Articles | Volume 14, issue 7
https://doi.org/10.5194/hess-14-1309-2010
https://doi.org/10.5194/hess-14-1309-2010
16 Jul 2010
 | 16 Jul 2010

Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites

Yen-Ming Chiang, Li-Chiu Chang, Meng-Jung Tsai, Yi-Fung Wang, and Fi-John Chang

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Simulation of spatially distributed sources, transport, and transformation of nitrogen from fertilization and septic system in an exurban watershed
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Amanda K. Suchy, Jonathan M. Duncan, and Arther J. Gold
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-256,https://doi.org/10.5194/hess-2023-256, 2023
Revised manuscript accepted for HESS
Short summary
An optimized long short-term memory (LSTM)-based approach applied to early warning and forecasting of ponding in the urban drainage system
Wen Zhu, Tao Tao, Hexiang Yan, Jieru Yan, Jiaying Wang, Shuping Li, and Kunlun Xin
Hydrol. Earth Syst. Sci., 27, 2035–2050, https://doi.org/10.5194/hess-27-2035-2023,https://doi.org/10.5194/hess-27-2035-2023, 2023
Short summary
A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
Qianqian Zhou, Shuai Teng, Zuxiang Situ, Xiaoting Liao, Junman Feng, Gongfa Chen, Jianliang Zhang, and Zonglei Lu
Hydrol. Earth Syst. Sci., 27, 1791–1808, https://doi.org/10.5194/hess-27-1791-2023,https://doi.org/10.5194/hess-27-1791-2023, 2023
Short summary
Impact of urban geology on model simulations of shallow groundwater levels and flow paths
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023,https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary

Cited articles

Ackerman, D. and Schiff, K.: Modeling storm water mass emissions to the southern California bight, J. Environ. Eng-Asce, 129(4), 308–317, 2003.
Akhtar, M. K., Corzo, G. A., van Andel, S. J., and Jonoski, A.: River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin, Hydrol. Earth Syst. Sci., 13, 1607–1618, https://doi.org/10.5194/hess-13-1607-2009, 2009.
Baffaut, C. and Delleur, J. W.: Calibration of Swmm Runoff Quality Model with Expert System, J. Water Res. Pl-Asce, 116(2), 247–261, 1990.
Besaw, L. E., Rizzo, D. M., Bierman, P. R., and Hackett, W. R.: Advances in ungauged streamflow prediction using artificial neural networks, J. Hydrol., 386(1–4), 27–37, 2010.
Borah, D. K. and Bera, M.: Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases, T. Asae, 46(6), 1553–1566, 2003.
Download