Research article
12 Mar 2015
Research article
| 12 Mar 2015
Quantifying sensitivity to droughts – an experimental modeling approach
M. Staudinger et al.
Related authors
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-99, https://doi.org/10.5194/nhess-2022-99, 2022
Preprint under review for NHESS
Short summary
Short summary
It is difficult to estimate the magnitude of rare to very rare floods due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and precipitation amounts vary considerably over the course of an event, and floods from different parts of the basin coincide. We show that computer models can provide plausible results in this setting, and can thus inform flood risk and safety assessments for critical infrastructure.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Michael Stoelzle, Maria Staudinger, Kerstin Stahl, and Markus Weiler
Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020, https://doi.org/10.5194/piahs-383-43-2020, 2020
Short summary
Short summary
The role of recharge and catchment storage is crucial to understand streamflow drought sensitivity. Here we introduce a model experiment with recharge stress tests as complement to climate scenarios to quantify the streamflow drought sensitivities of catchments in Switzerland. We identified a pre-drought period of 12 months as maximum storage-memory for the study catchments. From stress testing, we found up to 200 days longer summer streamflow droughts and minimum flow reductions of 50 %–80 %.
Michal Jenicek, Jan Seibert, Massimiliano Zappa, Maria Staudinger, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 859–874, https://doi.org/10.5194/hess-20-859-2016, https://doi.org/10.5194/hess-20-859-2016, 2016
Short summary
Short summary
We quantified how long snowmelt affects runoff, and we estimated the sensitivity of catchments to changes in snowpack. This is relevant as the increase of air temperature might cause decreased snow storage. We used time series from 14 catchments in Switzerland. On average, a decrease of maximum snow storage by 10 % caused a decrease of minimum discharge in July by 2 to 9 %. The results showed a higher sensitivity of summer low flow to snow in alpine catchments compared to pre-alpine catchments.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-117, https://doi.org/10.5194/hess-2022-117, 2022
Preprint under review for HESS
Short summary
Short summary
The analysis of the age development of vertical subsurface flow paths in calcareous soils and the influence of rainfall intensity on this, with special focus on preferential flow occurrence, shows how water flow paths are linked to the organization of evolving landscapes. The observed transition to finger flow paths with increasing moraine age provides important but rare data for a proper representation of hydrologic processes within the feedback cycle of the hydro-pedo-geomorphological system.
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-99, https://doi.org/10.5194/nhess-2022-99, 2022
Preprint under review for NHESS
Short summary
Short summary
It is difficult to estimate the magnitude of rare to very rare floods due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and precipitation amounts vary considerably over the course of an event, and floods from different parts of the basin coincide. We show that computer models can provide plausible results in this setting, and can thus inform flood risk and safety assessments for critical infrastructure.
Jan Seibert and Sten Bergström
Hydrol. Earth Syst. Sci., 26, 1371–1388, https://doi.org/10.5194/hess-26-1371-2022, https://doi.org/10.5194/hess-26-1371-2022, 2022
Short summary
Short summary
Hydrological catchment models are commonly used as the basis for water resource management planning. The HBV model, which is a typical example of such a model, was first applied about 50 years ago in Sweden. We describe and reflect on the model development and applications. The aim is to provide an understanding of the background of model development and a basis for addressing the balance between model complexity and data availability that will continue to face hydrologists in the future.
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-640, https://doi.org/10.5194/hess-2021-640, 2022
Preprint under review for HESS
Short summary
Short summary
Spatially explicit quantification on design storms are essential for flood risk assessment and planning. However, available datasets are mainly based on spatially interpolated station based design storms. Since the spatial interpolation of the data inherits a large potential for uncertainty, we develop an approach to be able to derive spatially explicit design storms on the basis of weather radar data. We find that our approach leads to an improved spatial representation of design storms.
Benjamin Gralher, Barbara Herbstritt, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 5219–5235, https://doi.org/10.5194/hess-25-5219-2021, https://doi.org/10.5194/hess-25-5219-2021, 2021
Short summary
Short summary
We scrutinized the quickest currently available method for stable isotope analysis of matrix-bound water. Simulating common procedures, we demonstrated the limits of certain materials currently used and identified a reliable and cost-efficient alternative. Further, we calculated the optimum proportions of important protocol aspects critical for precise and accurate analyses. Our unifying protocol suggestions increase data quality and comparability as well as the method's general applicability.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
Short summary
We developed a setup for fully automated in situ measurements of stable water isotopes in soil and the stems of fully grown trees. We used this setup in a 12-week field campaign to monitor the propagation of a labelling pulse from the soil up to a stem height of 8 m.
We could observe trees shifting their main water uptake depths multiple times, depending on water availability.
The gained knowledge about the temporal dynamics can help to improve water uptake models and future study designs.
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-366, https://doi.org/10.5194/hess-2021-366, 2021
Manuscript not accepted for further review
Short summary
Short summary
Spatially explicit quantification on design storms are essential for flood risk assessment. However this information can be only achieved from substantially long records of rainfall measurements, usually only available for a few stations. Hence, design storms estimates from these few stations are then spatially interpolated leading to a major source of uncertainty. Therefore we defined a methodology to extend spatially explicit weather radar data to be used for the estimation of design storms.
Rosanna Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-321, https://doi.org/10.5194/hess-2021-321, 2021
Preprint under review for HESS
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-242, https://doi.org/10.5194/hess-2021-242, 2021
Manuscript not accepted for further review
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation and vegetation succession across ten millennia on calcareous parent material shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes. We provide important but rare data and observations for a proper handling of hydrologic processes and their role within the feedback cycle of the hydro-pedo-geomorphological system.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Geosci. Model Dev., 14, 2127–2142, https://doi.org/10.5194/gmd-14-2127-2021, https://doi.org/10.5194/gmd-14-2127-2021, 2021
Short summary
Short summary
This paper presents FluSM, an algorithm to derive the water balance from soil moisture and metrological measurements. This data-driven water balance framework uses soil moisture as an input and therefore is applicable for cases with unclear processes and lacking parameters. In a case study, we apply FluSM to derive the water balance of 15 different permeable pavements under field conditions. These findings are of special interest for urban hydrology.
Robin Schwemmle, Dominic Demand, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 2187–2198, https://doi.org/10.5194/hess-25-2187-2021, https://doi.org/10.5194/hess-25-2187-2021, 2021
Short summary
Short summary
A better understanding of the reasons why model performance is unsatisfying represents a crucial part for meaningful model evaluation. We propose the novel diagnostic efficiency (DE) measure and diagnostic polar plots. The proposed evaluation approach provides a diagnostic tool for model developers and model users and facilitates interpretation of model performance.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Merle Koelbing, Tobias Schuetz, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-24, https://doi.org/10.5194/hess-2021-24, 2021
Revised manuscript not accepted
Short summary
Short summary
Based on a unique and comprehensive data set of urban micro-meteorological variables, which were observed with a mobile climate station, we developed a new method to transfer mesoscale reference potential evapotranspiration to the urban microscale in street canyons. Our findings can be transferred easily to existing urban hydrologic models to improve modelling results with a more precise estimate of potential evapotranspiration on street level.
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Jan Seibert, and Marc Vis
Hydrol. Earth Syst. Sci., 25, 429–446, https://doi.org/10.5194/hess-25-429-2021, https://doi.org/10.5194/hess-25-429-2021, 2021
Short summary
Short summary
The megadrought experienced in Chile (2010–2020) has led to larger than expected water deficits. By analysing 106 basins with snow-/rainfall regimes, we relate such intensification with the hydrological memory of the basins, explained by snow and groundwater. Snow-dominated basins have larger memory and thus accumulate the effect of persistent precipitation deficits more strongly than pluvial basins. This notably affects central Chile, a water-limited region where most of the population lives.
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020, https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
Short summary
This work proposes methods for reducing the computational requirements of hydrological simulations for the estimation of very rare floods that occur on average less than once in 1000 years. These methods enable the analysis of long streamflow time series (here for example 10 000 years) at low computational costs and with modelling uncertainty. They are to be used within continuous simulation frameworks with long input time series and are readily transferable to similar simulation tasks.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Daniel Beiter, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 5713–5744, https://doi.org/10.5194/hess-24-5713-2020, https://doi.org/10.5194/hess-24-5713-2020, 2020
Short summary
Short summary
We investigated the interactions between streams and their adjacent hillslopes in terms of water flow. It could be revealed that soil structure has a strong influence on how hillslopes connect to the streams, while the groundwater table tells us a lot about when the two connect. This observation could be used to improve models that try to predict whether or not hillslopes are in a state where a rain event will be likely to produce a flood in the stream.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020, https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary
Short summary
In recent decades the demand for detailed information of spatial and temporal dynamics of the stream network has grown in the fields of eco-hydrology and extreme flow prediction. We use temporal streamflow intermittency data obtained at various sites using innovative sensing technology as well as spatial predictors to predict and map probabilities of streamflow intermittency. This approach has the potential to provide intermittency maps for hydrological modelling and management practices.
