Articles | Volume 19, issue 3
https://doi.org/10.5194/hess-19-1413-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-1413-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Timescales of regional circulation of saline fluids in continental crystalline rock aquifers (Armorican Massif, western France)
A. Armandine Les Landes
CORRESPONDING AUTHOR
Geosciences Rennes, CNRS – UMR6118, University of Rennes 1, Bâtiment 14B, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, France
L. Aquilina
Geosciences Rennes, CNRS – UMR6118, University of Rennes 1, Bâtiment 14B, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, France
P. Davy
Geosciences Rennes, CNRS – UMR6118, University of Rennes 1, Bâtiment 14B, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, France
V. Vergnaud-Ayraud
Geosciences Rennes, CNRS – UMR6118, University of Rennes 1, Bâtiment 14B, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, France
C. Le Carlier
Geosciences Rennes, CNRS – UMR6118, University of Rennes 1, Bâtiment 14B, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, France
Related authors
No articles found.
Alexandre Gauvain, Ronan Abhervé, Alexandre Coche, Martin Le Mesnil, Clément Roques, Camille Bouchez, Jean Marçais, Sarah Leray, Etienne Marti, Ronny Figueroa, Etienne Bresciani, Camille Vautier, Bastien Boivin, June Sallou, Johan Bourcier, Benoit Combemale, Philip Brunner, Laurent Longuevergne, Luc Aquilina, and Jean-Raynald de Dreuzy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3962, https://doi.org/10.5194/egusphere-2024-3962, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
HydroModPy is an open-source toolbox that makes it easier to study and model groundwater flow at catchment scale. By combining mapping tools with groundwater modeling, it automates the process of building, analyzing and deploying aquifer models. This allows researchers to simulate groundwater flow that sustains stream baseflows, providing insights for the hydrology community. Designed to be accessible and customizable, HydroModPy supports sustainable water management, research, and education.
Marjorie Beate Kreis, Jean-Denis Taupin, Nicolas Patris, Patrick Lachassagne, Virginie Vergnaud-Ayraud, Julien Daniel Pierre Burte, Christian Leduc, and Eduardo Sávio Passos Rodrigues Martins
Proc. IAHS, 385, 393–398, https://doi.org/10.5194/piahs-385-393-2024, https://doi.org/10.5194/piahs-385-393-2024, 2024
Short summary
Short summary
This study used hydrodynamic and hydrogeochemical data to understand the salinization processes of the crystalline groundwater (GW) in Ceará, Brazil. Results demonstrate that GW is generally recent and recharged by meteoric waters mainly through localized infiltration. The study suggests that GW, originally bicarbonated, becomes progressively enriched in chloride due to the dissolution and leaching of salts that have precipitated in the unsaturated zone and pond sediments during dryer periods.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Christoph Lécuyer, François Atrops, François Fourel, Jean-Pierre Flandrois, Gilles Pinay, and Philippe Davy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-132, https://doi.org/10.5194/hess-2022-132, 2022
Manuscript not accepted for further review
Short summary
Short summary
Located in the French Southern Alps, the Cerveyrette valley constitutes a watershed of about 100 km2. Cyclicality in the stable isotope compositions of the river waters recorded over two years allowed us to estimate a time lag of three to four months between precipitations and their sampling at the discharge point of the watershed. We thus show that the transfer time from mountain-accumulated snow toward the low-altitude areas is a sensitive variable responding to the current climate warming.
Léopold de Lavaissière, Stéphane Bonnet, Anne Guyez, and Philippe Davy
Earth Surf. Dynam., 10, 229–246, https://doi.org/10.5194/esurf-10-229-2022, https://doi.org/10.5194/esurf-10-229-2022, 2022
Short summary
Short summary
Rivers are known to record changes in tectonic or climatic variation through long adjustment of their longitudinal profile slope. Here we describe such adjustments in experimental landscapes and show that they may result from the sole effect of intrinsic geomorphic processes. We propose a new model of river evolution that links long profile adjustment to cycles of river widening and narrowing. This result emphasizes the need to better understand control of lateral erosion on river width.
Nabil Hocini, Olivier Payrastre, François Bourgin, Eric Gaume, Philippe Davy, Dimitri Lague, Lea Poinsignon, and Frederic Pons
Hydrol. Earth Syst. Sci., 25, 2979–2995, https://doi.org/10.5194/hess-25-2979-2021, https://doi.org/10.5194/hess-25-2979-2021, 2021
Short summary
Short summary
Efficient flood mapping methods are needed for large-scale, comprehensive identification of flash flood inundation hazards caused by small upstream rivers. An evaluation of three automated mapping approaches of increasing complexity, i.e., a digital terrain model (DTM) filling and two 1D–2D hydrodynamic approaches, is presented based on three major flash floods in southeastern France. The results illustrate some limits of the DTM filling method and the value of using a 2D hydrodynamic approach.
Etienne Lavoine, Philippe Davy, Caroline Darcel, and Romain Le Goc
Adv. Geosci., 49, 77–83, https://doi.org/10.5194/adgeo-49-77-2019, https://doi.org/10.5194/adgeo-49-77-2019, 2019
Short summary
Short summary
In this study, we are interested in quantifying natural fracture density variability, at any scale. We develop and numerically validate analytical solutions considering stochastic Discrete Fracture Networks, with application to networks following power-law fracture size distributions. Particularly, we show that for this kind of networks, the scaling of three-dimensional fracture density variability clearly depends on the power-law exponent, but not on the orientation distribution.
A. Boisson, D. Roubinet, L. Aquilina, O. Bour, and P. Davy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-9829-2014, https://doi.org/10.5194/hessd-11-9829-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Instruments and observation techniques
Experimental investigation of the interplay between transverse mixing and pH reaction in porous media
A hydrogeological conceptual model of aquifers in catchments headed by temperate glaciers
Technical note: High-density mapping of regional groundwater tables with steady-state surface nuclear magnetic resonance – three Danish case studies
Geoelectrical and hydro-chemical monitoring of karst formation at the laboratory scale
Advancing measurements and representations of subsurface heterogeneity and dynamic processes: towards 4D hydrogeology
Spatiotemporal optimization of groundwater monitoring networks using data-driven sparse sensing methods
Evidence for high-elevation salar recharge and interbasin groundwater flow in the Western Cordillera of the Peruvian Andes
Technical note: Effects of iron(II) on fluorescence properties of dissolved organic matter at circumneutral pH
The evolution of stable silicon isotopes in a coastal carbonate aquifer on Rottnest Island, Western Australia
Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea – a multidisciplinary study
Using multiple methods to investigate the effects of land-use changes on groundwater recharge in a semi-arid area
Identifying recharge under subtle ephemeral features in a flat-lying semi-arid region using a combined geophysical approach
Isotopic and chromatographic fingerprinting of the sources of dissolved organic carbon in a shallow coastal aquifer
Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer
Understanding the relative importance of vertical and horizontal flow in ice-wedge polygons
Groundwater–glacier meltwater interaction in proglacial aquifers
A review of methods for measuring groundwater–surface water exchange in braided rivers
Error in hydraulic head and gradient time-series measurements: a quantitative appraisal
The effect of sediment thermal conductivity on vertical groundwater flux estimates
Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics
Microbial community changes induced by Managed Aquifer Recharge activities: linking hydrogeological and biological processes
Application of the pore water stable isotope method and hydrogeological approaches to characterise a wetland system
Comment on “Origin of water in the Badain Jaran Desert, China: new insight from isotopes” by Wu et al. (2017)
Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence
Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses
Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers
Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany
A multi-tracer approach to constraining artesian groundwater discharge into an alluvial aquifer
Transfer of environmental signals from the surface to the underground at Ascunsă Cave, Romania
Halon-1301 – further evidence of its performance as an age tracer in New Zealand groundwater
Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange
Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS
Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling
Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA
Quantifying the influence of surface water–groundwater interaction on nutrient flux in a lowland karst catchment
Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ13CDIC and δ34SSO4
Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale
Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method
Assessment of Halon-1301 as a groundwater age tracer
Identifying flood recharge and inter-aquifer connectivity using multiple isotopes in subtropical Australia
Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater
A groundwater recharge perspective on locating tree plantations within low-rainfall catchments to limit water resource losses
Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China
Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China
Using hydrologic measurements to investigate free-phase gas ebullition in a Maine peatland, USA
Spatially resolved information on karst conduit flow from in-cave dye tracing
The usefulness of outcrop-analogue air-permeameter measurements for analysing aquifer heterogeneity: testing outcrop hydrogeological parameters with independent borehole data
Investigating the spatio-temporal variability in groundwater and surface water interactions: a multi-technique approach
Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy
Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns
Adi Biran, Tomer Sapar, Ludmila Abezgauz, and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 4755–4770, https://doi.org/10.5194/hess-28-4755-2024, https://doi.org/10.5194/hess-28-4755-2024, 2024
Short summary
Short summary
In Earth sciences, pH-driven reactions in porous environments impact natural processes like mineral dissolution and groundwater remediation. Traditional models struggle due to pore-scale complexities. This study explores how porous structure and flow rate affect mixing and chemical reactions. Surprisingly, pH-driven reactions occur faster than predicted, emphasizing water’s unique pH behavior in porous media.
