Articles | Volume 19, issue 3
https://doi.org/10.5194/hess-19-1413-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-1413-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Timescales of regional circulation of saline fluids in continental crystalline rock aquifers (Armorican Massif, western France)
A. Armandine Les Landes
CORRESPONDING AUTHOR
Geosciences Rennes, CNRS – UMR6118, University of Rennes 1, Bâtiment 14B, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, France
L. Aquilina
Geosciences Rennes, CNRS – UMR6118, University of Rennes 1, Bâtiment 14B, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, France
Geosciences Rennes, CNRS – UMR6118, University of Rennes 1, Bâtiment 14B, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, France
V. Vergnaud-Ayraud
Geosciences Rennes, CNRS – UMR6118, University of Rennes 1, Bâtiment 14B, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, France
C. Le Carlier
Geosciences Rennes, CNRS – UMR6118, University of Rennes 1, Bâtiment 14B, Campus Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes, France
Related authors
No articles found.
Alexandre Gauvain, Ronan Abhervé, Alexandre Coche, Martin Le Mesnil, Clément Roques, Camille Bouchez, Jean Marçais, Sarah Leray, Etienne Marti, Ronny Figueroa, Etienne Bresciani, Camille Vautier, Bastien Boivin, June Sallou, Johan Bourcier, Benoit Combemale, Philip Brunner, Laurent Longuevergne, Luc Aquilina, and Jean-Raynald de Dreuzy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3962, https://doi.org/10.5194/egusphere-2024-3962, 2025
Preprint archived
Short summary
Short summary
HydroModPy is an open-source toolbox that makes it easier to study and model groundwater flow at catchment scale. By combining mapping tools with groundwater modeling, it automates the process of building, analyzing and deploying aquifer models. This allows researchers to simulate groundwater flow that sustains stream baseflows, providing insights for the hydrology community. Designed to be accessible and customizable, HydroModPy supports sustainable water management, research, and education.
Marjorie Beate Kreis, Jean-Denis Taupin, Nicolas Patris, Patrick Lachassagne, Virginie Vergnaud-Ayraud, Julien Daniel Pierre Burte, Christian Leduc, and Eduardo Sávio Passos Rodrigues Martins
Proc. IAHS, 385, 393–398, https://doi.org/10.5194/piahs-385-393-2024, https://doi.org/10.5194/piahs-385-393-2024, 2024
Short summary
Short summary
This study used hydrodynamic and hydrogeochemical data to understand the salinization processes of the crystalline groundwater (GW) in Ceará, Brazil. Results demonstrate that GW is generally recent and recharged by meteoric waters mainly through localized infiltration. The study suggests that GW, originally bicarbonated, becomes progressively enriched in chloride due to the dissolution and leaching of salts that have precipitated in the unsaturated zone and pond sediments during dryer periods.
Ronan Abhervé, Clément Roques, Alexandre Gauvain, Laurent Longuevergne, Stéphane Louaisil, Luc Aquilina, and Jean-Raynald de Dreuzy
Hydrol. Earth Syst. Sci., 27, 3221–3239, https://doi.org/10.5194/hess-27-3221-2023, https://doi.org/10.5194/hess-27-3221-2023, 2023
Short summary
Short summary
We propose a model calibration method constraining groundwater seepage in the hydrographic network. The method assesses the hydraulic properties of aquifers in regions where perennial streams are directly fed by groundwater. The estimated hydraulic conductivity appear to be highly sensitive to the spatial extent and density of streams. Such an approach improving subsurface characterization from surface information is particularly interesting for ungauged basins.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Clément Roques, David E. Rupp, Jean-Raynald de Dreuzy, Laurent Longuevergne, Elizabeth R. Jachens, Gordon Grant, Luc Aquilina, and John S. Selker
Hydrol. Earth Syst. Sci., 26, 4391–4405, https://doi.org/10.5194/hess-26-4391-2022, https://doi.org/10.5194/hess-26-4391-2022, 2022
Short summary
Short summary
Streamflow dynamics are directly dependent on contributions from groundwater, with hillslope heterogeneity being a major driver in controlling both spatial and temporal variabilities in recession discharge behaviors. By analysing new model results, this paper identifies the major structural features of aquifers driving streamflow dynamics. It provides important guidance to inform catchment-to-regional-scale models, with key geological knowledge influencing groundwater–surface water interactions.