Michael Stoelzle, Maria Staudinger, Kerstin Stahl, and Markus Weiler
Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020, https://doi.org/10.5194/piahs-383-43-2020, 2020
Short summary
Short summary
The role of recharge and catchment storage is crucial to understand streamflow drought sensitivity. Here we introduce a model experiment with recharge stress tests as complement to climate scenarios to quantify the streamflow drought sensitivities of catchments in Switzerland. We identified a pre-drought period of 12 months as maximum storage-memory for the study catchments. From stress testing, we found up to 200 days longer summer streamflow droughts and minimum flow reductions of 50 %–80 %.
Marc Girons Lopez, Marc J. P. Vis, Michal Jenicek, Nena Griessinger, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 4441–4461, https://doi.org/10.5194/hess-24-4441-2020, https://doi.org/10.5194/hess-24-4441-2020, 2020
Short summary
Short summary
Snow processes are crucial for runoff in mountainous areas, but their complexity makes water management difficult. Temperature models are widely used as they are simple and do not require much data, but not much thought is usually given to which model to use, which may lead to bad predictions. We studied the impact of many model alternatives and found that a more complex model does not necessarily perform better. Finding which processes are most important in each area is a much better strategy.
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020, https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
Short summary
Under a changing climate, reliable information on future hydrological conditions is necessary to inform water resource management. Here, we collaborated with a hydropower company that selected streamflow and energy demand indices. Using these indices, we identified stakeholder needs and used this to tailor the production of our climate change impact projections. We show that opportunities and risks for a hydropower company depend on a range of factors beyond those covered by traditional studies.
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Short summary
The sources of stream water are important, for instance, for predicting floods. The connectivity between streams and different (ground-)water sources can change during rain events, which affects the stream water composition. We investigated this for stream water sampled during four events and found that stream water came from different sources. The stream water composition changed gradually, and we showed that changes in solute concentrations could be partly linked to changes in connectivity.
Anne Hartmann, Ekaterina Semenova, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 3271–3288, https://doi.org/10.5194/hess-24-3271-2020, https://doi.org/10.5194/hess-24-3271-2020, 2020
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation, and vegetation succession across 10 millennia shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes.
The increase found in water storage and preferential flow paths with increasing soil age shows the effect of the complex interaction of vegetation and soil development on flow paths, water balance, and runoff formation during landscape evolution.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Barbara Strobl, Simon Etter, H. J. Ilja van Meerveld, and Jan Seibert
Geosci. Commun., 3, 109–126, https://doi.org/10.5194/gc-3-109-2020, https://doi.org/10.5194/gc-3-109-2020, 2020
Short summary
Short summary
Training can deter people from joining a citizen science project but may be needed to ensure good data quality. In this study, we found that an online game that was originally developed for data quality control in a citizen science project can be used for training as well. These findings are useful for the development of training strategies for other citizen science projects because they indicate that gamified approaches might be valuable scalable training methods.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Earth Syst. Sci. Data, 12, 501–517, https://doi.org/10.5194/essd-12-501-2020, https://doi.org/10.5194/essd-12-501-2020, 2020
Short summary
Short summary
This paper contains detailed information about the instrumentation of permeable pavements with soil moisture sensors and the performance of infiltration experiments on these surfaces. The collected data are beneficial for studying urban water and energy cycles. They contain valuable information about the hydrological behavior of permeable pavements and urban subsurface heat anomalies. Due to the lack of similar data, we are convinced that the dataset is of great scientific value.
Michael Stoelzle, Tobias Schuetz, Markus Weiler, Kerstin Stahl, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, https://doi.org/10.5194/hess-24-849-2020, 2020
Short summary
Short summary
During dry weather, different delayed sources of runoff (e.g. from groundwater, wetlands or snowmelt) modulate the magnitude and variability of streamflow. Hydrograph separation methods often do not distinguish these delayed contributions and mostly pool them into only two components (i.e. quickflow and baseflow). We propose a method that uncovers multiple components and demonstrates how they better reflect streamflow generation processes of different flow regimes.
Fabian Ries, Lara Kirn, and Markus Weiler
Earth Syst. Sci. Data, 12, 245–255, https://doi.org/10.5194/essd-12-245-2020, https://doi.org/10.5194/essd-12-245-2020, 2020
Short summary
Short summary
Pluvial or flash floods generated by heavy precipitation events cause large economic damage and loss of life worldwide. As discharge observations from such extreme occurrences are rare, data from artificial sprinkling experiments offer valuable information on runoff generation processes, overland and subsurface flow rates, and response times. A extensive data set from 132 large-scale sprinkling experiments in Germany is described and presented in this paper.
Dominic Demand, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019, https://doi.org/10.5194/hess-23-4869-2019, 2019
Short summary
Short summary
This study presents an analysis of 135 soil moisture profiles for identification of the spatial and temporal preferential flow occurrence in a complex landscape. Especially dry conditions and high rainfall intensities were found to increase preferential flow occurrence in soils. This results in a seasonal pattern of preferential flow with a higher occurrence in summer. During this time grasslands showed increased flow velocities, whereas forest sites exhibited a higher amount of bypass flow.
H. J. Ilja van Meerveld, James W. Kirchner, Marc J. P. Vis, Rick S. Assendelft, and Jan Seibert
Hydrol. Earth Syst. Sci., 23, 4825–4834, https://doi.org/10.5194/hess-23-4825-2019, https://doi.org/10.5194/hess-23-4825-2019, 2019
Short summary
Short summary
Flowing stream networks extend and retract seasonally and in response to precipitation. This affects the distances and thus the time that it takes a water molecule to reach the flowing stream and the stream outlet. When the network is fully extended, the travel times are short, but when the network retracts, the travel times become longer and more uniform. These dynamics should be included when modeling solute or pollutant transport.
Nils Hinrich Kaplan, Ernestine Sohrt, Theresa Blume, and Markus Weiler
Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019, https://doi.org/10.5194/essd-11-1363-2019, 2019
Short summary
Short summary
Different sensing techniques including time-lapse imagery, electric conductivity and stage measurements were used to generate a combined dataset of the presence and absence of streamflow within a large number of nested sub-catchments in the Attert catchment, Luxembourg. The first sites of observation were established in 2013 and successively extended to a total number of 182 in 2016. The dataset can be used to improve understanding of the temporal and spatial dynamics of the stream network.
Barbara Herbstritt, Benjamin Gralher, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 3007–3019, https://doi.org/10.5194/hess-23-3007-2019, https://doi.org/10.5194/hess-23-3007-2019, 2019
Short summary
Short summary
We describe a novel technique for the precise, quasi real-time observation of water-stable isotopes in gross precipitation and throughfall from tree canopies in parallel. Various processes (e.g. rainfall intensity, evapotranspiration, exchange with ambient vapour) thereby control throughfall intensity and isotopic composition. The achieved temporal resolution now competes with common meteorological measurements, thus enabling new ways to employ water-stable isotopes in forested catchments.
Judith Meyer, Irene Kohn, Kerstin Stahl, Kirsti Hakala, Jan Seibert, and Alex J. Cannon
Hydrol. Earth Syst. Sci., 23, 1339–1354, https://doi.org/10.5194/hess-23-1339-2019, https://doi.org/10.5194/hess-23-1339-2019, 2019
Short summary
Short summary
Several multivariate bias correction methods have been developed recently, but only a few studies have tested the effect of multivariate bias correction on hydrological impact projections. This study shows that incorporating or ignoring inter-variable relations between air temperature and precipitation can have a notable effect on the projected snowfall fraction. The effect translated to considerable consequences for the glacio-hydrological responses and streamflow components of the catchments.
Jobin Joseph, Christoph Külls, Matthias Arend, Marcus Schaub, Frank Hagedorn, Arthur Gessler, and Markus Weiler
SOIL, 5, 49–62, https://doi.org/10.5194/soil-5-49-2019, https://doi.org/10.5194/soil-5-49-2019, 2019
Short summary
Short summary
By coupling an OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. In calcareous Gleysol, CO2 originating from carbonate dissolution contributed to total soil CO2 concentration at detectable degrees, probably due to CO2 evasion from groundwater. Inward diffusion of atmospheric CO2 was found to be pronounced in the topsoil layers at both sites.
Simon Etter, Barbara Strobl, Jan Seibert, and H. J. Ilja van Meerveld
Hydrol. Earth Syst. Sci., 22, 5243–5257, https://doi.org/10.5194/hess-22-5243-2018, https://doi.org/10.5194/hess-22-5243-2018, 2018
Short summary
Short summary
To evaluate the potential value of streamflow estimates for hydrological model calibration, we created synthetic streamflow datasets in various temporal resolutions based on the errors in streamflow estimates of 136 citizens. Our results show that streamflow estimates of untrained citizens are too inaccurate to be useful for model calibration. If, however, the errors can be reduced by training or filtering, the estimates become useful if also a sufficient number of estimates are available.
