A., and Fernandez de Villalta, M.: Magnitude and frequency of flooding in the Tagus Basin (Central Spain) over the last millennium, Clim. Change, 58, 171–192, 2003.
Benito, G., Lang, M., Barriendos, M., Llasat, M. C., Francés, F., Ouarda, T., Thorndycraft, V.,Enzel, Y., Bardossy, A., Coeur, D., and Bobée, B.: Systematic, palaeoflood and historical datafor the improvement of flood risk estimation, Nat. Hazards, 31, 623–643, 2004.
Benito, G., Barriendos, M., Llasat, C., Machado, M., and Thorndycraft, V. R.: Impactos sobre los riesgos naturales de origen climático, in: Evaluación preliminar de los impactos en España por efecto del Cambio Climático, edited by: Moreno, J. M., Ministerio de Medioambiente, Madrid, 527–548, 2005.
Benito, G., Thorndycraft, V. R., Rico, M., Sánchez-Moya, Y., and Sopeña, A.: Palaeoflood and floodplain records from Spain: evidence for long-term climate variability and environmental changes, Geomorphology, 101, 68–77, 2008.
Benito, G., Rico, M., Sánchez-Moya, Y., Sopeña, A., Thorndycraft, V. R., and Barriendos, M.: The impact of late Holocene climatic variability and land use change on the flood hydrology of the Guadalentín River, southeast Spain, Global Planet. Change, 70, 53–63, 2010.
Bentabol, H.: Las Aguas de España y Portugal, Vda. e hijos de M. Tello, Madrid, 347 pp., 1900.
Botero, B. A. and Francés, F.: Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models, Hydrol. Earth Syst. Sci., 14, 2617–2628, https://doi.org/10.5194/hess-14-2617-2010, 2010.
Brázdil, R., Kundzewicz, Z. W., and Benito, G.: Historical hydrology for studying flood risk in Europe, Hydrolog. Sci. J., 51, 739–764, 2006.
Bullón, T.: Relationships between precipitation and floods in the fluvial basins of Central Spain based on documentary sources from the end of the 16th century, Nat. Hazards Earth Syst. Sci., 11, 2215–2225, https://doi.org/10.5194/nhess-11-2215-2011, 2011.
Calenda, G., Mancini, C. P., and Volpi, E.: Selection of the probabilistic model of extreme floods: the case of the River Tiber in Rome, J. Hydrol., 371, 1–11, 2009.
Canales, G.: Inundaciones de la Vega Baja del Segura (1875–1925), in: Avenidas Fluviales e Inundaciones en la Cuenca del Mediterráneo, edited by: Gil Olcina, A. and Morales Gil, A., Instituto Universitario de Geografía de la Universidad de Alicante, Alicante, 415–433, 1989.
Capel, J.: Los Climas de España, Col. Ciencias Geográficas, Oikos-Tau, Barcelona, 1981.
Comisión Técnica de Inundaciones: Estudio de Inundaciones Históricas: Mapa de Riesgos Potenciales, Comisión Nacional de Protección Civil, Madrid, 159 pp., 1985.
Cortesi, N., Trigo, R. M., Gonzalez-Hidalgo, J. C., and Ramos, A. M.: Modelling monthly precipitation with circulation weather types for a dense network of stations over Iberia, Hydrol. Earth Syst. Sci., 17, 665–678, https://doi.org/10.5194/hess-17-665-2013, 2013.
Cunderlik, J. M. and Burn, D. H.: Non-stationary pooled flood frequency analysis, J. Hydrol., 276, 210–223, 2003.
Díaz-Marta, M.: Cuatro obras hidraulicas antiguas entre la Mesa de Ocaña y la Vega de Aranjuez, Caja de Ahorro de Toledo, Madrid, 72 pp., 1992.
England, J. F., Jarrett, R. D., and Salas, J. D.: Data-based comparisons of moments estimators using historical and paleoflood data, J. Hydrol., 278, 172–196, 2003.
Enzel, Y., Ely, L. L., House, P. K., and Baker, V. R.: Paleoflood evidence for a natural upper bound to flood magnitudes in the Colorado river basin, Water Resour. Res., 29, 2287–2297, 1993.
Font, I.: Historia del Clima en España, Cambios Climáticos y sus Causas, Instituto Nacional de Meteorología, Madrid, 297 pp., 1988.
Fontana-Tarrats, J. M.: Entre el Cardo y la Rosa, Historia del Clima en las Mesetas, Madrid (typed manuscript), 269 pp., 1977.
Francés, F.: Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis, Stoch. Hydrol. Hydraul., 12, 267–283, 1998.
Francés, F.: Flood frequency analysis using systematic and non-systematic information, in: Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation, edited by: Benito, G. and Thorndycraft, V. R., CSIC, Madrid, 55–70, 2004.
Francés, F., Salas, J. D., and Boes, D. C.: Flood frequency analysis with systematic and historical or paleofood data based on the two parameter general extreme value models, Water Resour. Res., 30, 1653–1664, 1994.
García Tapia, N.: Ingeniería y arquitectura en el Renacimiento español, Universidad de Valladolid, 1980.