Christoph Lécuyer, François Atrops, François Fourel, Jean-Pierre Flandrois, Gilles Pinay, and Philippe Davy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-132, https://doi.org/10.5194/hess-2022-132, 2022
Manuscript not accepted for further review
Short summary
Short summary
Located in the French Southern Alps, the Cerveyrette valley constitutes a watershed of about 100 km2. Cyclicality in the stable isotope compositions of the river waters recorded over two years allowed us to estimate a time lag of three to four months between precipitations and their sampling at the discharge point of the watershed. We thus show that the transfer time from mountain-accumulated snow toward the low-altitude areas is a sensitive variable responding to the current climate warming.
Léopold de Lavaissière, Stéphane Bonnet, Anne Guyez, and Philippe Davy
Earth Surf. Dynam., 10, 229–246, https://doi.org/10.5194/esurf-10-229-2022, https://doi.org/10.5194/esurf-10-229-2022, 2022
Short summary
Short summary
Rivers are known to record changes in tectonic or climatic variation through long adjustment of their longitudinal profile slope. Here we describe such adjustments in experimental landscapes and show that they may result from the sole effect of intrinsic geomorphic processes. We propose a new model of river evolution that links long profile adjustment to cycles of river widening and narrowing. This result emphasizes the need to better understand control of lateral erosion on river width.
Nabil Hocini, Olivier Payrastre, François Bourgin, Eric Gaume, Philippe Davy, Dimitri Lague, Lea Poinsignon, and Frederic Pons
Hydrol. Earth Syst. Sci., 25, 2979–2995, https://doi.org/10.5194/hess-25-2979-2021, https://doi.org/10.5194/hess-25-2979-2021, 2021
Short summary
Short summary
Efficient flood mapping methods are needed for large-scale, comprehensive identification of flash flood inundation hazards caused by small upstream rivers. An evaluation of three automated mapping approaches of increasing complexity, i.e., a digital terrain model (DTM) filling and two 1D–2D hydrodynamic approaches, is presented based on three major flash floods in southeastern France. The results illustrate some limits of the DTM filling method and the value of using a 2D hydrodynamic approach.
Cited articles
Aquilina, L. and Dreuzy, J.-R. De: Relationship of present saline fluid with paleomigration of basinal brines at the basement/sediment interface (Southeast basin – France), Appl. Geochem., 26, 1933–1945, https://doi.org/10.1016/j.apgeochem.2011.06.022, 2011.
Aquilina, L., Pauwels, H., Genter, A., and Fouillac, C.: Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: Geochemical investigation of a geothermal reservoir, Geochim. Cosmochim. Acta, 61, 4281–4295, https://doi.org/10.1016/S0016-7037(97)00243-3, 1997.
Aquilina, L., Armandine Les Landes, A., Ayraud-Vergnaud, V., Labasque, T., Roques, C., Davy, P., Pauwels, H. and Petelet-Giraud, E.: Evidence for a Saline Component at Shallow Depth in the Crystalline Armorican Basement (W France), Proced. Earth Planet. Sci., 7, 19–22, https://doi.org/10.1016/j.proeps.2013.03.157, 2013.
Aquilina, L., Vergnaud-Ayraud, V., Armandine Les Landes, A., Pauwels, H., Davy, P., Petelet-Giraud, E., Labasque, T., Roques, C., Bour, O., Ben Maamar, S., Kaskha, M., Le Gal La Salle, C., Barbecot, F., and Team, A.: Impact of climate changes during the last 5 million years on groundwaters in basement aquifers, Scientific reports, submitted, 2015.
Ayraud, V., Aquilina, L., Labasque, T., Pauwels, H., Molenat, J., Pierson-Wickmann, A.-C., Durand, V., Bour, O., Tarits, C., Le Corre, P., Fourre, E., Merot, P., and Davy, P.: Compartmentalization of physical and chemical properties in hard-rock aquifers deduced from chemical and groundwater age analyses, Appl. Geochem., 23, 2686–2707, https://doi.org/10.1016/j.apgeochem.2008.06.001, 2008.