Mirko Mälicke, Sibylle K. Hassler, Markus Weiler, Theresa Blume, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-396, https://doi.org/10.5194/hess-2018-396, 2018
Manuscript not accepted for further review
Short summary
Short summary
In this study we use time dependent variograms to identify periods of organized soil moisture during drying. We could identify emerging spatial patterns which imply periods of terrestrial control on soil moisture organization. The coupling of time dependent variograms with density based clustering is a new approach to detect similarity in spatial patterns. The presented method is useful to describe states of organization and improve kriging workflows by extending their prerequisites.
Jana von Freyberg, Scott T. Allen, Stefan Seeger, Markus Weiler, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, https://doi.org/10.5194/hess-22-3841-2018, 2018
Short summary
Short summary
We explored how the fraction of streamflow younger than ca. 3 months (Fyw) varies with landscape characteristics and climatic forcing, using an extensive isotope data set from 22 Swiss catchments. Overall, Fyw tends to be larger when catchments are wet and discharge is correspondingly higher, indicating an increase in the proportional contribution of faster flow paths at higher flows. We quantify this
discharge sensitivityof Fyw and relate it to the dominant streamflow-generating mechanisms.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Jakob Sohrt, Heike Puhlmann, and Markus Weiler
SOIL Discuss., https://doi.org/10.5194/soil-2018-13, https://doi.org/10.5194/soil-2018-13, 2018
Revised manuscript not accepted
Short summary
Short summary
We sampled concentrations of phosphorus (P) in laterally flowing water in the organic layer of three beech forest sites. Sampling frequency was in the range to minutes to ours with the intent of capturing short term variability of this parameter and the underlying mechanisms, which were analyzed with a modeling approach. While site affiliation was found to be a strong influence on P concentrations in lateral flow, some universal effects – like antecedent soil moisture – could also be determined.
Daphné Freudiger, David Mennekes, Jan Seibert, and Markus Weiler
Earth Syst. Sci. Data, 10, 805–814, https://doi.org/10.5194/essd-10-805-2018, https://doi.org/10.5194/essd-10-805-2018, 2018
Short summary
Short summary
To understand glacier changes in the Swiss Alps at the large scale, long-term datasets are needed. To fill the gap between the existing glacier inventories of the Swiss Alps between 1850 and 1973, we digitized glacier outlines from topographic historical maps of Switzerland for the time periods ca. 1900 and ca. 1935. We found that > 88 % of the digitized glacier area was plausible compared to four inventories. The presented dataset is therefore valuable information for long-term glacier studies.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Sibylle Kathrin Hassler, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 22, 13–30, https://doi.org/10.5194/hess-22-13-2018, https://doi.org/10.5194/hess-22-13-2018, 2018
Short summary
Short summary
We use sap velocity measurements from 61 trees on 132 days to gain knowledge about the controls of landscape-scale transpiration, distinguishing tree-, stand- and site-specific controls on sap velocity and sap flow patterns and examining their dynamics during the vegetation period. Our results show that these patterns are not exclusively determined by tree characteristics. Thus, including site characteristics such as geology and aspect could be beneficial for modelling or management purposes.
Willem J. van Verseveld, Holly R. Barnard, Chris B. Graham, Jeffrey J. McDonnell, J. Renée Brooks, and Markus Weiler
Hydrol. Earth Syst. Sci., 21, 5891–5910, https://doi.org/10.5194/hess-21-5891-2017, https://doi.org/10.5194/hess-21-5891-2017, 2017
Short summary
Short summary
How stream water responds immediately to a rainfall or snow event, while the average time it takes water to travel through the hillslope can be years or decades and is poorly understood. We assessed this difference by combining a 24-day sprinkler experiment (a tracer was applied at the start) with a process-based hydrologic model. Immobile soil water, deep groundwater contribution and soil depth variability explained this difference at our hillslope site.
Sandra Pool, Marc J. P. Vis, Rodney R. Knight, and Jan Seibert
Hydrol. Earth Syst. Sci., 21, 5443–5457, https://doi.org/10.5194/hess-21-5443-2017, https://doi.org/10.5194/hess-21-5443-2017, 2017
Short summary
Short summary
This modeling study explores the effect of different model calibration criteria on the accuracy of simulated streamflow characteristics (SFCs). The results imply that one has to consider significant uncertainties when simulated time series are used to derive SFCs that were not included in the calibration. Thus, we strongly recommend calibrating the runoff model explicitly for the SFCs of interest. Our study helps improve the estimation of SFCs for ungauged catchments based on runoff models.
H. J. Ilja van Meerveld, Marc J. P. Vis, and Jan Seibert
Hydrol. Earth Syst. Sci., 21, 4895–4905, https://doi.org/10.5194/hess-21-4895-2017, https://doi.org/10.5194/hess-21-4895-2017, 2017
Short summary
Short summary
We tested the usefulness of stream level class data for hydrological model calibration. Only two stream level classes, e.g. above or below a rock in the stream, were already informative, particularly when the boundary was chosen at a high stream level. There was hardly any improvement in model performance when using more than five stream level classes. These results suggest that model based streamflow time series can be obtained from citizen science based water level class data.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-416, https://doi.org/10.5194/hess-2017-416, 2017
Revised manuscript not accepted
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Tracy Ewen and Jan Seibert
Hydrol. Earth Syst. Sci., 20, 4079–4091, https://doi.org/10.5194/hess-20-4079-2016, https://doi.org/10.5194/hess-20-4079-2016, 2016
Short summary
Short summary
Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be explored. We look at how games can be used to teach about water resource sharing, by both playing and developing water games. An evaluation of the web-based game Irrigania found Irrigania to be an effective and easy tool to incorporate into curriculum, and a course on developing water games encouraged students to think about water resource sharing in a more critical and insightful way.
Nena Griessinger, Jan Seibert, Jan Magnusson, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 3895–3905, https://doi.org/10.5194/hess-20-3895-2016, https://doi.org/10.5194/hess-20-3895-2016, 2016
Short summary
Short summary
In Alpine catchments, snowmelt is a major contribution to runoff. In this study, we address the question of whether the performance of a hydrological model can be enhanced by integrating data from an external snow monitoring system. To this end, a hydrological model was driven with snowmelt input from snow models of different complexities. Best performance was obtained with a snow model, which utilized data assimilation, in particular for catchments at higher elevations and for snow-rich years.
Maik Renner, Sibylle K. Hassler, Theresa Blume, Markus Weiler, Anke Hildebrandt, Marcus Guderle, Stanislaus J. Schymanski, and Axel Kleidon
Hydrol. Earth Syst. Sci., 20, 2063–2083, https://doi.org/10.5194/hess-20-2063-2016, https://doi.org/10.5194/hess-20-2063-2016, 2016
Short summary
Short summary
We estimated forest transpiration (European beech) along a steep valley cross section. Atmospheric demand, obtained by the thermodynamic limit of maximum power, is the dominant control of transpiration at all sites.
To our surprise we find that transpiration is rather similar across sites with different aspect (north vs. south) and different stand structure due to systematically varying sap velocities. Such a compensation effect is highly relevant for modeling and upscaling of transpiration.
Katharina F. Gimbel, Heike Puhlmann, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 1301–1317, https://doi.org/10.5194/hess-20-1301-2016, https://doi.org/10.5194/hess-20-1301-2016, 2016
Short summary
Short summary
It is usually assumed that soil properties are not affected by drought events. We used dye tracer experiments to test this assumption on six forest soils, which were forced into drought conditions. The results of this study show clear evidence for changes in infiltration pathways. In addition, most soils developed soil water repellency. Overall, the results suggest that the past climatic conditions are more important than the actual soil moisture status regarding hydrophobicity and infiltration.
Michal Jenicek, Jan Seibert, Massimiliano Zappa, Maria Staudinger, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 859–874, https://doi.org/10.5194/hess-20-859-2016, https://doi.org/10.5194/hess-20-859-2016, 2016
Short summary
Short summary
We quantified how long snowmelt affects runoff, and we estimated the sensitivity of catchments to changes in snowpack. This is relevant as the increase of air temperature might cause decreased snow storage. We used time series from 14 catchments in Switzerland. On average, a decrease of maximum snow storage by 10 % caused a decrease of minimum discharge in July by 2 to 9 %. The results showed a higher sensitivity of summer low flow to snow in alpine catchments compared to pre-alpine catchments.
Tobias Schuetz, Chantal Gascuel-Odoux, Patrick Durand, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 843–857, https://doi.org/10.5194/hess-20-843-2016, https://doi.org/10.5194/hess-20-843-2016, 2016
Short summary
Short summary
We quantify the spatio-temporal impact of distinct nitrate sinks and sources on stream network nitrate dynamics in an agricultural headwater. By applying a data-driven modelling approach, we are able to fully distinguish between mixing and dilution processes, and biogeochemical in-stream removal processes along the stream network. In-stream nitrate removal is estimated by applying a novel transfer coefficient based on energy availability.