Aude Vincent, Clémence Daigre, Ophélie Fischer, Guðfinna Aðalgeirsdóttir, Sophie Violette, Jane Hart, Snævarr Guðmundsson, and Finnur Pálsson
Hydrol. Earth Syst. Sci., 28, 3475–3494, https://doi.org/10.5194/hess-28-3475-2024, https://doi.org/10.5194/hess-28-3475-2024, 2024
Short summary
Short summary
We studied groundwater near outlet glaciers of the main Icelandic ice cap. We acquired new data in the field. Two distinct groundwater compartments and their characteristics are identified. We demonstrate the glacial melt recharge impact on the groundwater dynamic. Knowing groundwater systems in a glacial context is crucial to forecast the evolution under climate change of water resources and of potential flood and landslide hazards.
Mathias Vang, Denys Grombacher, Matthew P. Griffiths, Lichao Liu, and Jakob Juul Larsen
Hydrol. Earth Syst. Sci., 27, 3115–3124, https://doi.org/10.5194/hess-27-3115-2023, https://doi.org/10.5194/hess-27-3115-2023, 2023
Short summary
Short summary
In this paper, we use a novel surface nuclear magnetic resonance (SNMR) method for rapid high-quality data acquisition. The SNMR results from more than 100 soundings in three different case studies were used to map groundwater. The soundings successfully track the water table through the three areas and are compared to boreholes and other geophysical measurements. The study highlights the use of SNMR in hydrological surveys and as a tool for regional mapping of the water table.
Flore Rembert, Marie Léger, Damien Jougnot, and Linda Luquot
Hydrol. Earth Syst. Sci., 27, 417–430, https://doi.org/10.5194/hess-27-417-2023, https://doi.org/10.5194/hess-27-417-2023, 2023
Short summary
Short summary
The formation of underground cavities, called karsts, resulting from carbonate rock dissolution, is at stake in many environmental and societal issues, notably through risk management and the administration and quality of drinking water resources. Facing natural environment complexity, we propose a laboratory study combining hydro-chemical monitoring, 3D imaging, and non-invasive observation of electrical properties, showing the benefits of geoelectrical monitoring to map karst formation.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Marc Ohmer, Tanja Liesch, and Andreas Wunsch
Hydrol. Earth Syst. Sci., 26, 4033–4053, https://doi.org/10.5194/hess-26-4033-2022, https://doi.org/10.5194/hess-26-4033-2022, 2022
Short summary
Short summary
We present a data-driven approach to select optimal locations for groundwater monitoring wells. The applied approach can optimize the number of wells and their location for a network reduction (by ranking wells in order of their information content and reducing redundant) and extension (finding sites with great information gain) or both. It allows us to include a cost function to account for more/less suitable areas for new wells and can help to obtain maximum information content for a budget.
Odiney Alvarez-Campos, Elizabeth J. Olson, Lisa R. Welp, Marty D. Frisbee, Sebastián A. Zuñiga Medina, José Díaz Rodríguez, Wendy R. Roque Quispe, Carol I. Salazar Mamani, Midhuar R. Arenas Carrión, Juan Manuel Jara, Alexander Ccanccapa-Cartagena, and Chad T. Jafvert
Hydrol. Earth Syst. Sci., 26, 483–503, https://doi.org/10.5194/hess-26-483-2022, https://doi.org/10.5194/hess-26-483-2022, 2022
Short summary
Short summary
We present results of a hydrologic study of groundwater recharge near the city of Arequipa, Peru. There are a number of springs below a high-elevation salar that show some chemical evidence of connectivity to the salar basin, possibly facilitated by faults in region. These results suggest that this salar basin is not a strictly terminal lake but that some interbasin groundwater flow exists. In addition, a high-elevation forest ecosystem seems important for groundwater recharge as well.
Kun Jia, Cara C. M. Manning, Ashlee Jollymore, and Roger D. Beckie
Hydrol. Earth Syst. Sci., 25, 4983–4993, https://doi.org/10.5194/hess-25-4983-2021, https://doi.org/10.5194/hess-25-4983-2021, 2021
Short summary
Short summary
The effect of soluble reduced iron, Fe(II), on fluorescence data (excitation–emission matrix spectra parsed using parallel factor analysis) is difficult to quantitatively assign. We added varying quantities of Fe(II) into groundwater from an anaerobic aquifer. We showed that the overall fluorescence intensity decreased nonlinearly as Fe(II) increased from 1 to 306 mg L-1 but that the parallel factor analysis component distribution was relatively insensitive to Fe(II) concentration.
Ashley N. Martin, Karina Meredith, Andy Baker, Marc D. Norman, and Eliza Bryan
Hydrol. Earth Syst. Sci., 25, 3837–3853, https://doi.org/10.5194/hess-25-3837-2021, https://doi.org/10.5194/hess-25-3837-2021, 2021
Short summary
Short summary
We measured the silicon isotopic composition of groundwater from Rottnest Island, Western Australia, to investigate water–rock interactions in a coastal aquifer. Silicon isotopic ratios varied spatially across the island and were related to secondary mineral formation and vertical mixing within the aquifer. We find that silicate dissolution occurs in the freshwater–seawater transition zone, supporting the recent recognition of submarine groundwater discharge in the oceanic silicon isotope cycle.
Djamil Al-Halbouni, Robert A. Watson, Eoghan P. Holohan, Rena Meyer, Ulrich Polom, Fernando M. Dos Santos, Xavier Comas, Hussam Alrshdan, Charlotte M. Krawczyk, and Torsten Dahm
Hydrol. Earth Syst. Sci., 25, 3351–3395, https://doi.org/10.5194/hess-25-3351-2021, https://doi.org/10.5194/hess-25-3351-2021, 2021
Short summary
Short summary
The rapid decline of the Dead Sea level since the 1960s has provoked a dynamic reaction from the coastal groundwater system, with physical and chemical erosion creating subsurface voids and conduits. By combining remote sensing, geophysical methods, and numerical modelling at the Dead Sea’s eastern shore, we link groundwater flow patterns to the formation of surface stream channels, sinkholes and uvalas. Better understanding of this karst system will improve regional hazard assessment.