Banks, D., Odling, N., Skarphagen, H., and Rohr-Torp, E.: Permeability and stress in crystalline rocks, Terra Nov., 8, 223–235, 1996.
Beaucaire, C., Gassama, N., and Tresonne, N.: Saline groundwaters in the hercynian granites (Chardon Mine, France): geochemical evidence for the salinity origin, Appl. Geochem., 14, 67–84, https://doi.org/10.1016/S0883-2927(98)00034-1, 1999.
Bonnet, S., Guillocheau, F., and Brun, J. P.: Relative uplift measured using river incisions: the case of the armorican basement (France), Surf. Geosci., 327, 245–251, 1998.
Bonnet, S., Guillocheau, F., and Brun, J.: Large-scale relief development related to Quaternary tectonic uplift of a Proterozoic-Paleozoic basement?, J. Geophys. Res., 105, 19273–19288, 2000.
Bottomley, D. J., Gregoire, D. C., and Ravens, K. G.: Saline groundwaters and brines in the Canadian Shield: Geochemical for a residual evaporite brine component and isotopic evidence, Geochim. Cosmochim. Acta, 58, 1483–1498, 1994.
Bottomley, D. J., Katz, A., Chan, L. H., Starinsky, A., Douglas, M., Clark, I. D., and Raven, K. G.: The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton, Chem. Geol., 155, 295–320, https://doi.org/10.1016/S0009-2541(98)00166-1, 1999.
Brault, N.: Ressources du sous-sol et environnement en Bretagne, Génèse, géométrie et propriétés de différents types d'aquifères, University of Rennes 1, Rennes, 2002.
Brault, N., Bourquin, S., Guillocheau, F., Dabard, M.-P., Bonnet, S., Courville, P., Estéoule-Choux, J. and Stepanoff, F.: Mio–Pliocene to Pleistocene paleotopographic evolution of Brittany (France) from a sequence stratigraphic analysis: relative influence of tectonics and climate, Sediment. Geol., 163, 175–210, https://doi.org/10.1016/S0037-0738(03)00193-3, 2004.
Bucher, K. and Stober, I.: Fluids in the upper continental crust, Geofluids, 10, 241–253, https://doi.org/10.1111/j.1468-8123.2010.00279.x, 2010.
Cardenas, M. B.: Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Tóth flow, Geophys. Res. Lett., 34, L05403, https://doi.org/10.1029/2006GL029126, 2007.
Carpenter, A. B.: Origin And Chemical Evolution Of Brines In Sedimentary Basins, in: SPE Annual Fall Technical Conference and Exhibition, 1–3 October 1978.
Casanova, J., Negrel, P., Kloppmann, W., and Aranyossy, J. F.: Origin of deep saline groundwaters in the Vienne granitic rocks (France): constraints inferred from boron and strontium isotopes, Geofluids, 1, 91–101, https://doi.org/10.1046/j.1468-8123.2001.00009.x, 2001.
Chantraine, J., Egal, E., Thieblemont, D., Le Goff, E., Guerrot, C., and Ballevre, M.: The Cadomian active margin (North Armorican Massif, France): a segment of the North Atlantic Panafrican belt, Tectonophysics, 331, 1–18, 2001.
Clauser, C.: Permeability of crystalline rocks, Eos Trans. Am. Geophys. Union, 73, 233–238, 1992.
Dewandel, B., Lachassagne, P., and Wyns, R.: A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering, J. Hydrol., 330, 260–284, https://doi.org/10.1016/j.jhydrol.2006.03.026, 2006.
Dorn, C., Linde, N., Doetsch, J., Le Borgne, T., and Bour, O.: Fracture imaging within a granitic rock aquifer using multiple-offset single-hole and cross-hole GPR reflection data, J. Appl. Geophys., 78, 123–132, https://doi.org/10.1016/j.jappgeo.2011.01.010, 2012.
Douglas, M., Clark, I. D., Raven, K., and Bottomley, D.: Groundwater mixing dynamics at a Canadian Shield mine, J. Hydrol., 235, 88–103, https://doi.org/10.1016/S0022-1694(00)00265-1, 2000.