González Perez, A.: Obras de ingeniería hidráulica en el Real Sitio de Aranjuez durante el S. XVIII, in: El arte en las cortes europeas del Siglo XVIII, Comunidad de Madrid, Madrid, 307–314, 1989.
Gonzálvez, R.: El Clima Toledano en los Siglos XVI y XVII, Boletín de la Real Academia de la Historia, 174, 305–332, 1977.
Goodess, C. M. and Jones, P. D.: Links between circulation and changes in the characteristics of Iberian rainfall, Int. J. Climatol., 22, 1593–1615, 2002.
Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriaučiūnien\.e, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
Hurvich, C. M. and Tsai, C. L.: Regression and time series model selection in small samples, Biometrika, 76, 297–307, 1989.
Hydrologic Engineering Center: HEC-RAS, River Analysis System, Hydraulics Version 4.1. Reference Manual, (CPD-69), US Army Corps of Engineers, Davis, 411 pp., 2010.
Jiang, C., Lihua, X., Xu, C., and Guo, S.: Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula, Hydrol. Process., 29, 1521–1534, 2014.
Jiménez Álvarez, A., García Montañés, C., Mediero Orduña, L., Incio Caballero, L., and Garrote Revilla, J.: Bases metodológicas del mapa de caudales máximos de las cuencas intercomunitarias, Monografías, M-120 CEDEX, Centro de Publicaciones, Ministerio de Fomento, Madrid, 96 pp., 2013.
Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L. M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G. R., Kron, W., Honda, Y., Benito, G., Takahashi, K., and Sherstyukov, B.: Flood risk and climate change – global and regional perspectives, Hydrolog. Sci. J., 59, 1–28, 2014.
Lang, M., Ouarda, T. B. M. J., and Bobée, B.: Towards operational guidelines for over-threshold modeling, J. Hydrol., 225, 103–117, 1999.
Lang, M., Renard, B., Dindar, L., Lemaitre, F., and Bois, P.: Use of Statistical Test Based on Poisson Process for Detection of Changes in Peak-Over-Threshold Series, in: Hydrology: Science Practice for the 21st Century, Proceedings of the London Conference, London, UK, 12–16 July 2004, 1, 158–164, 2004.
Leese, M.: Use of censored data in the estimation of gumbel distribution parameters for annual maximum flood series, Water Resour. Res., 9, 1534–1542, 1973.
López, J. and Francés, F.: Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates, Hydrol. Earth Syst. Sci., 17, 3189–3203, https://doi.org/10.5194/hess-17-3189-2013, 2013.
López-Bustos, A.: Tomando el Pulso a las Grandes Crecidas de los Ríos Peninsulares, Revista Obras Públicas, 179–192, 1981.
Luterbacher, J., Schmutz, C., Gyalistras, D., Xoplaki, E., and Wanner, H.: Reconstruction of monthly NAO and EU indices back to AD 1675, Geophys. Res. Lett., 26, 2745–2748, 1999.
Luterbacher, J., Xoplaki, E., Dietrich, D., Jones, P. D., Davies, T. D., Portis, D., Gonzalez-Rouco, J. F., von Storch, H., Gyalistras, D., Casty, C., and Wanner, H.: Extending 10 North Atlantic Oscillation Reconstructions Back to 1500, Atmos. Sci. Lett., 2, 114–124, https://doi.org/10.1006/asle.2001.0044, 2002.
Machado, M. J., Benito, G., Barriendos, M., and Rodrigo, F. S: 500 yr of rainfall variability and extreme hydrological events in southeastern Spain drylands, J. Arid Env., 75, 1244–1253, 2011.
Masachs, V.: El Régimen de los Ríos Peninsulares, CSIC, Barcelona, 511 pp., 1948.
Masachs, V.: Aportación al Conocimiento del Régimen Fluvial Mediterráne, Comptes Rendus du Congrès International de Géographie, UGI, II, Lisbonne, 358–390, 1950.
Merz, R. and Blöschl, G.: Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information, Water Resour. Res., 44, W08432, https://doi.org/10.1029/2007WR006744, 2008.
Merz, B., Aerts, J., Arnbjerg-Nielsen, K., Baldi, M., Becker, A., Bichet, A., Blöschl, G., Bouwer, L. M., Brauer, A., Cioffi , F., Delgado, J. M., Gocht, M., Guzzetti, F., Harrigan, S., Hirschboeck, K., Kilsby, C., Kron, W., Kwon, H.-H., Lall, U., Merz, R., Nissen, K., Salvatti, P., Swierczynski, T., Ulbrich, U., Viglione, A., Ward, P. J., Weiler, M., Wilhelm, B., and Nied, M.: Floods and climate: emerging perspectives for flood risk assessment and management, Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, 2014.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: whiter water management?, Science, 319, 573–574, 2008.
Naulet, R., Lang, M., Ouarda, T. B. M. J., Coeur, D., Bobée, B., Recking, A., and Moussay, D.: Flood frequency analysis of the Ardèche River using French documentary sources from the last two centuries, J. Hydrol., 313, 58–78, 2005.
