Articles | Volume 15, issue 3
https://doi.org/10.5194/hess-15-989-2011
https://doi.org/10.5194/hess-15-989-2011
Research article
 | 
23 Mar 2011
Research article |  | 23 Mar 2011

Hydrologic similarity among catchments under variable flow conditions

S. Patil and M. Stieglitz

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
A national-scale hybrid model for enhanced streamflow estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, and Raphael J. M. Schneider
Hydrol. Earth Syst. Sci., 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024,https://doi.org/10.5194/hess-28-2871-2024, 2024
Short summary
Inferring heavy tails of flood distributions through hydrograph recession analysis
Hsing-Jui Wang, Ralf Merz, Soohyun Yang, and Stefano Basso
Hydrol. Earth Syst. Sci., 27, 4369–4384, https://doi.org/10.5194/hess-27-4369-2023,https://doi.org/10.5194/hess-27-4369-2023, 2023
Short summary
Landscape structures regulate the contrasting response of recession along rainfall amounts
Jun-Yi Lee, Ci-Jian Yang, Tsung-Ren Peng, Tsung-Yu Lee, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 27, 4279–4294, https://doi.org/10.5194/hess-27-4279-2023,https://doi.org/10.5194/hess-27-4279-2023, 2023
Short summary
Hydrological objective functions and ensemble averaging with the Wasserstein distance
Jared C. Magyar and Malcolm Sambridge
Hydrol. Earth Syst. Sci., 27, 991–1010, https://doi.org/10.5194/hess-27-991-2023,https://doi.org/10.5194/hess-27-991-2023, 2023
Short summary
Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023,https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary

Cited articles

Acreman, M. C. and Sinclair, C. D.: Classification of drainage basins according to their physical characteristics; an application for flood frequency analysis in Scotland, J. Hydrol., 84, 365–380, 1986.
Anderson, R. M., Beer, K. M., Buckwalter, T. F., Clark, M. E., McAuley, S. D., Sams, J. I., III, and Williams, D. R.: Water quality in the Allegheny and Monongahela River basins, Pennsylvania, West Virginia, New York, and Maryland, 1996-98: US Geological Survey Circular 1202, p. 32, 2000.
Arnold, J. G. and Allen, P. M.: Automated methods for estimating baseflow and ground water recharge from streamflow records, J. Am. Water Resour. As., 35(2), 411–424, 1999.
Ayers, M. A., Wolock, D. M., McCabe, G. J., Hay, L. E., and Tasker, G. D.: Sensitivity of water resources in the Delaware River Basin to climate variability and change, US Geological Survey Water-Supply Paper 2422, US Geological Survey, Reston, VA, 1994.
Blöschl, G. and Sivapalan, M.: Process Controls on Regional Flood Frequency: Coefficient of Variation and Basin Scale, Water Resour. Res., 33(12), 2967–2980, 1997.