Dugué, O.: Le Massif Armoricain dans l'evolution Mésozoique et Cénozoique du Nord-Ouest de l'Europe, Contrôles tectonique, eustatique et climatique d'un bassin intracratonique (Normandie, Mer de la Manche, France), University of Caen, Caen, 2007.
Edmunds, W., Kay, R. L. F., and McCartney, R.: Origin of saline groundwaters in the Carnmenellis granite (Cornwall, England): Natural processes and reaction during hot dry rock reservoir circulation, Chem. Geol., 49, 287–301, 1985.
Edmunds, W. and Savage, D.: Geochemical Characteristics of Groundwater in Granites and Related Crystalline Rocks, in: Applied Groundwater Hydrology, edited by: Downing, R. A. and Wilkinson, W. B., Clarendon Press, Oxford, UK, 1991.
Frape, S., Fritz, P., and Blackmer, A.: Saline groundwater discharges from crystalline rocks near Thunder Bay, Ontario, Canada, Balanc. Freshw. Syst. available at: http://iahs.info/redbooks/a150/150034.pdf (last access: 15 March 2013), 1984.
Frape, S. K., Blyth, A., Blomqvist, R., McNutt, R. H., and Gascoyne, M.: Deep Fluids in the Continents: II. Crystalline rocks, edited by: Drever, J. I., Holland, H. D., and Turekian, K. K. Treatise on Geochemistry, Vol. 5, Surface and Groundwater,Weathering, and Soils, Elsevier-Pergamon, Oxford, p. 560, 2003.
Freeman, J. T.: The use of bromide and chloride mass ratios to differentiate salt-dissolution and formation brines in shallow groundwaters of the Western Canadian Sedimentary Basin, Hydrogeol. J., 15, 1377–1385, 2007.
Fritz, P.: Saline groundwater and brines in crystalline rocks: the contributions of John Andrews and Jean-Charles Fontes to the solution of a hydrogeological and geochemical problem, Appl. Geochemistry, 12, 851–856, https://doi.org/10.1016/S0883-2927(97)00074-7, 1997.
Fritz, P. and Frape, S. K.: Saline groundwaters in the Canadian Shield – A first overview, Chem. Geol., 36, 179–190, 1982.
Gascoyne, M. and Kamineni, D. C.: The Hydrogeochemistry Of Fractured Plutonic Rocks In The Canadian Shield, Hydrogeol. J., 2, 43–49, https://doi.org/10.1007/s100400050044, 1994.
Goderniaux, P., Davy, P., Bresciani, E., de Dreuzy, J.-R., and Le Borgne, T.: Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments, Water Resour. Res., 49, 2274–2286, https://doi.org/10.1002/wrcr.20186, 2013.
Greene, S., Battye, N., Clark, I., Kotzer, T., and Bottomley, D.: Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: Noble gas evidence for an evaporated Palaeozoic seawater origin mixed with glacial meltwater and Holocene recharge, Geochim. Cosmochim. Acta, 72, 4008–4019, https://doi.org/10.1016/j.gca.2008.05.058, 2008.
Gros, Y. and Limasset, O.: Déformation récente dans les socles cristallins, Exemple du Massif Armoricain, BRGM, Orléans-la-Source, 1984.
Guillocheau, F., Brault, N., Thomas, E., Barbarand, J., Bonnet, S., Bourquin, S., Estéoule-Choux, J., Guennoc, P., Menier, D., Néraudeau, D., Proust, J.-N., and Wyns, R.: Histoire géologique du Massif Armoricain depuis 140 MA (Crétacé-Actuel)-Geological history of the Armorican Massif since 140 My (Cretaceous-Present Day), Bull. Inf., 40, 13–28, 2003.
Gumiaux, C., Gapais, D., Brun, J. P., Chantraine, J., and Ruffet, G.: Tectonic history of the Hercynian Armorican Shear belt (Brittany, France), Geodin. Acta, 17, 289–307, 2004.
Hardenbol, J. A. N., Thierry, J., Farley, M. B., Cnrs, U. R. A., and Vail, P. R.: Mesozoic and Cenozoic sequence chronostratigraphic fremework of European basins, The chronostratigraphic charts presented in this paper are the result of an initiative by Peter Vail and Thierry Jacquin in 1990 to analyze and document depositional sequence, SEPM Spec. Publ., 60, 3–13, 1998.