O'Connell, D. R. H.: Nonparametric Bayesian flood frequency estimation, J. Hydrol., 313, 79–96, 2005.
O'Connor, J. E. and Webb, R. H.: Hydraulic modeling for palaeoflood analysis, in: Flood Geomorphology, edited by: Baker, R. V., Kochel, R. C., and Patton, P. C., John Wiley & Sons, New York, 393–403, 1988.
Osborn, T. J.: Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing, Clim. Dynam., 22, 605–623, 2004.
Ouarda, T. and El-Aldouni, S.: Bayesian nonstationarity frequency analysis of hydrological variables, J. Am. Water Resour. As., 47, 496–505, 2011.
Ouarda, T. B. M. J., Rasmussen, P. F., Bobée, B., and Bernier, J.: Use of historical information in hydrologic frequency analysis, Revue des Sciences de l'Eau, 11, 41–49, 1998.
Rico Sinobas, M.: Fenómenos Meteorológicos en la Península Ibérica desde el Siglo IV hasta el XIX, Real Academia de Medicina de Madrid, Manuscritos, 23, 4–15, 1850.
Rigby, R. A. and Stasinopoulos, D. M.: Generalized additive models for location, scale and shape, J. Roy. Stat. Soc. C, 54, 507–554, 2005.
Rodó, X., Baert, E., and Comin, F. A.: Variations in seasonal rainfall in southern Europe during the present century: relationships with the North Atlantic oscillation and the El Niño–Southern Oscillation, Clim. Dynam., 13, 275–284, 1997.
Rodrigo, F. S., Esteban-Parra, M. J., Pozo-Vázquez, D., and Castro-Díez, Y.: Rainfall variability in southern Spain on decadal to centennial time scales, Int. J. Climatol., 20, 721–732, 2000.
Salgueiro, R., Machado, M. J., Barriendos, M., Pereira, H., and Benito, G.: Flood magnitudes in the Tagus River (Iberian Peninsula) and its stochastic relationship with daily North Atlantic Oscillation since mid-19th century, J. Hydrol., 502, 191–201, 2013.
Stasinopoulos, D. M. and Rigby, R. A.: Generalized additive models for location scale and shape (GAMLSS) in R, J. Stat. Softw., 23, 1–46, 2007.
Stedinger, J. R. and Cohn, T. A.: Flood frequency analysis with historical and Paleoflood information, Water Resour. Res., 22, 785–793, 1986.
Teran, M.: Huertas y jardines de Aranjuez, Revista de la Biblioteca del Archivo del Museo Municipal del Madrid, 58, 7–42, 1949.
Thorndycraft, V., Benito, G., Rico, M., Sopeña, A., Sánchez-Moya, Y., and Casas, M. A.: Longterm flood discharge record derived from slackwater flood deposits of the Llobregat River, NE Spain, J. Hydrol., 313, 16–31, 2005.
Trigo, R. M. and Palutikof, J. P.: Precipitation scenarios over Iberia: a comparison between direct GCM output and dierent downscaling techniques, J. Climate, 14, 4422–4446, 2001.
van Loon, H. and Rogers, J. C.: The Seesaw in Winter Temperatures between Greenland and Northern Europe, Part I: General description, Mon. Weather Rev., 106, 296–310, 1978.
Viglione, A., Merz, R., Salinas, J. L., and Blöschl, G.: Flood frequency hydrology: 3. A Bayesian analysis, Water Resour. Res., 49, 675–692, https://doi.org/10.1029/2011wr010782, 2013.
Villarini, G., Serinaldi, F., Smith, J. A., and Krajewski, W. F.: On the stationarity of annual flood peaks in the continental United States during the 20th century, Water Resour. Res., 45, 1–17, 2009a.
Villarini, G., Smith, J. A., Serinaldi, F., Bales, J., Bates, P. D., and Krajewski, W. F.: Flood frequency analysis for nonstationary annual peak records in an urban drainage basin, Adv. Water Resour., 32, 1255–1266, 2009b.
Villarini, G., Smith, J. A., and Napolitano, F.: Nonstationary modelling of a long record of rainfall and temperature over Rome, Adv. Water Resour., 33, 1256–1267, 2010a.
Villarini, G., Vecchi, G. A., and Smith, J. A.: Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices, Mon. Weather Rev., 138, 2681–2705, 2010b.
Villarini, G., Smith, J. A., Serinaldi, F., Ntelekos, A. A., and Schwarz, U.: Analyses of extreme flooding in Austria over the period 1951–2006, Int. J. Climatol., 32, 1–17, 2011.
Walker, G. T. and Bliss, E. W.: World weather, V. Mem. Roy. Meteor. Soc., 44, 53–84, 1932.
Short summary
A flood frequency analysis using a 400-year historical flood record was carried out using a stationary model (based on maximum likelihood estimators) and a non-stationary model that incorporates external covariates (climatic and environmental). The stationary model was successful in providing an average discharge around which value flood quantiles estimated by non-stationary models fluctuate through time.
A flood frequency analysis using a 400-year historical flood record was carried out using a...