Articles | Volume 15, issue 1
https://doi.org/10.5194/hess-15-185-2011
https://doi.org/10.5194/hess-15-185-2011
Research article
 | 
19 Jan 2011
Research article |  | 19 Jan 2011

Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

Y.-M. Chiang, L.-C. Chang, M.-J. Tsai, Y.-F. Wang, and F.-J. Chang

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Simulation of spatially distributed sources, transport, and transformation of nitrogen from fertilization and septic system in an exurban watershed
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Amanda K. Suchy, Jonathan M. Duncan, and Arther J. Gold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-256,https://doi.org/10.5194/hess-2023-256, 2023
Revised manuscript accepted for HESS
Short summary
An optimized long short-term memory (LSTM)-based approach applied to early warning and forecasting of ponding in the urban drainage system
Wen Zhu, Tao Tao, Hexiang Yan, Jieru Yan, Jiaying Wang, Shuping Li, and Kunlun Xin
Hydrol. Earth Syst. Sci., 27, 2035–2050, https://doi.org/10.5194/hess-27-2035-2023,https://doi.org/10.5194/hess-27-2035-2023, 2023
Short summary
A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
Qianqian Zhou, Shuai Teng, Zuxiang Situ, Xiaoting Liao, Junman Feng, Gongfa Chen, Jianliang Zhang, and Zonglei Lu
Hydrol. Earth Syst. Sci., 27, 1791–1808, https://doi.org/10.5194/hess-27-1791-2023,https://doi.org/10.5194/hess-27-1791-2023, 2023
Short summary
Impact of urban geology on model simulations of shallow groundwater levels and flow paths
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023,https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary

Cited articles

Abrahart, R. J. and See, L.: Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments, Hydrol. Earth Syst. Sci., 6, 655–670, https://doi.org/10.5194/hess-6-655-2002, 2002.
Brath, A., Montanari, A., and Toth, E.: Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models, Hydrol. Earth Syst. Sci., 6, 627–639, https://doi.org/10.5194/hess-6-627-2002, 2002.
Chang, F. J. and Chang, Y. T.: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir, Adv. Water Res., 29(1), 1–10, 2006.
Chang, F. J. and Chen, Y. C.: A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction, J. Hydrol., 245(1–4), 153–164, 2001.
Chang, F. J., Chang, K. Y., and Chang, L. C.: Counterpropagation fuzzy-neural network for city flood control system, J. Hydrol., 358(1–2), 24–34, 2008.