Ingebritsen, S. and Manning, C. E.: Geological implications of a permeability-depth curve for the continental crust, Geology, 27, 1107–1110, 1999.
Jost, A.: Caractérisation des forçages climatiques et géomorphologiques des cind derniers millions d'années et modélisation de leurs conséquences sur un système aquifère complexe: le bassin de Paris, PhD, University of Pierre and Marie Curie, Paris, 344 pp., 2005.
Kelly, V. R., Lovett, G. M., Weathers, K. C., Findlay, S. E. G., Strayer, D. L., Burns, D. J., and Likens, G. E.: Long-Term Sodium Chloride Retention in a Rural Watershed: Legacy Effects of Road Salt on Streamwater Concentration, Environ. Sci. Technol., 42, 410–415, https://doi.org/10.1021/es071391l, 2008.
Lague, D., Davy, P., and Crave, A.: Estimating Uplift Rate and Erodibility from the Area-Slope Examples from Brittany (France) and Numerical Modelling Relationship, Phys. Chem. Earth, 25, 543–548, 2000.
Larsson, I.: Les eaux souterraines des roches dures du socle: Projet 8.6 du Programme Hydrologique International, Report, Paris, edited by: UNESCO, collection Etudes et rapports d'hydrologie, 33, 282 pp., 1987.
Le Borgne, T., Bour, O., de Dreuzy, J. R., Davy, P., and Touchard, F.: Equivalent mean flow models for fractured aquifers: Insights from a pumping tests scaling interpretation, Water Resour. Res., 40, W03512, https://doi.org/10.1029/2003WR002436, 2004.
Le Borgne, T., Bour, O., Paillet, F. L., and Caudal, J.-P.: Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer, J. Hydrol., 328, 347–359, https://doi.org/10.1016/j.jhydrol.2005.12.029, 2006.
Le Corre, C., Auvray, B., Ballèvre, M., and Robardet, M.: Le Massif Armoricain, Sci. Geol. Bull., 44, 31–103, 1991.
Lefebvre, D., Antoine, P., Auffret, J. P., Lautridou, J. P., and Lécolle, F.: Réponses de la Seine et de la Somme aux événements climatiques, eustatiques et tectoniques du Pléistocène moyen et récent?: rythmes et taux d'érosion – The responses of the river Seine and of the river Somme to the climatic, eustatic and tectonic controls, Quaternaire, 5, 165–172, https://doi.org/10.3406/quate.1994.2028, 1994.
Lenôtre, N., Thierry, P., Blanchin, R., and Brochard, G.: Current vertical movement demonstrated by comparative levelling in Brittany (northwestern France), Tectonophysics, 301, 333–344, 1999.
Leray, S., de Dreuzy, J.-R., Bour, O., and Bresciani, E.: Numerical modeling of the productivity of vertical to shallowly dipping fractured zones in crystalline rocks, J. Hydrol., 481, 64–75, https://doi.org/10.1016/j.jhydrol.2012.12.014, 2013.
Li, Y.-H. and Gregory, S.: Diffusion of ions in sea water and in deep-sea sediments, Geochim. Cosmochim. Acta, 38, 703–714, 1974.
Louvat, D., Michelot, J.-L., and Aranyossy, J. F.: Origin and residence time of salinity in the Aspo groundwater system, Appl. Geochemistry, 14, 917–925, 1999.
Martin, C., Aquilina, L., Gascuel-Odoux, C., Molénat, J., Faucheux, M., and Ruiz, L.: Seasonal and interannual variations of nitrate and chloride in stream waters related to spatial and temporal patterns of groundwater concentrations in agricultural catchments, Hydrol. Process., 18, 1237–1254, 2004.
Mercier, D., Brulhet, J., Beaudoin, B., Cahuzac, B., Laurent, M., Lauriat-Rage, A., Margerel, J. P., Moguedet, G., Moritz, R., Sierra, P., Thiry, M., Turpin, L., Van Vliet-Lanoë, B., and Vauthier, S.: Le Redonien de l'Ouest de la France?: enregistrement des événements (climatiques, eustatiques) messiniens et pliocènes sur la façade atlantique, 1res journées GFEN-APF, Rennes, 6–7 December, 12–13, 2000.
