Articles | Volume 17, issue 10
https://doi.org/10.5194/hess-17-4015-2013
https://doi.org/10.5194/hess-17-4015-2013
Research article
 | 
17 Oct 2013
Research article |  | 17 Oct 2013

Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data

H. Ozdemir, C. C. Sampson, G. A. M. de Almeida, and P. D. Bates

Related authors

The impact of uncertain precipitation data on insurance loss estimates using a flood catastrophe model
C. C. Sampson, T. J. Fewtrell, F. O'Loughlin, F. Pappenberger, P. B. Bates, J. E. Freer, and H. L. Cloke
Hydrol. Earth Syst. Sci., 18, 2305–2324, https://doi.org/10.5194/hess-18-2305-2014,https://doi.org/10.5194/hess-18-2305-2014, 2014

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Simulation of spatially distributed sources, transport, and transformation of nitrogen from fertilization and septic system in an exurban watershed
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Amanda K. Suchy, Jonathan M. Duncan, and Arther J. Gold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-256,https://doi.org/10.5194/hess-2023-256, 2023
Revised manuscript accepted for HESS
Short summary
An optimized long short-term memory (LSTM)-based approach applied to early warning and forecasting of ponding in the urban drainage system
Wen Zhu, Tao Tao, Hexiang Yan, Jieru Yan, Jiaying Wang, Shuping Li, and Kunlun Xin
Hydrol. Earth Syst. Sci., 27, 2035–2050, https://doi.org/10.5194/hess-27-2035-2023,https://doi.org/10.5194/hess-27-2035-2023, 2023
Short summary
A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
Qianqian Zhou, Shuai Teng, Zuxiang Situ, Xiaoting Liao, Junman Feng, Gongfa Chen, Jianliang Zhang, and Zonglei Lu
Hydrol. Earth Syst. Sci., 27, 1791–1808, https://doi.org/10.5194/hess-27-1791-2023,https://doi.org/10.5194/hess-27-1791-2023, 2023
Short summary
Impact of urban geology on model simulations of shallow groundwater levels and flow paths
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023,https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary

Cited articles

Apel, H., Aronica, G. T., Kreibich, H., and Thieken, A. H.: Flood risk analyses-how detailed do we need to be?, Nat. Hazards, 49, 79–98, 2009.
Aronica, G. T. and Lanza, J. G.: Drainage efficiency in urban areas: a case study, Hydrol. Process., 19, 1105–1119, 2005.
Aronica, G. T., Tucciarelli, T., and Nasello, C.: 2D Multilevel model for flood wave propagation in flood-affected areas, J. Water Resour. Pl. Manage., 124, 210–217, https://doi.org/10.1061/(ASCE)0733-9496(1998)124:4(210), 1998.
Barnea, S. and Filin, S.: Keypoint based autonomous registration of terrestrial laser point-clouds, ISPRS J. Photogramm. Remote Sens., 63, 19–35, 2008.
Bates, P. D. and De Roo, A. P. J.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54–77, 2000.
Download