Shovon Barua, Ian Cartwright, P. Evan Dresel, and Edoardo Daly
Hydrol. Earth Syst. Sci., 25, 89–104, https://doi.org/10.5194/hess-25-89-2021, https://doi.org/10.5194/hess-25-89-2021, 2021
Short summary
Short summary
We evaluate groundwater recharge rates in a semi-arid area that has undergone land-use changes. The widespread presence of old saline groundwater indicates that pre-land-clearing recharge rates were low and present-day recharge rates are still modest. The fluctuations of the water table and tritium activities reflect present-day recharge rates; however, the water table fluctuation estimates are unrealistically high, and this technique may not be suited for estimating recharge in semi-arid areas.
Brady A. Flinchum, Eddie Banks, Michael Hatch, Okke Batelaan, Luk J. M. Peeters, and Sylvain Pasquet
Hydrol. Earth Syst. Sci., 24, 4353–4368, https://doi.org/10.5194/hess-24-4353-2020, https://doi.org/10.5194/hess-24-4353-2020, 2020
Short summary
Short summary
Identifying and quantifying recharge processes linked to ephemeral surface water features is challenging due to their episodic nature. We use a unique combination of well-established near-surface geophysical methods to provide evidence of a surface and groundwater connection in a flat, semi-arid region north of Adelaide, Australia. We show that a combined geophysical approach can provide a unique perspective that can help shape the hydrogeological conceptualization.
Karina T. Meredith, Andy Baker, Martin S. Andersen, Denis M. O'Carroll, Helen Rutlidge, Liza K. McDonough, Phetdala Oudone, Eliza Bryan, and Nur Syahiza Zainuddin
Hydrol. Earth Syst. Sci., 24, 2167–2178, https://doi.org/10.5194/hess-24-2167-2020, https://doi.org/10.5194/hess-24-2167-2020, 2020
Short summary
Short summary
Dissolved organic carbon within groundwater and processes controlling it remain largely unknown. The average groundwater concentration at this coastal site was 5 times higher than the global median, doubling with depth, but with no change in chromatographic character. The lack of oxygen limited the rate of organic matter processing, leading to enhanced preservation. Changes in coastal hydrology could lead to the flux of unreacted organic carbon.
Andrea Palacios, Juan José Ledo, Niklas Linde, Linda Luquot, Fabian Bellmunt, Albert Folch, Alex Marcuello, Pilar Queralt, Philippe A. Pezard, Laura Martínez, Laura del Val, David Bosch, and Jesús Carrera
Hydrol. Earth Syst. Sci., 24, 2121–2139, https://doi.org/10.5194/hess-24-2121-2020, https://doi.org/10.5194/hess-24-2121-2020, 2020
Short summary
Short summary
Coastal areas are highly populated and seawater intrusion endangers the already scarce freshwater resources. We use, for the first time, a geophysical experiment called cross-hole electrical resistivity tomography to monitor seawater intrusion dynamics. The technique relies on readings of rock and water electrical conductivity to detect salt in the aquifer. Two years of experiment allowed us to reveal variations in aquifer salinity due to natural seasonality, heavy-rain events and droughts.
Nathan A. Wales, Jesus D. Gomez-Velez, Brent D. Newman, Cathy J. Wilson, Baptiste Dafflon, Timothy J. Kneafsey, Florian Soom, and Stan D. Wullschleger
Hydrol. Earth Syst. Sci., 24, 1109–1129, https://doi.org/10.5194/hess-24-1109-2020, https://doi.org/10.5194/hess-24-1109-2020, 2020
Short summary
Short summary
Rapid warming in the Arctic is causing increased permafrost temperatures and ground ice degradation. To study the effects of ice degradation on water distribution, tracer was applied to two end members of ice-wedge polygons – a ubiquitous landform in the Arctic. End member type was found to significantly affect water distribution as lower flux was observed with ice-wedge degradation. Results suggest ice degradation can influence partitioning of sequestered carbon as carbon dioxide or methane.
Brighid É. Ó Dochartaigh, Alan M. MacDonald, Andrew R. Black, Jez Everest, Paul Wilson, W. George Darling, Lee Jones, and Mike Raines
Hydrol. Earth Syst. Sci., 23, 4527–4539, https://doi.org/10.5194/hess-23-4527-2019, https://doi.org/10.5194/hess-23-4527-2019, 2019
Short summary
Short summary
We provide evidence of high groundwater storage and flow in catchments with active glaciers. Groundwater is found within gravels at the front of glaciers and replenished by both ice melt and precipitation. We studied a glacier in Iceland for 3 years, characterising the aquifer properties and measuring groundwater, river flow and precipitation. The results are important for accurately measuring meltwater and show that groundwater can provide strategic water supplies in de-glaciating catchments.
Katie Coluccio and Leanne Kaye Morgan
Hydrol. Earth Syst. Sci., 23, 4397–4417, https://doi.org/10.5194/hess-23-4397-2019, https://doi.org/10.5194/hess-23-4397-2019, 2019
Short summary
Short summary
Braided rivers are uncommon internationally but are important freshwater resources. However, there is limited understanding of how characteristics unique to braided rivers affect groundwater–surface water flow paths. This article reviews prior studies that have investigated groundwater–surface water interactions in these rivers and their associated aquifers to provide guidance on methodologies most suitable for future work in braided rivers and highlight gaps in current knowledge.
Gabriel C. Rau, Vincent E. A. Post, Margaret Shanafield, Torsten Krekeler, Eddie W. Banks, and Philipp Blum
Hydrol. Earth Syst. Sci., 23, 3603–3629, https://doi.org/10.5194/hess-23-3603-2019, https://doi.org/10.5194/hess-23-3603-2019, 2019
Short summary
Short summary
The flow of water is often inferred from water levels and gradients whose measurements are considered trivial despite the many steps and complexity of the instruments involved. We systematically review the four measurement steps required and summarise the systematic errors. To determine the accuracy with which flow can be resolved, we quantify and propagate the random errors. Our results illustrate the limitations of current practice and provide concise recommendations to improve data quality.
Eva Sebok and Sascha Müller
Hydrol. Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/hess-23-3305-2019, https://doi.org/10.5194/hess-23-3305-2019, 2019
Short summary
Short summary
Exchange fluxes between groundwater and surface waters can be quantified using temperature measurements from the upper sediment layers of streams and lakes assuming the thermal properties of sediments. This study quantified the natural variabiilty in sediment thermal conductivity in the vertical direction at the bed of surface waters and showed that fluxes can change by up to +/-75 % depending on using standard literature values or in situ measurements for sediment thermal conductivity.
Benoit Vittecoq, Pierre-Alexandre Reninger, Frédéric Lacquement, Guillaume Martelet, and Sophie Violette
Hydrol. Earth Syst. Sci., 23, 2321–2338, https://doi.org/10.5194/hess-23-2321-2019, https://doi.org/10.5194/hess-23-2321-2019, 2019
Short summary
Short summary
Water resource management on volcanic islands is challenging and faces several issues. Taking advantage of new heliborne geophysical technology, correlated with borehole and spring data, we develop a watershed-scale conceptual model and demonstrate that permeability increases with age for the studied formations. Moreover, complex geological structures lead to preferential flow circulations and to discrepancy between topographical and hydrogeological watersheds, influencing river flow rates.
Carme Barba, Albert Folch, Núria Gaju, Xavier Sanchez-Vila, Marc Carrasquilla, Alba Grau-Martínez, and Maira Martínez-Alonso
Hydrol. Earth Syst. Sci., 23, 139–154, https://doi.org/10.5194/hess-23-139-2019, https://doi.org/10.5194/hess-23-139-2019, 2019
Short summary
Short summary
Managed aquifer recharge allows increasing water resources and can be used to improve water quality. We assess the degradative capabilities of infiltrating pollutants by mapping the composition of microbial communities linked to periods of infiltration/drought. From samples of soil, surface and groundwater, we found some microbial species involved in the nitrogen and carbon cycles. Furthermore, we found that, during infiltration, microbial abundance rises, increasing degradative capabilities.