Morzadec-Kerfourn, M.-T.: La limite Pliocene–Pleistocene en Bretagne, Boreas, 6, 275–283, 1977.
Morzadec-Kerfourn, M. T.: Datation pollinique et conditions de sédimentation de l'argile plio-pléistocène de Lanrinou en Landerneau, Bull. l'Association française pour l'étude du Quat., 19, 179–184, 1982.
Morzadec-Kerfourn, M. T.: Dinoflagellate cysts and the paleoenvironment of late Pliocene early-Pleistocene deposits of Brittany, Quaternary Sci. Rev., 16, 883–898, 1997.
Mullaney, J. R., Lorenz, D. L., and Arntson, A. D.: Chloride in Groundwater and Surface Water in Areas Underlain by the Glacial Aquifer System, Northern United States Scientific Investigations Report 2009-5086, Northern United States Scientific Investigations, Report 2009-5086, USGS, New York, 2009.
Müller, B., Zoback, M. L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni, N., Stephansson, O., and Ljunggren, C.: Regional Patterns of Tectonic Stress in Europe, J. Geophys. Res., 97, 11783–11803, 1992.
Négrel, P. and Casanova, J.: Comparison of the Sr isotopic signatures in brines of the Canadian and Fennoscandian shields, Appl. Geochemistry, 20, 749–766, https://doi.org/10.1016/j.apgeochem.2004.11.010, 2005.
Néraudeau, D., Mercier, D., Van Vliet-Lanoë, B., and Lauriat-Rage, A.: Les faluns redoniens stratotypiques, enregistrement partiel du Messinien atlantique, 1res journées GFEN-APF, 2002.
Néraudeau, D., Barbe, S., Mercier, D., and Roman, J.: Signatures paléoclimatiques des échinides du Néogène final atlantique à faciès redonien, Ann. Paléontologie, 89, 153–170, https://doi.org/10.1016/S0753-3969(03)00023-5, 2003.
Néraudeau, D., Dudicourt, J.-C., Boutin, F., Ceulemans, L., and Nicolleau, P.: Les Spatangus du Miocène et du Pliocène de l'Ouest de la France, Ann. Paléontologie, 96, 159–170, https://doi.org/10.1016/j.annpal.2011.05.001, 2010.
Nicolas, M., Santoire, J. P., and Delpech, P. Y.: Intraplate seismicity: new seismotectonic data in Western Europe, Tectonophysics, 179, 27–53, https://doi.org/10.1016/0040-1951(90)90354-B, 1990.
Nordstrom, D. K., Olsson, T., Carlsson, L., Fritz, P., Survey, U. S. G., Road, M., and Park, M.: Introduction to the hydrogeochemical investigations within the International Stripa Project, Geochim. Cosmochim. Acta, 53, 1717–1726, 1989.
Panno, S. V., Hackley, K. C., Hwang, H. H., Greenberg, S. E., Krapac, I. G., Landsberger, S., and O'Kelly, D. J.: Characterization and identification of Na-Cl sources in ground water., Ground Water, 44, 176–87, https://doi.org/10.1111/j.1745-6584.2005.00127.x, 2006.
Pauwels, H., Fouillac, C., and Fouillac, A.: Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions, Geochim. Cosmochim. Acta, 57, 2737–2749, 1993.
Pauwels, H., Ayraud-Vergnaud, V., Aquilina, L., and Molénat, J.: The fate of nitrogen and sulfur in hard-rock aquifers as shown by sulfate-isotope tracing, Appl. Geochem., 25, 105–115, https://doi.org/10.1016/j.apgeochem.2009.11.001, 2010.
Pauwels, H., Aquilina, L., Negrel, P., Bour, O., Perrin, J., and Ahmed, S.: Groundwater Salinization in Hard-Rock Aquifers: Impact of Pumping and Vertical Transfers, Proced. Earth Planet. Sci., 7, 660–664, https://doi.org/10.1016/j.proeps.2013.03.189, 2013.