A. Hartmann, J. Kobler, M. Kralik, T. Dirnböck, F. Humer, and M. Weiler
Biogeosciences, 13, 159–174, https://doi.org/10.5194/bg-13-159-2016, https://doi.org/10.5194/bg-13-159-2016, 2016
Short summary
Short summary
We consider the time period before and after a wind disturbance in an Austrian karst system. Using a process-based flow and solute transport simulation model we estimate impacts on DIN and DOC. We show that DIN increases for several years, while DOC remains within its pre-disturbance variability. Simulated transit times indicate that impact passes through the hydrological system within some months but with a small fraction exceeding transit times of even a year.
M. Rinderer, H. C. Komakech, D. Müller, G. L. B. Wiesenberg, and J. Seibert
Hydrol. Earth Syst. Sci., 19, 3505–3516, https://doi.org/10.5194/hess-19-3505-2015, https://doi.org/10.5194/hess-19-3505-2015, 2015
Short summary
Short summary
A field method for assessing soil moisture in semi-arid conditions is proposed and tested in terms of inter-rater reliability with 40 Tanzanian farmers, students and experts. The seven wetness classes are based on qualitative indicators that one can see, feel or hear. It could be shown that the qualitative wetness classes reflect differences in volumetric water content and neither experience nor a certain level of education was a prerequisite to gain high agreement among raters.
J. E. Reynolds, S. Halldin, C. Y. Xu, J. Seibert, and A. Kauffeldt
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-7437-2015, https://doi.org/10.5194/hessd-12-7437-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
In this study it was found that time-scale dependencies of hydrological model parameters are a result of the numerical method used in the model rather than a real time-scale-data dependence. This study further indicates that as soon as sub-daily driving data can be secured, flood forecasting in watersheds with sub-daily concentration times is possible with model parameter values inferred from long time series of daily data, as long as an appropriate numerical method is used.
M. Sprenger, T. H. M. Volkmann, T. Blume, and M. Weiler
Hydrol. Earth Syst. Sci., 19, 2617–2635, https://doi.org/10.5194/hess-19-2617-2015, https://doi.org/10.5194/hess-19-2617-2015, 2015
Short summary
Short summary
We present a novel approach that includes information about the pore water stable isotopic composition in inverse model approaches to estimate soil hydraulic parameters. Different approaches are presented and their adequacy regarding the model efficiency, realism and parameter identifiability are discussed. The advantages of the new approach are shown by an application of the inverse estimated parameters to infer the water balance and the transit time for three different study sites.
K. F. Gimbel, K. Felsmann, M. Baudis, H. Puhlmann, A. Gessler, H. Bruelheide, Z. Kayler, R. H. Ellerbrock, A. Ulrich, E. Welk, and M. Weiler
Biogeosciences, 12, 961–975, https://doi.org/10.5194/bg-12-961-2015, https://doi.org/10.5194/bg-12-961-2015, 2015
Short summary
Short summary
This paper introduces a novel rainfall reduction experiment to investigate drought effects on soil-forest-understory-ecosystems. An annual drought with a return period of 40 years was imposed, while other ecosystem variables (humidity, air & soil temperature) remained unaffected. The first year of drought showed considerable changes in soil moisture dynamics, which affected leaf stomatal conductance of understory species as well as evapotranspiration rates of the forest understory ecosystem.
S. Seeger and M. Weiler
Hydrol. Earth Syst. Sci., 18, 4751–4771, https://doi.org/10.5194/hess-18-4751-2014, https://doi.org/10.5194/hess-18-4751-2014, 2014
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
J. Schwerdtfeger, M. S. Johnson, E. G. Couto, R. S. S. Amorim, L. Sanches, J. H. Campelo Jr., and M. Weiler
Hydrol. Earth Syst. Sci., 18, 4407–4422, https://doi.org/10.5194/hess-18-4407-2014, https://doi.org/10.5194/hess-18-4407-2014, 2014
I. K. Westerberg, L. Gong, K. J. Beven, J. Seibert, A. Semedo, C.-Y. Xu, and S. Halldin
Hydrol. Earth Syst. Sci., 18, 2993–3013, https://doi.org/10.5194/hess-18-2993-2014, https://doi.org/10.5194/hess-18-2993-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
D. Freudiger, I. Kohn, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 18, 2695–2709, https://doi.org/10.5194/hess-18-2695-2014, https://doi.org/10.5194/hess-18-2695-2014, 2014
R. S. Smith, R. D. Moore, M. Weiler, and G. Jost
Hydrol. Earth Syst. Sci., 18, 1835–1856, https://doi.org/10.5194/hess-18-1835-2014, https://doi.org/10.5194/hess-18-1835-2014, 2014
T. H. M. Volkmann and M. Weiler
Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, https://doi.org/10.5194/hess-18-1819-2014, 2014
P. Schneider, S. Pool, L. Strouhal, and J. Seibert
Hydrol. Earth Syst. Sci., 18, 875–892, https://doi.org/10.5194/hess-18-875-2014, https://doi.org/10.5194/hess-18-875-2014, 2014
M. Gassmann, C. Stamm, O. Olsson, J. Lange, K. Kümmerer, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 5213–5228, https://doi.org/10.5194/hess-17-5213-2013, https://doi.org/10.5194/hess-17-5213-2013, 2013
C. Teutschbein and J. Seibert
Hydrol. Earth Syst. Sci., 17, 5061–5077, https://doi.org/10.5194/hess-17-5061-2013, https://doi.org/10.5194/hess-17-5061-2013, 2013
A. Hartmann, M. Weiler, T. Wagener, J. Lange, M. Kralik, F. Humer, N. Mizyed, A. Rimmer, J. A. Barberá, B. Andreo, C. Butscher, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, https://doi.org/10.5194/hess-17-3305-2013, 2013
N. Dietermann and M. Weiler
Hydrol. Earth Syst. Sci., 17, 2657–2668, https://doi.org/10.5194/hess-17-2657-2013, https://doi.org/10.5194/hess-17-2657-2013, 2013
J. Garvelmann, S. Pohl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 1415–1429, https://doi.org/10.5194/hess-17-1415-2013, https://doi.org/10.5194/hess-17-1415-2013, 2013
M. Stoelzle, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 817–828, https://doi.org/10.5194/hess-17-817-2013, https://doi.org/10.5194/hess-17-817-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Quantifying multi-year hydrological memory with Catchment Forgetting Curves
On constraining a lumped hydrological model with both piezometry and streamflow: results of a large sample evaluation
Influences of land use changes on the dynamics of water quantity and quality in the German lowland catchment of the Stör
Impact of spatial distribution information of rainfall in runoff simulation using deep learning method
Towards effective drought monitoring in the Middle East and North Africa (MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco
The effects of spatial and temporal resolution of gridded meteorological forcing on watershed hydrological responses
Hydrological response of a peri-urban catchment exploiting conventional and unconventional rainfall observations: the case study of Lambro Catchment
Assessing hydrological sensitivity of grassland basins in the Canadian Prairies to climate using a basin classification-based virtual modelling approach
The value of satellite soil moisture and snow cover data for the transfer of hydrological model parameters to ungauged sites
Storylines of UK drought based on the 2010–2012 event
Uncertainty estimation with deep learning for rainfall–runoff modeling
Applying non-parametric Bayesian networks to estimate maximum daily river discharge: potential and challenges
Contrasting changes in hydrological processes of the Volta River basin under global warming
A retrospective on hydrological catchment modelling based on half a century with the HBV model
Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters
Rainfall–runoff relationships at event scale in western Mediterranean ephemeral streams
Combined impacts of uncertainty in precipitation and air temperature on simulated mountain system recharge from an integrated hydrologic model
Simultaneous assimilation of water levels from river gauges and satellite flood maps for near-real-time flood mapping
Remote sensing-aided rainfall–runoff modeling in the tropics of Costa Rica
Drivers of drought-induced shifts in the water balance through a Budyko approach
Regionalization of hydrological model parameters using gradient boosting machine
Aquifer recharge in the Piedmont Alpine zone: historical trends and future scenarios
Improved representation of agricultural land use and crop management for large-scale hydrological impact simulation in Africa using SWAT+
How well are we able to close the water budget at the global scale?
Bending of the concentration discharge relationship can inform about in-stream nitrate removal
Quantifying the impacts of land cover change on hydrological responses in the Mahanadi river basin in India
Identification of the contributing area to river discharge during low-flow periods
Simulating sediment discharge at water treatment plants under different land use scenarios using cascade modelling with an expert-based erosion-runoff model and a deep neural network
In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models
Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau?