Katarina David, Wendy Timms, Catherine E. Hughes, Jagoda Crawford, and Dayna McGeeney
Hydrol. Earth Syst. Sci., 22, 6023–6041, https://doi.org/10.5194/hess-22-6023-2018, https://doi.org/10.5194/hess-22-6023-2018, 2018
Short summary
Short summary
We investigated the wetland system classified as a threatened ecological community and found that organic-rich soil close to surfaces retains significant moisture necessary for ecosystems. At the base of the swamp an identified sand layer allows relatively rapid drainage and lateral groundwater interaction. Evaporation estimated from stable water isotopes from sediments indicated that groundwater contribution to the swamp is significant in dry periods, supporting ecosystems when water is scarce.
Lucheng Zhan, Jiansheng Chen, Ling Li, and David A. Barry
Hydrol. Earth Syst. Sci., 22, 4449–4454, https://doi.org/10.5194/hess-22-4449-2018, https://doi.org/10.5194/hess-22-4449-2018, 2018
Short summary
Short summary
Using the arithmetic averages of precipitation isotope values, Wu et al. (2017) concluded that the Badain Jaran Desert (BJD) groundwater is recharged by modern local meteoric water. However, based on weighted mean precipitation isotope values, our further analysis shows that modern precipitation on the Qilian Mountains is more likely to be the main source of the groundwater and lake water in the BJD, as found. We believe this comment provides an important improvement for their study.
Dongmei Han and Matthew J. Currell
Hydrol. Earth Syst. Sci., 22, 3473–3491, https://doi.org/10.5194/hess-22-3473-2018, https://doi.org/10.5194/hess-22-3473-2018, 2018
Short summary
Short summary
Based on hydrochemical and isotopic analysis, we investigated the potential hydrogeological processes responsible for the increasing groundwater salinity in the coastal aquifer of Yang–Dai River coastal plain, northern China. Seawater intrusion is the major aspect and can be caused by vertical infiltration along the riverbed at the downstream areas, and lateral inflow into fresh aquifer. Geothermal water also makes a significant contribution to increasing the groundwater salinity.
Stephan Costabel, Christoph Weidner, Mike Müller-Petke, and Georg Houben
Hydrol. Earth Syst. Sci., 22, 1713–1729, https://doi.org/10.5194/hess-22-1713-2018, https://doi.org/10.5194/hess-22-1713-2018, 2018
Short summary
Short summary
Laboratory experiments using water-filled sand and gravel samples with significant contents of iron oxide coatings were performed to identify the relationship between effective hydraulic radius and nuclear magnetic resonance (NMR) response. Our interpretation approach for the NMR data leads to reliable estimates of hydraulic conductivity without calibration, but is limited to coarse material for physical reasons. An NMR-based observation system for iron clogging in boreholes is planned.
Etienne Bresciani, Roger H. Cranswick, Eddie W. Banks, Jordi Batlle-Aguilar, Peter G. Cook, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1629–1648, https://doi.org/10.5194/hess-22-1629-2018, https://doi.org/10.5194/hess-22-1629-2018, 2018
Short summary
Short summary
This article tackles the problem of finding the origin of groundwater in basin aquifers adjacent to mountains. In particular, we aim to determine whether the recharge occurs predominantly through stream infiltration along the mountain front or through subsurface flow from the mountain. To this end, we discuss the use of routinely measured variables: hydraulic head, chloride and electrical conductivity. A case study from Australia demonstrates the approach.
Bernd Kohlhepp, Robert Lehmann, Paul Seeber, Kirsten Küsel, Susan E. Trumbore, and Kai U. Totsche
Hydrol. Earth Syst. Sci., 21, 6091–6116, https://doi.org/10.5194/hess-21-6091-2017, https://doi.org/10.5194/hess-21-6091-2017, 2017
Charlotte P. Iverach, Dioni I. Cendón, Karina T. Meredith, Klaus M. Wilcken, Stuart I. Hankin, Martin S. Andersen, and Bryce F. J. Kelly
Hydrol. Earth Syst. Sci., 21, 5953–5969, https://doi.org/10.5194/hess-21-5953-2017, https://doi.org/10.5194/hess-21-5953-2017, 2017
Short summary
Short summary
This study uses a multi-tracer geochemical approach to determine the extent of artesian groundwater discharge into an economically important alluvial aquifer. We compare estimates for artesian discharge into the alluvial aquifer derived from water balance modelling and geochemical data to show that there is considerable divergence in the results. The implications of this work involve highlighting that geochemical data should be used as a critical component of water budget assessments.
Virgil Drăguşin, Sorin Balan, Dominique Blamart, Ferenc Lázár Forray, Constantin Marin, Ionuţ Mirea, Viorica Nagavciuc, Iancu Orăşeanu, Aurel Perşoiu, Laura Tîrlă, Alin Tudorache, and Marius Vlaicu
Hydrol. Earth Syst. Sci., 21, 5357–5373, https://doi.org/10.5194/hess-21-5357-2017, https://doi.org/10.5194/hess-21-5357-2017, 2017
Monique Beyer, Uwe Morgenstern, Rob van der Raaij, and Heather Martindale
Hydrol. Earth Syst. Sci., 21, 4213–4231, https://doi.org/10.5194/hess-21-4213-2017, https://doi.org/10.5194/hess-21-4213-2017, 2017
Short summary
Short summary
The determination of groundwater age can aid characterization of aquifers, providing information on groundwater mixing, flow, volume, and recharge rates. Here we assess a recently discovered groundwater age tracer, Halon-1301. Its performance as an age tracer is assessed against six other well-established, widely used age tracers in 302 groundwater samples. We show Halon-1301 reliably inferred age, thus potentially becoming a useful groundwater age tracer where other tracers are compromised.
Colby M. Steelman, Celia S. Kennedy, Donovan C. Capes, and Beth L. Parker
Hydrol. Earth Syst. Sci., 21, 3105–3123, https://doi.org/10.5194/hess-21-3105-2017, https://doi.org/10.5194/hess-21-3105-2017, 2017
Short summary
Short summary
The Eramosa River flows along a fractured sedimentary bedrock aquifer with large subsurface channel features. This study examines the potential for groundwater–surface water exchange beneath the fractured bedrock riverbed and the impacts of seasonal and intraseasonal flow system transience on the geoelectrical properties of the rock. Our results will have implications to the conceptual understanding of groundwater–surface water interaction within fractured bedrock river environments.
Linsong Wang, Chao Chen, Jinsong Du, and Tongqing Wang
Hydrol. Earth Syst. Sci., 21, 2905–2922, https://doi.org/10.5194/hess-21-2905-2017, https://doi.org/10.5194/hess-21-2905-2017, 2017
Short summary
Short summary
The North China Plain (NCP), as the interest region in this study, is one of the most uniformly and extensively altered areas due to overexploitation of groundwater by humans. Here, we use GRACE and GPS to study the seasonal and long-term mass change and its resulting vertical displacement. We also removed the vertical rates, which are induced by terrestrial water storage (TWS) from GPS-derived data to obtain the corrected vertical velocities caused by tectonic movement and human activities.