Perera, N., Gharabaghi, B., and Howard, K.: Groundwater chloride response in the Highland Creek watershed due to road salt application: A re-assessment after 20 years, J. Hydrol., 479, 159–168, https://doi.org/10.1016/j.jhydrol.2012.11.057, 2013.
Roques, C.: Hydrogeologie des zones de faille du socle cristallin: implications en terme de ressources en eau pour le Massif Armoricain, PhD, University of Rennes 1, Rennes, 266 pp., 2013.
Roques, C., Bour, O., Aquilina, L., Dewandel, B., Leray, S., Schroetter, J., Longuevergne, L., Le Borgne, T., Hochreutener, R., Labasque, T., Lavenant, N., Vergnaud-Ayraud, V., and Mougin, B.: Hydrological behavior of a deep sub-vertical fault in crystalline basement and relationships with surrounding reservoirs, J. Hydrol., 509, 42–54, 2014.
Saar, M. O. and Manga, M.: Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints, J. Geophys. Res., 109, B04204, https://doi.org/10.1029/2003JB002855, 2004.
Starinsky, A. and Katz, A.: The formation of natural cryogenic brines, Geochim. Cosmochim. Acta, 67, 1475–1484, https://doi.org/10.1016/S0016-7037(02)01295-4, 2003.
Stober, I. and Bucher, K.: Deep groundwater in the crystalline basement of the Black Forest region, Appl. Geochem., 14, 237–254, https://doi.org/10.1016/S0883-2927(98)00045-6, 1999.
Stober, I. and Bucher, K.: Hydraulic properties of the crystalline basement, Hydrogeol. J., 15, 213–224, https://doi.org/10.1007/s10040-006-0094-4, 2007.
Stober, I., Richter, A., Brost, E., and Bucher, K.: The Ohlsbach Plume – Discharge of deep saline water from the crystalline basement of the Black Forest, Germany, Hydrogeol. J., 7, 273–283, https://doi.org/10.1007/s100400050201, 2002.
Thomas, E.: Evolution Cenozoique d'un domaine de socle: Le Massif Armoricain, PhD Thesis, University of Grenoble, Grenoble, 250 pp., 1999.
Thury, M., Gautschi, A., Mazurek, M., Müller, W. H., Naef, H., Pearson, F. J., Vomvoris, S., and Wilson, W.: Geology and Hydrogeology of the Crystalline Basement of Northern Switzerland. Synthesis of Regional Investigations 1981–1993 within the Nagra Radioactive Waste Disposal Programme, Technical Report, Nagra, 1994.
Toth, J.: A theoretical analysis of groundwater flow in small drainage basins, J. Geophys. Res., 68, 4795–4812, 1963.
Touchard, F.: Caractérisation hydrogéologique d'un aquifère de socle fracturé: site de Ploemeur (Morbihan), 1999.
Van Vliet-Lanoe, B., Laurent, M., Hallégouët, B., Margerel Jean-pierre, Chauvel, J., Michel, Y., Moguedet, G., Trautman, F., and Vauthier, S.: Le Mio-Plioche du Massif armoricain. Données nouvelles – The Mio-Pliocene of the Armorican Massive. New data, Surf. Geosci., 326, 333–340, 1998.
Wang, J., Robinson, C., and Edelman, I.: Self diffusion and structure of liquid water with 2H, 3H and 18O as tracers, J. Am. Chem. Soc., 75, 466–470, 1953.
Wyns, R., Baltassat, J., Lachassagne, P., and Legchenko, A.: Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks, Bull. Société Géologique Fr., 21–34, 2004.
Ziegler, P. A.: Geological atlas of Western and Central Europe, Shell International Petroleum Mij. B.B, 2nd Edn., Geol. Soc. Publ. House, Bath, 239 pp., 1990.
Short summary
The crystalline rock aquifers of the Armorican Massif present clear evidence of a marine origin of the saline component in the fluids on the regional scale. High chloride concentrations are attributed to three past marine transgressions. The relationship between chloride concentration and transgression age provides constraints for the timescales of fluid circulation. This time frame is useful information for developing conceptual models of the paleo-functioning of Armorican aquifers.
The crystalline rock aquifers of the Armorican Massif present clear evidence of a marine origin...