Small-scale topography explains patterns and dynamics of dissolved organic carbon exports from the riparian zone of a temperate, forested catchment
Revisiting parameter sensitivities in the Variable Infiltration Capacity model
Effects of spatial resolution of terrain models on modelled discharge and soil loss in Oaxaca, Mexico
Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
Numerical daemons of hydrological models are summoned by extreme precipitation
How is Baseflow Index (BFI) impacted by water resource management practices?
Technical note: RAT – a robustness assessment test for calibrated and uncalibrated hydrological models
Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment
Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models
Deep learning rainfall-runoff predictions of extreme events
Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
Development and evaluation of 0.05° terrestrial water storage estimates using Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and assimilation of GRACE data
Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times
Stream discharge depends more on the temporal distribution of water inputs than on yearly snowfall fractions for a headwater catchment at the rain-snow transition zone
Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective
A new fractal-theory-based criterion for hydrological model calibration
The value of water isotope data on improving process understanding in a glacierized catchment on the Tibetan Plateau
Machine learning deciphers CO2 sequestration and subsurface flowpaths from stream chemistry
Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria
Using hydrologic landscape classification and climatic time series to assess hydrologic vulnerability of the western U.S. to climate
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022, https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Short summary
A watershed remembers the past to some extent, and this memory influences its behavior. This memory is defined by the ability to store past rainfall for several years. By releasing this water into the river or the atmosphere, it tends to forget. We describe how this memory fades over time in France and Sweden. A few watersheds show a multi-year memory. It increases with the influence of groundwater or dry conditions. After 3 or 4 years, they behave independently of the past.
Antoine Pelletier and Vazken Andréassian
Hydrol. Earth Syst. Sci., 26, 2733–2758, https://doi.org/10.5194/hess-26-2733-2022, https://doi.org/10.5194/hess-26-2733-2022, 2022
Short summary
Short summary
A large part of the water cycle takes place underground. In many places, the soil stores water during the wet periods and can release it all year long, which is particularly visible when the river level is low. Modelling tools that are used to simulate and forecast the behaviour of the river struggle to represent this. We improved an existing model to take underground water into account using measurements of the soil water content. Results allow us make recommendations for model users.
Chaogui Lei, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 26, 2561–2582, https://doi.org/10.5194/hess-26-2561-2022, https://doi.org/10.5194/hess-26-2561-2022, 2022
Short summary
Short summary
We presented an integrated approach to hydrologic modeling and partial least squares regression quantifying land use change impacts on water and nutrient balance over 3 decades. Results highlight that most variations (70 %–80 %) in water quantity and quality variables are explained by changes in land use class-specific areas and landscape metrics. Arable land influences water quantity and quality the most. The study provides insights on water resources management in rural lowland catchments.
Yang Wang and Hassan A. Karimi
Hydrol. Earth Syst. Sci., 26, 2387–2403, https://doi.org/10.5194/hess-26-2387-2022, https://doi.org/10.5194/hess-26-2387-2022, 2022
Short summary
Short summary
We found that rainfall data with spatial information can improve the model's performance, especially when simulating the future multi-day discharges. We did not observe that regional LSTM as a regional model achieved better results than LSTM as individual model. This conclusion applies to both one-day and multi-day simulations. However, we found that using spatially distributed rainfall data can reduce the difference between individual LSTM and regional LSTM.
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022, https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary
Short summary
The MENA (Middle East and North Africa) region faces significant food and water insecurity and hydrological hazards. Here we investigate the value of assimilating remote sensing data sets into an Earth system model to help build an effective drought monitoring system and support risk mitigation and management by countries in the region. We highlight incorporating satellite-informed vegetation conditions into the model as being one of the key processes for a successful application for the region.
Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi
Hydrol. Earth Syst. Sci., 26, 2245–2276, https://doi.org/10.5194/hess-26-2245-2022, https://doi.org/10.5194/hess-26-2245-2022, 2022
Short summary
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.
Greta Cazzaniga, Carlo De Michele, Michele D'Amico, Cristina Deidda, Antonio Ghezzi, and Roberto Nebuloni
Hydrol. Earth Syst. Sci., 26, 2093–2111, https://doi.org/10.5194/hess-26-2093-2022, https://doi.org/10.5194/hess-26-2093-2022, 2022
Short summary
Short summary
Rainfall estimates are usually obtained from rain gauges, weather radars, or satellites. An alternative is the measurement of the signal loss induced by rainfall on commercial microwave links (CMLs). In this work, we assess the hydrologic response of Lambro Basin when CML-retrieved rainfall is used as model input. CML estimates agree with rain gauge data. CML-driven discharge simulations show performance comparable to that from rain gauges if a CML-based calibration of the model is undertaken.
Christopher Spence, Zhihua He, Kevin R. Shook, Balew A. Mekonnen, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 1801–1819, https://doi.org/10.5194/hess-26-1801-2022, https://doi.org/10.5194/hess-26-1801-2022, 2022
Short summary
Short summary
We determined how snow and flow in small creeks change with temperature and precipitation in the Canadian Prairie, a region where water resources are often under stress. We tried something new. Every watershed in the region was placed in one of seven groups based on their landscape traits. We selected one of these groups and used its traits to build a model of snow and streamflow. It worked well, and by the 2040s there may be 20 %–40 % less snow and 30 % less streamflow than the 1980s.
Rui Tong, Juraj Parajka, Borbála Széles, Isabella Greimeister-Pfeil, Mariette Vreugdenhil, Jürgen Komma, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 1779–1799, https://doi.org/10.5194/hess-26-1779-2022, https://doi.org/10.5194/hess-26-1779-2022, 2022
Short summary
Short summary
The role and impact of using additional data (other than runoff) for the prediction of daily hydrographs in ungauged basins are not well understood. In this study, we assessed the model performance in terms of runoff, soil moisture, and snow cover predictions with the existing regionalization approaches. Results show that the best transfer methods are the similarity and the kriging approaches. The performance of the transfer methods differs between lowland and alpine catchments.
Wilson C. H. Chan, Theodore G. Shepherd, Katie Facer-Childs, Geoff Darch, and Nigel W. Arnell
Hydrol. Earth Syst. Sci., 26, 1755–1777, https://doi.org/10.5194/hess-26-1755-2022, https://doi.org/10.5194/hess-26-1755-2022, 2022
Short summary
Short summary
We select the 2010–2012 UK drought and investigate an alternative unfolding of the drought from changes to its attributes. We created storylines of drier preconditions, alternative seasonal contributions, a third dry winter, and climate change. Storylines of the 2010–2012 drought show alternative situations that could have resulted in worse conditions than observed. Event-based storylines exploring plausible situations are used that may lead to high impacts and help stress test existing systems.
Daniel Klotz, Frederik Kratzert, Martin Gauch, Alden Keefe Sampson, Johannes Brandstetter, Günter Klambauer, Sepp Hochreiter, and Grey Nearing
Hydrol. Earth Syst. Sci., 26, 1673–1693, https://doi.org/10.5194/hess-26-1673-2022, https://doi.org/10.5194/hess-26-1673-2022, 2022
Short summary
Short summary
This contribution evaluates distributional runoff predictions from deep-learning-based approaches. We propose a benchmarking setup and establish four strong baselines. The results show that accurate, precise, and reliable uncertainty estimation can be achieved with deep learning.
Elisa Ragno, Markus Hrachowitz, and Oswaldo Morales-Nápoles
Hydrol. Earth Syst. Sci., 26, 1695–1711, https://doi.org/10.5194/hess-26-1695-2022, https://doi.org/10.5194/hess-26-1695-2022, 2022
Short summary
Short summary
We explore the ability of non-parametric Bayesian networks to reproduce maximum daily discharge in a given month in a catchment when the remaining hydro-meteorological and catchment attributes are known. We show that a saturated network evaluated in an individual catchment can reproduce statistical characteristics of discharge in about ~ 40 % of the cases, while challenges remain when a saturated network considering all the catchments together is evaluated.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 1481–1506, https://doi.org/10.5194/hess-26-1481-2022, https://doi.org/10.5194/hess-26-1481-2022, 2022
Short summary
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
Jan Seibert and Sten Bergström
Hydrol. Earth Syst. Sci., 26, 1371–1388, https://doi.org/10.5194/hess-26-1371-2022, https://doi.org/10.5194/hess-26-1371-2022, 2022
Short summary
Short summary
Hydrological catchment models are commonly used as the basis for water resource management planning. The HBV model, which is a typical example of such a model, was first applied about 50 years ago in Sweden. We describe and reflect on the model development and applications. The aim is to provide an understanding of the background of model development and a basis for addressing the balance between model complexity and data availability that will continue to face hydrologists in the future.