Klaus Haaken, Gian Piero Deidda, Giorgio Cassiani, Rita Deiana, Mario Putti, Claudio Paniconi, Carlotta Scudeler, and Andreas Kemna
Hydrol. Earth Syst. Sci., 21, 1439–1454, https://doi.org/10.5194/hess-21-1439-2017, https://doi.org/10.5194/hess-21-1439-2017, 2017
Short summary
Short summary
The paper presents a general methodology that will help understand how freshwater and saltwater may interact in natural porous media, with a particular view at practical applications such as the storage of freshwater underground in critical areas, e.g., semi-arid zones around the Mediterranean sea. The methodology is applied to a case study in Sardinia and shows how a mix of advanced monitoring and mathematical modeling tremendously advance our understanding of these systems.
Donald O. Rosenberry, Martin A. Briggs, Emily B. Voytek, and John W. Lane
Hydrol. Earth Syst. Sci., 20, 4323–4339, https://doi.org/10.5194/hess-20-4323-2016, https://doi.org/10.5194/hess-20-4323-2016, 2016
Short summary
Short summary
The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were thought to be located in areas of substantial groundwater discharge to the river. Physical, thermal, and geophysical methods applied at several spatial scales indicate that DWM are located within or directly downstream of areas of substantial groundwater discharge to the river. DWM may depend on groundwater discharge for their survival.
T. McCormack, O. Naughton, P. M. Johnston, and L. W. Gill
Hydrol. Earth Syst. Sci., 20, 2119–2133, https://doi.org/10.5194/hess-20-2119-2016, https://doi.org/10.5194/hess-20-2119-2016, 2016
Short summary
Short summary
In this study, the influence of surface water–groundwater interaction on the nutrient flux in a lowland karst catchment in western Ireland was investigated with the aid of alkalinity sampling and a hydrological model. Results indicated that denitrification within a number of ephemeral lakes is the main process reducing nitrogen concentrations within the turloughs, whereas phosphorus loss is thought to occur mostly via sedimentation and subsequent soil deposition.
Dongmei Han, Xianfang Song, and Matthew J. Currell
Hydrol. Earth Syst. Sci., 20, 1983–1999, https://doi.org/10.5194/hess-20-1983-2016, https://doi.org/10.5194/hess-20-1983-2016, 2016
Short summary
Short summary
We report new data for carbon and sulfur isotopes of the groundwater flow system in a coastal carbonate aquifer of northeast China. It shows how these can be used to determine the major processes controlling sulfate cycling and transport. Hopefully the study will be of broad international interest, and is expected to improve the understanding of techniques to determine impacts on groundwater quality and flow, leading to improved groundwater protection and monitoring strategies.
W. A. Timms, R. Crane, D. J. Anderson, S. Bouzalakos, M. Whelan, D. McGeeney, P. F. Rahman, and R. I. Acworth
Hydrol. Earth Syst. Sci., 20, 39–54, https://doi.org/10.5194/hess-20-39-2016, https://doi.org/10.5194/hess-20-39-2016, 2016
Short summary
Short summary
Low permeability sediments and rock can leak slowly, yet can act as important barriers to flow for resource development and for waste sequestration. Relatively rapid and reliable hydraulic tests of "tight" geological materials are possible by accelerating gravity. Results from geotechnical centrifuge testing of drill core and in situ pore pressure monitoring were compared with a regional flow model, and considered in the context of inherent geological variability at site and formation scale.
M. J. Hendry, E. Schmeling, L. I. Wassenaar, S. L. Barbour, and D. Pratt
Hydrol. Earth Syst. Sci., 19, 4427–4440, https://doi.org/10.5194/hess-19-4427-2015, https://doi.org/10.5194/hess-19-4427-2015, 2015
Short summary
Short summary
Improvements and limitations to the measurement δ2H and δ18O of pore waters in geologic core samples using laser spectrometry are presented. These included the use of a δ2H spike to assess the extent of drill fluid contamination and the effect of storage time and type of sample bag on pore water values.
M. Beyer, R. van der Raaij, U. Morgenstern, and B. Jackson
Hydrol. Earth Syst. Sci., 19, 2775–2789, https://doi.org/10.5194/hess-19-2775-2015, https://doi.org/10.5194/hess-19-2775-2015, 2015
Short summary
Short summary
We assess the potential of Halon-1301 as a new groundwater age tracer, which had not been assessed in detail. We determine Halon-1301 and infer age in 17 New Zealand groundwater samples and various modern waters. Halon-1301 reliably inferred age in 71% of the sites within 1 SD of the ages inferred from tritium and SF6. The remaining (anoxic) waters show reduced concentrations of Halon-1301 along with even further reduced concentrations of CFCs. The reason(s) for this need to be further assessed.
A. C. King, M. Raiber, D. I. Cendón, M. E. Cox, and S. E. Hollins
Hydrol. Earth Syst. Sci., 19, 2315–2335, https://doi.org/10.5194/hess-19-2315-2015, https://doi.org/10.5194/hess-19-2315-2015, 2015
M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider
Hydrol. Earth Syst. Sci., 19, 1589–1598, https://doi.org/10.5194/hess-19-1589-2015, https://doi.org/10.5194/hess-19-1589-2015, 2015
Short summary
Short summary
Two different in situ spectrophotometers, which were used in the field to determine highly time resolved nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites, are compared: a double and a multiple wavelength spectrophotometer. The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs.
J. F. Dean, J. A. Webb, G. E. Jacobsen, R. Chisari, and P. E. Dresel
Hydrol. Earth Syst. Sci., 19, 1107–1123, https://doi.org/10.5194/hess-19-1107-2015, https://doi.org/10.5194/hess-19-1107-2015, 2015
Short summary
Short summary
This paper examines modern and historical groundwater recharge rates to determine the impacts of reforestation in south-eastern Australia. This study shows that over both the long and short term, groundwater recharge in the study area occurs predominantly in the lower catchment areas. The results of this study show that spatial variations in recharge are important considerations for locating tree plantations, especially when looking to conserve water for downstream users in low rainfall regions.
F. Liu, X. Song, L. Yang, Y. Zhang, D. Han, Y. Ma, and H. Bu
Hydrol. Earth Syst. Sci., 19, 551–565, https://doi.org/10.5194/hess-19-551-2015, https://doi.org/10.5194/hess-19-551-2015, 2015
Short summary
Short summary
Due to intensive groundwater exploitation in energy base, significant changes in groundwater system will take place. This research identified the origin and geochemical evolution of groundwater in the Subei Lake basin under the influence of human activity, enhancing the knowledge of lake basins in groundwater discharge area and providing valuable groundwater information for decision makers to formulate sustainable groundwater management strategies for other similar lake basins in arid regions.
Z. Zhang, H. Hu, F. Tian, X. Yao, and M. Sivapalan
Hydrol. Earth Syst. Sci., 18, 3951–3967, https://doi.org/10.5194/hess-18-3951-2014, https://doi.org/10.5194/hess-18-3951-2014, 2014
C. E. Bon, A. S. Reeve, L. Slater, and X. Comas
Hydrol. Earth Syst. Sci., 18, 953–965, https://doi.org/10.5194/hess-18-953-2014, https://doi.org/10.5194/hess-18-953-2014, 2014
U. Lauber, W. Ufrecht, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 435–445, https://doi.org/10.5194/hess-18-435-2014, https://doi.org/10.5194/hess-18-435-2014, 2014
B. Rogiers, K. Beerten, T. Smeekens, D. Mallants, M. Gedeon, M. Huysmans, O. Batelaan, and A. Dassargues
Hydrol. Earth Syst. Sci., 17, 5155–5166, https://doi.org/10.5194/hess-17-5155-2013, https://doi.org/10.5194/hess-17-5155-2013, 2013
N. P. Unland, I. Cartwright, M. S. Andersen, G. C. Rau, J. Reed, B. S. Gilfedder, A. P. Atkinson, and H. Hofmann
Hydrol. Earth Syst. Sci., 17, 3437–3453, https://doi.org/10.5194/hess-17-3437-2013, https://doi.org/10.5194/hess-17-3437-2013, 2013
G. Mongelli, S. Monni, G. Oggiano, M. Paternoster, and R. Sinisi
Hydrol. Earth Syst. Sci., 17, 2917–2928, https://doi.org/10.5194/hess-17-2917-2013, https://doi.org/10.5194/hess-17-2917-2013, 2013
X. Chen, W. Dong, G. Ou, Z. Wang, and C. Liu
Hydrol. Earth Syst. Sci., 17, 2569–2579, https://doi.org/10.5194/hess-17-2569-2013, https://doi.org/10.5194/hess-17-2569-2013, 2013
Cited articles
Aquilina, L. and Dreuzy, J.-R. De: Relationship of present saline fluid with paleomigration of basinal brines at the basement/sediment interface (Southeast basin – France), Appl. Geochem., 26, 1933–1945, https://doi.org/10.1016/j.apgeochem.2011.06.022, 2011.