Laurène J. E. Bouaziz, Emma E. Aalbers, Albrecht H. Weerts, Mark Hegnauer, Hendrik Buiteveld, Rita Lammersen, Jasper Stam, Eric Sprokkereef, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, https://doi.org/10.5194/hess-26-1295-2022, 2022
Short summary
Short summary
Assuming stationarity of hydrological systems is no longer appropriate when considering land use and climate change. We tested the sensitivity of hydrological predictions to changes in model parameters that reflect ecosystem adaptation to climate and potential land use change. We estimated a 34 % increase in the root zone storage parameter under +2 K global warming, resulting in up to 15 % less streamflow in autumn, due to 14 % higher summer evaporation, compared to a stationary system.
Roberto Serrano-Notivoli, Alberto Martínez-Salvador, Rafael García-Lorenzo, David Espín-Sánchez, and Carmelo Conesa-García
Hydrol. Earth Syst. Sci., 26, 1243–1260, https://doi.org/10.5194/hess-26-1243-2022, https://doi.org/10.5194/hess-26-1243-2022, 2022
Short summary
Short summary
Ephemeral streams in the western Mediterranean area are driven by the duration, magnitude, and intensity of rainfall events (REs). A detailed statistical analysis showed that the average RE (1.2 d and 1.5 mm) is not enough to generate new flow, which is only guaranteed by events occurring in return periods from 2 to > 50 years. REs explain near to 75 % of new flow, meaning that terrain and lithological characteristics play a fundamental role.
Adam P. Schreiner-McGraw and Hoori Ajami
Hydrol. Earth Syst. Sci., 26, 1145–1164, https://doi.org/10.5194/hess-26-1145-2022, https://doi.org/10.5194/hess-26-1145-2022, 2022
Short summary
Short summary
We assess the impact of uncertainty in measurements of precipitation and air temperature on simulated groundwater processes in a mountainous watershed. We illustrate the role of topography in controlling how uncertainty in the input datasets propagates through the soil and into the groundwater. While the focus of previous investigations has been on the impact of precipitation uncertainty, we show that air temperature uncertainty is equally important in controlling the groundwater recharge.
Antonio Annis, Fernando Nardi, and Fabio Castelli
Hydrol. Earth Syst. Sci., 26, 1019–1041, https://doi.org/10.5194/hess-26-1019-2022, https://doi.org/10.5194/hess-26-1019-2022, 2022
Short summary
Short summary
In this work, we proposed a multi-source data assimilation framework for near-real-time flood mapping. We used a quasi-2D hydraulic model to update model states by injecting both stage gauge observations and satellite-derived flood extents. Results showed improvements in terms of water level prediction and reduction of flood extent uncertainty when assimilating both stage gauges and satellite images with respect to the disjoint assimilation of both observations.
Saúl Arciniega-Esparza, Christian Birkel, Andrés Chavarría-Palma, Berit Arheimer, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci., 26, 975–999, https://doi.org/10.5194/hess-26-975-2022, https://doi.org/10.5194/hess-26-975-2022, 2022
Short summary
Short summary
In the humid tropics, a notoriously data-scarce region, we need to find alternatives in order to reasonably apply hydrological models. Here, we tested remotely sensed rainfall data in order to drive a model for Costa Rica, and we evaluated the simulations against evapotranspiration satellite products. We found that our model was able to reasonably simulate the water balance and streamflow dynamics of over 600 catchments where the satellite data helped to reduce the model uncertainties.
Tessa Maurer, Francesco Avanzi, Steven D. Glaser, and Roger C. Bales
Hydrol. Earth Syst. Sci., 26, 589–607, https://doi.org/10.5194/hess-26-589-2022, https://doi.org/10.5194/hess-26-589-2022, 2022
Short summary
Short summary
Predicting how much water will end up in rivers is more difficult during droughts because the relationship between precipitation and streamflow can change in unexpected ways. We differentiate between changes that are predictable based on the weather patterns and those harder to predict because they depend on the land and vegetation of a particular region. This work helps clarify why models are less accurate during droughts and helps predict how much water will be available for human use.
Zhihong Song, Jun Xia, Gangsheng Wang, Dunxian She, Chen Hu, and Si Hong
Hydrol. Earth Syst. Sci., 26, 505–524, https://doi.org/10.5194/hess-26-505-2022, https://doi.org/10.5194/hess-26-505-2022, 2022
Short summary
Short summary
We performed a machine learning approach to regionalize the parameters of a China-wide hydrological model by linking six model parameters with 10 physical attributes (terrain and soil properties). The results show the superiority of machine-learning-based regionalization approach compared with the traditional linear regression method in ungauged regions. We also obtained the relative importance of attributes against model parameters.
Elisa Brussolo, Elisa Palazzi, Jost von Hardenberg, Giulio Masetti, Gianna Vivaldo, Maurizio Previati, Davide Canone, Davide Gisolo, Ivan Bevilacqua, Antonello Provenzale, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 26, 407–427, https://doi.org/10.5194/hess-26-407-2022, https://doi.org/10.5194/hess-26-407-2022, 2022
Short summary
Short summary
In this study, we evaluate the past, present and future quantity of groundwater potentially available for drinking purposes in the metropolitan area of Turin, north-western Italy. In order to effectively manage water resources, a knowledge of the water cycle components is necessary, including precipitation, evapotranspiration and subsurface reservoirs. All these components have been carefully evaluated in this paper, using observational datasets and modelling approaches.
Albert Nkwasa, Celray James Chawanda, Jonas Jägermeyr, and Ann van Griensven
Hydrol. Earth Syst. Sci., 26, 71–89, https://doi.org/10.5194/hess-26-71-2022, https://doi.org/10.5194/hess-26-71-2022, 2022
Short summary
Short summary
We present an approach on how to incorporate crop phenology in a regional hydrological model using decision tables and global datasets of rainfed and irrigated cropland with the associated cropping calendar and management practices. Results indicate improved temporal patterns of leaf area index (LAI) and evapotranspiration (ET) simulations in comparison with remote sensing data. In addition, the improvement of the cropping season also helps to improve soil erosion estimates in cultivated areas.
Fanny Lehmann, Bramha Dutt Vishwakarma, and Jonathan Bamber
Hydrol. Earth Syst. Sci., 26, 35–54, https://doi.org/10.5194/hess-26-35-2022, https://doi.org/10.5194/hess-26-35-2022, 2022
Short summary
Short summary
Many data sources are available to evaluate components of the water cycle (precipitation, evapotranspiration, runoff, and terrestrial water storage). Despite this variety, it remains unclear how different combinations of datasets satisfy the conservation of mass. We conducted the most comprehensive analysis of water budget closure on a global scale to date. Our results can serve as a basis to select appropriate datasets for regional hydrological studies.
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021, https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Short summary
Increased nitrate concentrations in surface waters can compromise river ecosystem health. As riverine nitrate uptake is hard to measure, we explore how low-frequency nitrate concentration and discharge observations (that are widely available) can help to identify (in)efficient uptake in river networks. We find that channel geometry and water velocity rather than the biological uptake capacity dominate the nitrate-discharge pattern at the outlet. The former can be used to predict uptake.
Shaini Naha, Miguel Angel Rico-Ramirez, and Rafael Rosolem
Hydrol. Earth Syst. Sci., 25, 6339–6357, https://doi.org/10.5194/hess-25-6339-2021, https://doi.org/10.5194/hess-25-6339-2021, 2021
Short summary
Short summary
Rapid growth in population in developing countries leads to an increase in food demand, and as a consequence, percentages of land are being converted to cropland which alters river flow processes. This study describes how the hydrology of a flood-prone river basin in India would respond to the current and future changes in land cover. Our findings indicate that the recurrent flood events occurring in the basin might be influenced by these changes in land cover at the catchment scale.
Maxime Gillet, Corinne Le Gal La Salle, Pierre Alain Ayral, Somar Khaska, Philippe Martin, and Patrick Verdoux
Hydrol. Earth Syst. Sci., 25, 6261–6281, https://doi.org/10.5194/hess-25-6261-2021, https://doi.org/10.5194/hess-25-6261-2021, 2021
Short summary
Short summary
This paper aims at identifying the key reservoirs sustaining river low flow during dry summer. The reservoirs are discriminated based on the geological nature of the formations and the geochemical signature of groundwater. Results show the increasing importance to low-flow support of a specific reservoir, showing only a limited outcrop area and becoming preponderant in the heart of the dry season. This finding will contribute to improving the protective measures for preserving low flows.
Edouard Patault, Valentin Landemaine, Jérôme Ledun, Arnaud Soulignac, Matthieu Fournier, Jean-François Ouvry, Olivier Cerdan, and Benoit Laignel
Hydrol. Earth Syst. Sci., 25, 6223–6238, https://doi.org/10.5194/hess-25-6223-2021, https://doi.org/10.5194/hess-25-6223-2021, 2021
Short summary
Short summary
The goal of this study was to assess the sediment discharge variability at a water treatment plant (Normandy, France) according to multiple realistic land use scenarios. We developed a new cascade modelling approach and simulations suggested that coupling eco-engineering and best farming practices can significantly reduce the sediment discharge (up to 80 %).