Aquilina, L., Pauwels, H., Genter, A., and Fouillac, C.: Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: Geochemical investigation of a geothermal reservoir, Geochim. Cosmochim. Acta, 61, 4281–4295, https://doi.org/10.1016/S0016-7037(97)00243-3, 1997.
Aquilina, L., Armandine Les Landes, A., Ayraud-Vergnaud, V., Labasque, T., Roques, C., Davy, P., Pauwels, H. and Petelet-Giraud, E.: Evidence for a Saline Component at Shallow Depth in the Crystalline Armorican Basement (W France), Proced. Earth Planet. Sci., 7, 19–22, https://doi.org/10.1016/j.proeps.2013.03.157, 2013.
Aquilina, L., Vergnaud-Ayraud, V., Armandine Les Landes, A., Pauwels, H., Davy, P., Petelet-Giraud, E., Labasque, T., Roques, C., Bour, O., Ben Maamar, S., Kaskha, M., Le Gal La Salle, C., Barbecot, F., and Team, A.: Impact of climate changes during the last 5 million years on groundwaters in basement aquifers, Scientific reports, submitted, 2015.
Ayraud, V., Aquilina, L., Labasque, T., Pauwels, H., Molenat, J., Pierson-Wickmann, A.-C., Durand, V., Bour, O., Tarits, C., Le Corre, P., Fourre, E., Merot, P., and Davy, P.: Compartmentalization of physical and chemical properties in hard-rock aquifers deduced from chemical and groundwater age analyses, Appl. Geochem., 23, 2686–2707, https://doi.org/10.1016/j.apgeochem.2008.06.001, 2008.
Banks, D., Odling, N., Skarphagen, H., and Rohr-Torp, E.: Permeability and stress in crystalline rocks, Terra Nov., 8, 223–235, 1996.
Beaucaire, C., Gassama, N., and Tresonne, N.: Saline groundwaters in the hercynian granites (Chardon Mine, France): geochemical evidence for the salinity origin, Appl. Geochem., 14, 67–84, https://doi.org/10.1016/S0883-2927(98)00034-1, 1999.
Bonnet, S., Guillocheau, F., and Brun, J. P.: Relative uplift measured using river incisions: the case of the armorican basement (France), Surf. Geosci., 327, 245–251, 1998.
Bonnet, S., Guillocheau, F., and Brun, J.: Large-scale relief development related to Quaternary tectonic uplift of a Proterozoic-Paleozoic basement?, J. Geophys. Res., 105, 19273–19288, 2000.
Bottomley, D. J., Gregoire, D. C., and Ravens, K. G.: Saline groundwaters and brines in the Canadian Shield: Geochemical for a residual evaporite brine component and isotopic evidence, Geochim. Cosmochim. Acta, 58, 1483–1498, 1994.
Bottomley, D. J., Katz, A., Chan, L. H., Starinsky, A., Douglas, M., Clark, I. D., and Raven, K. G.: The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton, Chem. Geol., 155, 295–320, https://doi.org/10.1016/S0009-2541(98)00166-1, 1999.
Brault, N.: Ressources du sous-sol et environnement en Bretagne, Génèse, géométrie et propriétés de différents types d'aquifères, University of Rennes 1, Rennes, 2002.
Brault, N., Bourquin, S., Guillocheau, F., Dabard, M.-P., Bonnet, S., Courville, P., Estéoule-Choux, J. and Stepanoff, F.: Mio–Pliocene to Pleistocene paleotopographic evolution of Brittany (France) from a sequence stratigraphic analysis: relative influence of tectonics and climate, Sediment. Geol., 163, 175–210, https://doi.org/10.1016/S0037-0738(03)00193-3, 2004.
Bucher, K. and Stober, I.: Fluids in the upper continental crust, Geofluids, 10, 241–253, https://doi.org/10.1111/j.1468-8123.2010.00279.x, 2010.
Cardenas, M. B.: Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Tóth flow, Geophys. Res. Lett., 34, L05403, https://doi.org/10.1029/2006GL029126, 2007.
Carpenter, A. B.: Origin And Chemical Evolution Of Brines In Sedimentary Basins, in: SPE Annual Fall Technical Conference and Exhibition, 1–3 October 1978.
Casanova, J., Negrel, P., Kloppmann, W., and Aranyossy, J. F.: Origin of deep saline groundwaters in the Vienne granitic rocks (France): constraints inferred from boron and strontium isotopes, Geofluids, 1, 91–101, https://doi.org/10.1046/j.1468-8123.2001.00009.x, 2001.
Chantraine, J., Egal, E., Thieblemont, D., Le Goff, E., Guerrot, C., and Ballevre, M.: The Cadomian active margin (North Armorican Massif, France): a segment of the North Atlantic Panafrican belt, Tectonophysics, 331, 1–18, 2001.
Clauser, C.: Permeability of crystalline rocks, Eos Trans. Am. Geophys. Union, 73, 233–238, 1992.
Dewandel, B., Lachassagne, P., and Wyns, R.: A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering, J. Hydrol., 330, 260–284, https://doi.org/10.1016/j.jhydrol.2006.03.026, 2006.
Dorn, C., Linde, N., Doetsch, J., Le Borgne, T., and Bour, O.: Fracture imaging within a granitic rock aquifer using multiple-offset single-hole and cross-hole GPR reflection data, J. Appl. Geophys., 78, 123–132, https://doi.org/10.1016/j.jappgeo.2011.01.010, 2012.
Douglas, M., Clark, I. D., Raven, K., and Bottomley, D.: Groundwater mixing dynamics at a Canadian Shield mine, J. Hydrol., 235, 88–103, https://doi.org/10.1016/S0022-1694(00)00265-1, 2000.
Dugué, O.: Le Massif Armoricain dans l'evolution Mésozoique et Cénozoique du Nord-Ouest de l'Europe, Contrôles tectonique, eustatique et climatique d'un bassin intracratonique (Normandie, Mer de la Manche, France), University of Caen, Caen, 2007.
Edmunds, W., Kay, R. L. F., and McCartney, R.: Origin of saline groundwaters in the Carnmenellis granite (Cornwall, England): Natural processes and reaction during hot dry rock reservoir circulation, Chem. Geol., 49, 287–301, 1985.
Edmunds, W. and Savage, D.: Geochemical Characteristics of Groundwater in Granites and Related Crystalline Rocks, in: Applied Groundwater Hydrology, edited by: Downing, R. A. and Wilkinson, W. B., Clarendon Press, Oxford, UK, 1991.
Frape, S., Fritz, P., and Blackmer, A.: Saline groundwater discharges from crystalline rocks near Thunder Bay, Ontario, Canada, Balanc. Freshw. Syst. available at: http://iahs.info/redbooks/a150/150034.pdf (last access: 15 March 2013), 1984.
Frape, S. K., Blyth, A., Blomqvist, R., McNutt, R. H., and Gascoyne, M.: Deep Fluids in the Continents: II. Crystalline rocks, edited by: Drever, J. I., Holland, H. D., and Turekian, K. K. Treatise on Geochemistry, Vol. 5, Surface and Groundwater,Weathering, and Soils, Elsevier-Pergamon, Oxford, p. 560, 2003.
Freeman, J. T.: The use of bromide and chloride mass ratios to differentiate salt-dissolution and formation brines in shallow groundwaters of the Western Canadian Sedimentary Basin, Hydrogeol. J., 15, 1377–1385, 2007.
Fritz, P.: Saline groundwater and brines in crystalline rocks: the contributions of John Andrews and Jean-Charles Fontes to the solution of a hydrogeological and geochemical problem, Appl. Geochemistry, 12, 851–856, https://doi.org/10.1016/S0883-2927(97)00074-7, 1997.
Fritz, P. and Frape, S. K.: Saline groundwaters in the Canadian Shield – A first overview, Chem. Geol., 36, 179–190, 1982.
Gascoyne, M. and Kamineni, D. C.: The Hydrogeochemistry Of Fractured Plutonic Rocks In The Canadian Shield, Hydrogeol. J., 2, 43–49, https://doi.org/10.1007/s100400050044, 1994.
Goderniaux, P., Davy, P., Bresciani, E., de Dreuzy, J.-R., and Le Borgne, T.: Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments, Water Resour. Res., 49, 2274–2286, https://doi.org/10.1002/wrcr.20186, 2013.
Greene, S., Battye, N., Clark, I., Kotzer, T., and Bottomley, D.: Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: Noble gas evidence for an evaporated Palaeozoic seawater origin mixed with glacial meltwater and Holocene recharge, Geochim. Cosmochim. Acta, 72, 4008–4019, https://doi.org/10.1016/j.gca.2008.05.058, 2008.
Gros, Y. and Limasset, O.: Déformation récente dans les socles cristallins, Exemple du Massif Armoricain, BRGM, Orléans-la-Source, 1984.
Guillocheau, F., Brault, N., Thomas, E., Barbarand, J., Bonnet, S., Bourquin, S., Estéoule-Choux, J., Guennoc, P., Menier, D., Néraudeau, D., Proust, J.-N., and Wyns, R.: Histoire géologique du Massif Armoricain depuis 140 MA (Crétacé-Actuel)-Geological history of the Armorican Massif since 140 My (Cretaceous-Present Day), Bull. Inf., 40, 13–28, 2003.
Gumiaux, C., Gapais, D., Brun, J. P., Chantraine, J., and Ruffet, G.: Tectonic history of the Hercynian Armorican Shear belt (Brittany, France), Geodin. Acta, 17, 289–307, 2004.
Hardenbol, J. A. N., Thierry, J., Farley, M. B., Cnrs, U. R. A., and Vail, P. R.: Mesozoic and Cenozoic sequence chronostratigraphic fremework of European basins, The chronostratigraphic charts presented in this paper are the result of an initiative by Peter Vail and Thierry Jacquin in 1990 to analyze and document depositional sequence, SEPM Spec. Publ., 60, 3–13, 1998.
Ingebritsen, S. and Manning, C. E.: Geological implications of a permeability-depth curve for the continental crust, Geology, 27, 1107–1110, 1999.
Jost, A.: Caractérisation des forçages climatiques et géomorphologiques des cind derniers millions d'années et modélisation de leurs conséquences sur un système aquifère complexe: le bassin de Paris, PhD, University of Pierre and Marie Curie, Paris, 344 pp., 2005.
Kelly, V. R., Lovett, G. M., Weathers, K. C., Findlay, S. E. G., Strayer, D. L., Burns, D. J., and Likens, G. E.: Long-Term Sodium Chloride Retention in a Rural Watershed: Legacy Effects of Road Salt on Streamwater Concentration, Environ. Sci. Technol., 42, 410–415, https://doi.org/10.1021/es071391l, 2008.
Lague, D., Davy, P., and Crave, A.: Estimating Uplift Rate and Erodibility from the Area-Slope Examples from Brittany (France) and Numerical Modelling Relationship, Phys. Chem. Earth, 25, 543–548, 2000.
Larsson, I.: Les eaux souterraines des roches dures du socle: Projet 8.6 du Programme Hydrologique International, Report, Paris, edited by: UNESCO, collection Etudes et rapports d'hydrologie, 33, 282 pp., 1987.
Le Borgne, T., Bour, O., de Dreuzy, J. R., Davy, P., and Touchard, F.: Equivalent mean flow models for fractured aquifers: Insights from a pumping tests scaling interpretation, Water Resour. Res., 40, W03512, https://doi.org/10.1029/2003WR002436, 2004.
Le Borgne, T., Bour, O., Paillet, F. L., and Caudal, J.-P.: Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer, J. Hydrol., 328, 347–359, https://doi.org/10.1016/j.jhydrol.2005.12.029, 2006.
Le Corre, C., Auvray, B., Ballèvre, M., and Robardet, M.: Le Massif Armoricain, Sci. Geol. Bull., 44, 31–103, 1991.
Lefebvre, D., Antoine, P., Auffret, J. P., Lautridou, J. P., and Lécolle, F.: Réponses de la Seine et de la Somme aux événements climatiques, eustatiques et tectoniques du Pléistocène moyen et récent?: rythmes et taux d'érosion – The responses of the river Seine and of the river Somme to the climatic, eustatic and tectonic controls, Quaternaire, 5, 165–172, https://doi.org/10.3406/quate.1994.2028, 1994.
Lenôtre, N., Thierry, P., Blanchin, R., and Brochard, G.: Current vertical movement demonstrated by comparative levelling in Brittany (northwestern France), Tectonophysics, 301, 333–344, 1999.
Leray, S., de Dreuzy, J.-R., Bour, O., and Bresciani, E.: Numerical modeling of the productivity of vertical to shallowly dipping fractured zones in crystalline rocks, J. Hydrol., 481, 64–75, https://doi.org/10.1016/j.jhydrol.2012.12.014, 2013.
Li, Y.-H. and Gregory, S.: Diffusion of ions in sea water and in deep-sea sediments, Geochim. Cosmochim. Acta, 38, 703–714, 1974.
Louvat, D., Michelot, J.-L., and Aranyossy, J. F.: Origin and residence time of salinity in the Aspo groundwater system, Appl. Geochemistry, 14, 917–925, 1999.
Martin, C., Aquilina, L., Gascuel-Odoux, C., Molénat, J., Faucheux, M., and Ruiz, L.: Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments, Hydrol. Process., 18, 1237–1254, 2004.
Mercier, D., Brulhet, J., Beaudoin, B., Cahuzac, B., Laurent, M., Lauriat-Rage, A., Margerel, J. P., Moguedet, G., Moritz, R., Sierra, P., Thiry, M., Turpin, L., Van Vliet-Lanoë, B., and Vauthier, S.: Le Redonien de l'Ouest de la France?: enregistrement des événements (climatiques, eustatiques) messiniens et pliocènes sur la façade atlantique, 1res journées GFEN-APF, Rennes, 6–7 December, 12–13, 2000.
Morzadec-Kerfourn, M.-T.: La limite Pliocene–Pleistocene en Bretagne, Boreas, 6, 275–283, 1977.
Morzadec-Kerfourn, M. T.: Datation pollinique et conditions de sédimentation de l'argile plio-pléistocène de Lanrinou en Landerneau, Bull. l'Association française pour l'étude du Quat., 19, 179–184, 1982.