Ather Abbas, Sangsoo Baek, Norbert Silvera, Bounsamay Soulileuth, Yakov Pachepsky, Olivier Ribolzi, Laurie Boithias, and Kyung Hwa Cho
Hydrol. Earth Syst. Sci., 25, 6185–6202, https://doi.org/10.5194/hess-25-6185-2021, https://doi.org/10.5194/hess-25-6185-2021, 2021
Short summary
Short summary
Correct estimation of fecal indicator bacteria in surface waters is critical for public health. Process-driven models and recently data-driven models have been applied for water quality modeling; however, a systematic comparison for simulation of E. coli is missing in the literature. We compared performance of process-driven (HSPF) and data-driven (LSTM) models for E. coli simulation. We show that LSTM can be an alternative to process-driven models for estimation of E. coli in surface waters.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 25, 6151–6172, https://doi.org/10.5194/hess-25-6151-2021, https://doi.org/10.5194/hess-25-6151-2021, 2021
Short summary
Short summary
Hydrological modeling has large problems of uncertainty in cold regions. Tracer-aided hydrological models are increasingly used to reduce uncertainty and refine the parameterizations of hydrological processes, with limited application in large basins due to the unavailability of spatially distributed precipitation isotopes. This study explored the utility of isotopic general circulation models in driving a tracer-aided hydrological model in a large basin on the Tibetan Plateau.
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Ulises Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-550, https://doi.org/10.5194/hess-2021-550, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
This paper characterizes parameter sensitivities across > 5,500 grid cells for a commonly used macro-scale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Sergio Naranjo, Francelino A. Rodrigues Jr., Georg Cadisch, Santiago Lopez-Ridaura, Mariela Fuentes Ponce, and Carsten Marohn
Hydrol. Earth Syst. Sci., 25, 5561–5588, https://doi.org/10.5194/hess-25-5561-2021, https://doi.org/10.5194/hess-25-5561-2021, 2021
Short summary
Short summary
We integrate a spatially explicit soil erosion model with plot- and watershed-scale characterization and high-resolution drone imagery to assess the effect of spatial resolution digital terrain models (DTMs) on discharge and soil loss. Results showed reduction in slope due to resampling down of DTM. Higher resolution translates to higher slope, denser fluvial system, and extremer values of soil loss, reducing concentration time and increasing soil loss at the outlet. The best resolution was 4 m.
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021, https://doi.org/10.5194/hess-25-5517-2021, 2021
Short summary
Short summary
We used deep learning (DL) models to simulate the amount of water moving through a river channel (discharge) based on the rainfall, temperature and potential evaporation in the previous days. We tested the DL models on catchments across Great Britain finding that the model can accurately simulate hydrological systems across a variety of catchment conditions. Ultimately, the model struggled most in areas where there is chalky bedrock and where human influence on the catchment is large.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021, https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil
Hydrol. Earth Syst. Sci., 25, 4611–4629, https://doi.org/10.5194/hess-25-4611-2021, https://doi.org/10.5194/hess-25-4611-2021, 2021
Short summary
Short summary
The stationary assumption in hydrology has become obsolete because of climate changes. In that context, it is crucial to assess the performance of a hydrologic model over a wide range of climates and their corresponding hydrologic conditions. In this paper, numerous, contrasted, climate sequences identified by a hidden Markov model (HMM) are used in a differential split-sample testing framework to assess the robustness of a hydrologic model. We illustrate the method on the Senegal River.
Jonathan Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shelev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-423, https://doi.org/10.5194/hess-2021-423, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
The most accurate rainfall-runoff predictions are currently based on deep learning. There is a concern among hydrologists that deep learning models may not be reliable in extrapolation or for predicting extreme events. This study tests that hypothesis. The deep learning models remained relatively accurate in predicting extreme events compared traditional models, even when extreme events are not included in the training set.
Herath Mudiyanselage Viraj Vidura Herath, Jayashree Chadalawada, and Vladan Babovic
Hydrol. Earth Syst. Sci., 25, 4373–4401, https://doi.org/10.5194/hess-25-4373-2021, https://doi.org/10.5194/hess-25-4373-2021, 2021
Short summary
Short summary
Existing hydrological knowledge has been integrated with genetic programming based on a machine learning algorithm (MIKA-SHA) to induce readily interpretable distributed rainfall–runoff models. At present, the model building components of two flexible modelling frameworks (FUSE and SUPERFLEX) represent the elements of hydrological knowledge. The proposed toolkit captures spatial variabilities and automatically induces semi-distributed rainfall–runoff models without any explicit user selections.
Natthachet Tangdamrongsub, Michael F. Jasinski, and Peter J. Shellito
Hydrol. Earth Syst. Sci., 25, 4185–4208, https://doi.org/10.5194/hess-25-4185-2021, https://doi.org/10.5194/hess-25-4185-2021, 2021
Short summary
Short summary
Accurate estimation of terrestrial water storage (TWS) is essential for reliable water resource assessments. TWS can be estimated from the Community Atmosphere–Biosphere Land Exchange model (CABLE), but the resolution is limited to 0.5°. We reconfigure CABLE to improve TWS spatial details from 0.5° to 0.05°. GRACE satellite data are assimilated into CABLE to improve TWS accuracy. Our workflow relies only on publicly accessible data, allowing reproduction of 0.05° TWS in any region.
Seán Donegan, Conor Murphy, Shaun Harrigan, Ciaran Broderick, Dáire Foran Quinn, Saeed Golian, Jeff Knight, Tom Matthews, Christel Prudhomme, Adam A. Scaife, Nicky Stringer, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021, https://doi.org/10.5194/hess-25-4159-2021, 2021
Short summary
Short summary
We benchmarked the skill of ensemble streamflow prediction (ESP) for a diverse sample of 46 Irish catchments. We found that ESP is skilful in the majority of catchments up to several months ahead. However, the level of skill was strongly dependent on lead time, initialisation month, and individual catchment location and storage properties. We also conditioned ESP with the winter North Atlantic Oscillation and show that improvements in forecast skill, reliability, and discrimination are possible.
Leonie Kiewiet, Ernesto Trujillo, Andrew Hedrick, Scott Havens, Katherine Hale, Mark Seyfried, Stephanie Kampf, and Sarah E. Godsey
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-362, https://doi.org/10.5194/hess-2021-362, 2021
Revised manuscript accepted for HESS
Short summary
Short summary
Mountainous regions are receiving more rain and less snow due to climate change. We investigated how that change affects stream discharge in a region that already receives a mix of rain and snow, by simulating rainfall and snowmelt for four contrasting years. We found that stream discharge depended more on the temporal distribution of precipitation than on yearly snowfall fractions. This highlights the importance of distributed modelling of rainfall and snowmelt in headwater-scale studies.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Zhixu Bai, Yao Wu, Di Ma, and Yue-Ping Xu
Hydrol. Earth Syst. Sci., 25, 3675–3690, https://doi.org/10.5194/hess-25-3675-2021, https://doi.org/10.5194/hess-25-3675-2021, 2021
Short summary
Short summary
To test our hypothesis that the fractal dimensions of streamflow series can be used to improve the calibration of hydrological models, we designed the E–RD efficiency ratio of fractal dimensions strategy and examined its usability in the calibration of lumped models. The results reveal that, in most aspects, introducing RD into model calibration makes the simulation of streamflow components more reasonable. Also, pursuing a better RD during calibration leads to only a minor decrease in E.
Yi Nan, Lide Tian, Zhihua He, Fuqiang Tian, and Lili Shao
Hydrol. Earth Syst. Sci., 25, 3653–3673, https://doi.org/10.5194/hess-25-3653-2021, https://doi.org/10.5194/hess-25-3653-2021, 2021
Short summary
Short summary
This study integrated a water isotope module into the hydrological model THREW. The isotope-aided model was subsequently applied for process understanding in the glacierized watershed of Karuxung river on the Tibetan Plateau. The model was used to quantify the contribution of runoff component and estimate the water travel time in the catchment. Model uncertainties were significantly constrained by using additional isotopic data, improving the process understanding in the catchment.
Andrew R. Shaughnessy, Xin Gu, Tao Wen, and Susan L. Brantley
Hydrol. Earth Syst. Sci., 25, 3397–3409, https://doi.org/10.5194/hess-25-3397-2021, https://doi.org/10.5194/hess-25-3397-2021, 2021
Short summary
Short summary
It is often difficult to determine the sources of solutes in streams and how much each source contributes. We developed a new method of unmixing stream chemistry via machine learning. We found that sulfate in three watersheds is related to groundwater flowpaths. Our results emphasize that acid rain reduces a watershed's capacity to remove CO2 from the atmosphere, a key geological control on climate. Our method will help scientists unmix stream chemistry in watersheds where sources are unknown.