Morzadec-Kerfourn, M. T.: Dinoflagellate cysts and the paleoenvironment of late Pliocene early-Pleistocene deposits of Brittany, Quaternary Sci. Rev., 16, 883–898, 1997.
Mullaney, J. R., Lorenz, D. L., and Arntson, A. D.: Chloride in Groundwater and Surface Water in Areas Underlain by the Glacial Aquifer System, Northern United States Scientific Investigations Report 2009-5086, Northern United States Scientific Investigations, Report 2009-5086, USGS, New York, 2009.
Müller, B., Zoback, M. L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni, N., Stephansson, O., and Ljunggren, C.: Regional Patterns of Tectonic Stress in Europe, J. Geophys. Res., 97, 11783–11803, 1992.
Négrel, P. and Casanova, J.: Comparison of the Sr isotopic signatures in brines of the Canadian and Fennoscandian shields, Appl. Geochemistry, 20, 749–766, https://doi.org/10.1016/j.apgeochem.2004.11.010, 2005.
Néraudeau, D., Mercier, D., Van Vliet-Lanoë, B., and Lauriat-Rage, A.: Les faluns redoniens stratotypiques, enregistrement partiel du Messinien atlantique, 1res journées GFEN-APF, 2002.
Néraudeau, D., Barbe, S., Mercier, D., and Roman, J.: Signatures paléoclimatiques des échinides du Néogène final atlantique à faciès redonien, Ann. Paléontologie, 89, 153–170, https://doi.org/10.1016/S0753-3969(03)00023-5, 2003.
Néraudeau, D., Dudicourt, J.-C., Boutin, F., Ceulemans, L., and Nicolleau, P.: Les Spatangus du Miocène et du Pliocène de l'Ouest de la France, Ann. Paléontologie, 96, 159–170, https://doi.org/10.1016/j.annpal.2011.05.001, 2010.
Nicolas, M., Santoire, J. P., and Delpech, P. Y.: Intraplate seismicity: new seismotectonic data in Western Europe, Tectonophysics, 179, 27–53, https://doi.org/10.1016/0040-1951(90)90354-B, 1990.
Nordstrom, D. K., Olsson, T., Carlsson, L., Fritz, P., Survey, U. S. G., Road, M., and Park, M.: Introduction to the hydrogeochemical investigations within the International Stripa Project, Geochim. Cosmochim. Acta, 53, 1717–1726, 1989.
Panno, S. V., Hackley, K. C., Hwang, H. H., Greenberg, S. E., Krapac, I. G., Landsberger, S., and O'Kelly, D. J.: Characterization and identification of Na-Cl sources in ground water., Ground Water, 44, 176–87, https://doi.org/10.1111/j.1745-6584.2005.00127.x, 2006.
Pauwels, H., Fouillac, C., and Fouillac, A.: Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions, Geochim. Cosmochim. Acta, 57, 2737–2749, 1993.
Pauwels, H., Ayraud-Vergnaud, V., Aquilina, L., and Molénat, J.: The fate of nitrogen and sulfur in hard-rock aquifers as shown by sulfate-isotope tracing, Appl. Geochem., 25, 105–115, https://doi.org/10.1016/j.apgeochem.2009.11.001, 2010.
Pauwels, H., Aquilina, L., Negrel, P., Bour, O., Perrin, J., and Ahmed, S.: Groundwater Salinization in Hard-Rock Aquifers: Impact of Pumping and Vertical Transfers, Proced. Earth Planet. Sci., 7, 660–664, https://doi.org/10.1016/j.proeps.2013.03.189, 2013.
Perera, N., Gharabaghi, B., and Howard, K.: Groundwater chloride response in the Highland Creek watershed due to road salt application: A re-assessment after 20 years, J. Hydrol., 479, 159–168, https://doi.org/10.1016/j.jhydrol.2012.11.057, 2013.
Roques, C.: Hydrogeologie des zones de faille du socle cristallin: implications en terme de ressources en eau pour le Massif Armoricain, PhD, University of Rennes 1, Rennes, 266 pp., 2013.
Roques, C., Bour, O., Aquilina, L., Dewandel, B., Leray, S., Schroetter, J., Longuevergne, L., Le Borgne, T., Hochreutener, R., Labasque, T., Lavenant, N., Vergnaud-Ayraud, V., and Mougin, B.: Hydrological behavior of a deep sub-vertical fault in crystalline basement and relationships with surrounding reservoirs, J. Hydrol., 509, 42–54, 2014.
Saar, M. O. and Manga, M.: Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints, J. Geophys. Res., 109, B04204, https://doi.org/10.1029/2003JB002855, 2004.
Starinsky, A. and Katz, A.: The formation of natural cryogenic brines, Geochim. Cosmochim. Acta, 67, 1475–1484, https://doi.org/10.1016/S0016-7037(02)01295-4, 2003.
Stober, I. and Bucher, K.: Deep groundwater in the crystalline basement of the Black Forest region, Appl. Geochem., 14, 237–254, https://doi.org/10.1016/S0883-2927(98)00045-6, 1999.
Stober, I. and Bucher, K.: Hydraulic properties of the crystalline basement, Hydrogeol. J., 15, 213–224, https://doi.org/10.1007/s10040-006-0094-4, 2007.
Stober, I., Richter, A., Brost, E., and Bucher, K.: The Ohlsbach Plume – Discharge of deep saline water from the crystalline basement of the Black Forest, Germany, Hydrogeol. J., 7, 273–283, https://doi.org/10.1007/s100400050201, 2002.
Thomas, E.: Evolution Cenozoique d'un domaine de socle: Le Massif Armoricain, PhD Thesis, University of Grenoble, Grenoble, 250 pp., 1999.
Thury, M., Gautschi, A., Mazurek, M., Müller, W. H., Naef, H., Pearson, F. J., Vomvoris, S., and Wilson, W.: Geology and Hydrogeology of the Crystalline Basement of Northern Switzerland. Synthesis of Regional Investigations 1981–1993 within the Nagra Radioactive Waste Disposal Programme, Technical Report, Nagra, 1994.
Toth, J.: A theoretical analysis of groundwater flow in small drainage basins, J. Geophys. Res., 68, 4795–4812, 1963.
Touchard, F.: Caractérisation hydrogéologique d'un aquifère de socle fracturé: site de Ploemeur (Morbihan), 1999.
Van Vliet-Lanoe, B., Laurent, M., Hallégouët, B., Margerel Jean-pierre, Chauvel, J., Michel, Y., Moguedet, G., Trautman, F., and Vauthier, S.: Le Mio-Plioche du Massif armoricain. Données nouvelles – The Mio-Pliocene of the Armorican Massive. New data, Surf. Geosci., 326, 333–340, 1998.
Wang, J., Robinson, C., and Edelman, I.: Self diffusion and structure of liquid water with 2H, 3H and 18O as tracers, J. Am. Chem. Soc., 75, 466–470, 1953.
Wyns, R., Baltassat, J., Lachassagne, P., and Legchenko, A.: Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks, Bull. Société Géologique Fr., 21–34, 2004.
Ziegler, P. A.: Geological atlas of Western and Central Europe, Shell International Petroleum Mij. B.B, 2nd Edn., Geol. Soc. Publ. House, Bath, 239 pp., 1990.
Short summary
The crystalline rock aquifers of the Armorican Massif present clear evidence of a marine origin of the saline component in the fluids on the regional scale. High chloride concentrations are attributed to three past marine transgressions. The relationship between chloride concentration and transgression age provides constraints for the timescales of fluid circulation. This time frame is useful information for developing conceptual models of the paleo-functioning of Armorican aquifers.
The crystalline rock aquifers of the Armorican Massif present clear evidence of a marine origin...