Sarah Hanus, Markus Hrachowitz, Harry Zekollari, Gerrit Schoups, Miren Vizcaino, and Roland Kaitna
Hydrol. Earth Syst. Sci., 25, 3429–3453, https://doi.org/10.5194/hess-25-3429-2021, https://doi.org/10.5194/hess-25-3429-2021, 2021
Short summary
Short summary
This study investigates the effects of climate change on runoff patterns in six Alpine catchments in Austria at the end of the 21st century. Our results indicate a substantial shift to earlier occurrences in annual maximum and minimum flows in high-elevation catchments. Magnitudes of annual extremes are projected to increase under a moderate emission scenario in all catchments. Changes are generally more pronounced for high-elevation catchments.
Chas E. Jones Jr., Scott G. Leibowitz, Keith A. Sawicz, Randy L. Comeleo, Laurel E. Stratton, Philip E. Morefield, and Christopher P. Weaver
Hydrol. Earth Syst. Sci., 25, 3179–3206, https://doi.org/10.5194/hess-25-3179-2021, https://doi.org/10.5194/hess-25-3179-2021, 2021
Short summary
Short summary
Our research assesses the hydrologic vulnerability of the western U.S. to climate by classifying the landscape based on its physical and climatic characteristics and analyzing climate data. We also apply the approach to examine the vulnerabilities of case studies in the ski and wine industries. We show that the west and its ski areas are vulnerable to changes in snow, while vineyard vulnerability varies. This allows us to consider climatic impacts across landscapes, industries, and stakeholders.
Cited articles
Aviolat, P., Bitterli, T., Brändli, R., Christe, R., Fracheboud, S., Frei, D., George, M., Matousek, F., and Tripet, J.-P.: Hydrological Atlas of Switzerland, plate 8.6, Groundwater resources, Federal office for Water and Geology, Berne, 2004.
Bergström, S.: The HBV model, in: Chapter 13, Computer Models of Watershed Hydrology, edited by: Singh, V. P., Water Resources Publications, Highlands Ranch, Colorado, USA, 443–476, 1995.
Bréda, N., Huc, R., Granier, A., and Dreyer, E.: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences, Ann. Forest Sci., 63, 625–644, 2006.
Burke, E. J., Brown, S. J., and Christidis, N.: Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model, J. Hydrometeorol., 7, 1113–1125, 2006.
Dooge, J. C.: Sensitivity of runoff to climate change: A Hortonian approach, B. Am. Meteorol. Soc., 73, 2013–2024, 1992.
Eltahir, E. A. and Yeh, P. J.-F.: On the asymmetric response of aquifer water level to floods and droughts in Illinois, Water Resour. Res., 35, 1199–1217, 1999.
Fleig, A. K., Tallaksen, L. M., Hisdal, H., and Demuth, S.: A global evaluation of streamflow drought characteristics, Hydrol. Earth Syst. Sci., 10, 535–552, https://doi.org/10.5194/hess-10-535-2006, 2006.
FOEN: Federal Office for the Environment, section of hydrology, http://www.bafu.admin.ch/hydrologie/12385/index.html?lang=en (last access: 10 December 2013), 2013a.
FOEN: Federal Office for the Environment, section of hydrology, http://www.hydrodaten.admin.ch/en/ (last access: 20 December 2013), 2013b.
Frei, C.: Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean distances, Int. J. Climatol., 34, 1585–1605, 2013.
Kohn, I., Rosin, K., Freudiger, D., Belz, J. U., Stahl, K., and Weiler, M.: Low flow in Germany in 2011, Hydrol. Wasserwirt., 58, 4–17, 2014.
Kroll, C., Luz, J., Allen, B., and Vogel, R. M.: Developing a watershed characteristics database to improve low streamflow prediction, J. Hydrol. Eng., 9, 116–125, 2004.
Lehner, B., Döll, P., Alcamo, J., Henrichs, T., and Kaspar, F.: Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis, Climatic Change, 75, 273–299, 2006.
Lettenmaier, D. P., Wood, A. W., Palmer, R. N., Wood, E. F., and Stakhiv, E. Z.: Water resources implications of global warming: A US regional perspective, Climatic Change, 43, 537–579, 1999.
Li, J., Cook, E., Chen, F., Gou, X., D'Arrigo, R., and Yuan, Y.: An extreme drought event in the central Tien Shan area in the year 1945, J. Arid Environ., 74, 1225–1231, 2010.
Lindström, G.: A simple automatic calibration routine for the HBV model, Nord. Hydrol., 28, 153–168, 1997.
Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272–288, 1997.
MeteoSwiss: Federal Office of Meteorology and Climatology, http://www.meteoschweiz.admin.ch/web/en/services/data_portal/gridded_datasets.html, last access: 10 October 2013.
Miller, N. L., Bashford, K. E., and Strem, E.: Potential impacts of climate change on california hydrology, J. Am. Water Resour. Assoc., 39, 771–784, 2003.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol., 391, 202–216, 2010.
Nijssen, B., O'Donnell, G. M., Hamlet, A. F., and Lettenmaier, D. P.: Hydrologic sensitivity of global rivers to climate change, Climatic change, 50, 143–175, 2001.
Null, S. E., Viers, J. H., and Mount, J. F.: Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada, PLoS One, 5, e9932, https://doi.org/10.1371/journal.pone.0009932, 2010.
Peters, E., Torfs, P., Van Lanen, H., and Bier, G.: Propagation of drought through groundwater – a new approach using linear reservoir theory, Hydrol. Process., 17, 3023–3040, 2003.
Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J. P., and Menzel, A.: Heat and drought 2003 in Europe: a climate synthesis, Ann. Forest Sci., 63, 569–577, 2006.
Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: Climate elasticity of streamflow in the United States, Water Resour. Res., 37, 1771–1781, 2001.
Santos, J., Corte-real, J., and Leite, S.: Atmospheric large-scale dynamics during the 2004/2005 winter drought in portugal, Int. J. Climatol., 27, 571–586, 2007.
Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911, https://doi.org/10.5194/hess-15-2895-2011, 2011.
Schaake, J. C.: From climate to flow, inClimate Change and U.S. Water Resources, in: chap. 8, edited by: Waggoner, P. E., John Wiley, New York, 177–206, 1990.
Seibert, J.: Regionalisation of parameters for a conceptual rainfall-runoff model, Agr. Forest Meteorol., 98, 279–293, 1999.
Seibert, J.: Multi-criteria calibration of a conceptual runoff model using a genetic algorithm, Hydrol. Earth Syst. Sci., 4, 215–224, https://doi.org/10.5194/hess-4-215-2000, 2000.
Seibert, J. and Vis, M. J. P.: Teaching hydrological modeling with a user-friendly catchment-runoff-model software package, Hydrol. Earth Syst. Sci., 16, 3315–3325, https://doi.org/10.5194/hess-16-3315-2012, 2012.
Solomon, S.: Climate change 2007 – the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, vol. 4, Cambridge University Press, 2007.
Stahl, K. and Demuth, S.: Linking streamflow drought to the occurrence of atmospheric circulation patterns, Hydrolog. Sci. J., 44, 467–482, 1999.
Tallaksen, L. M. and Van Lanen, H. A.: Hydrological Drought: Processes and Estimnation Methods for Streamflow and Groundwater, vol. 48, Elsevier, Amsterdam, the Netherlands, 2004.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods, J. Hydrol., 456, 12–29, 2012.
Teutschbein, C. and Seibert, J.: Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?, Hydrol. Earth Syst. Sci., 17, 5061–5077, https://doi.org/10.5194/hess-17-5061-2013, 2013.
Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought, Nat. Clim. Change, 4, 17–22, 2014.
Trigo, R. M., Gouveia, C. M., and Barriopedro, D.: The intense 2007–2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation, Agr. Forest Meteorol., 150, 1245–1257, 2010.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F., van Lanen, H. A., Hisdal, H., Tallaksen, L. M., Fendeková, M., Oosterwijk, J., Horvát, O., and Machlica, A.: Understanding hydrological winter drought in Europe, Global Change: Facing Risks and Threats to Water Resources, IAHS Publ., 340, 189–197, 2010.
Wang, G.: Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment, Clim. Dynam., 25, 739–753, 2005.
Wetherald, R. T. and Manabe, S.: Detectability of summer dryness caused by greenhouse warming, Climatic Change, 43, 495–511, 1999.
Wetherald, R. T. and Manabe, S.: Simulation of hydrologic changes associated with global warming, J. Geophys. Res., 107, 4379, https://doi.org/10.1029/2001JD001195, 2002.
Wilby, R. L. and Harris, I.: A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK, Water Resour. Res., 42, W02419, https://doi.org/10.1029/2005WR004065, 2006.
Zaidman, M. D., Rees, H. G., and Young, A. R.: Spatio-temporal development of streamflow droughts in north-west Europe, Hydrol. Earth Syst. Sci., 6, 733–751, https://doi.org/10.5194/hess-6-733-2002, 2002.