Articles | Volume 29, issue 20
https://doi.org/10.5194/hess-29-5251-2025
https://doi.org/10.5194/hess-29-5251-2025
Research article
 | 
17 Oct 2025
Research article |  | 17 Oct 2025

Improving heat transfer predictions in heterogeneous riparian zones using transfer learning techniques

Aohan Jin, Wenguang Shi, Jun Du, Renjie Zhou, Hongbin Zhan, Yao Huang, Quanrong Wang, and Xuan Gu

Related authors

Technical note: A model of chemical transport in a wellbore–aquifer system
Yiqun Gan and Quanrong Wang
Hydrol. Earth Syst. Sci., 28, 1317–1323, https://doi.org/10.5194/hess-28-1317-2024,https://doi.org/10.5194/hess-28-1317-2024, 2024
Short summary
A general model of radial dispersion with wellbore mixing and skin effects
Wenguang Shi, Quanrong Wang, Hongbin Zhan, Renjie Zhou, and Haitao Yan
Hydrol. Earth Syst. Sci., 27, 1891–1908, https://doi.org/10.5194/hess-27-1891-2023,https://doi.org/10.5194/hess-27-1891-2023, 2023
Short summary
An Experimental Investigation of Precipitation Utilization of plants in Arid Regions
Yiben Cheng, Wei Feng, Hongbin Zhan, Huijie Xiao, Zhiming Xin, and Wenbin Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-392,https://doi.org/10.5194/hess-2022-392, 2022
Preprint withdrawn
Short summary
Experimental study of non-Darcy flow characteristics in permeable stones
Zhongxia Li, Junwei Wan, Tao Xiong, Hongbin Zhan, Linqing He, and Kun Huang
Hydrol. Earth Syst. Sci., 26, 3359–3375, https://doi.org/10.5194/hess-26-3359-2022,https://doi.org/10.5194/hess-26-3359-2022, 2022
Short summary
Redistribution process of precipitation in ecological restoration activity of Pinus sylvestris var. mongolica in Mu Us Sandy Land, China
Yiben Cheng, Hongbin Zhan, Wenbin Yang, Yunqi Wang, Qunou Jiang, and Bin Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-285,https://doi.org/10.5194/hess-2021-285, 2021
Manuscript not accepted for further review
Short summary

Cited articles

Arcomano, T., Szunyogh, I., Wikner, A., Pathak, J., Hunt, B. R., and Ott, E.: A hybrid approach to atmospheric modeling that combines machine learning with a physics-based numerical model, J. Adv. Model. Earth Sy., 14, e2021MS002712, https://doi.org/10.1029/2021MS002712, 2022. 
Bandai, T. and Ghezzehei, T. A.: Physics-informed neural networks with monotonicity constraints for Richardson-Richards equation: Estimation of constitutive relationships and soil water flux density from volumetric water content measurements, Water Resour. Res., 57, e2020WR027642, https://doi.org/10.1029/2020WR027642, 2021. 
Barclay, J. R., Topp, S. N., Koenig, L. E., Sleckman, M. J., and Appling, A. P.: Train, inform, borrow, or combine? Approaches to process-guided deep learning for groundwater-influenced stream temperature prediction, Water Resour. Res., 59, e2023WR035327, https://doi.org/10.1029/2023WR035327, 2023. 
Brunner, P., Therrien, R., Renard, P., Simmons, C. T., and Franssen, H.-J. H.: Advances in understanding river-groundwater interactions, Rev. Geophys., 55, 818–854, https://doi.org/10.1002/2017RG000556, 2017. 
Bukaveckas, P. A.: Effects of channel restoration on water velocity, transient storage, and nutrient uptake in a channelized stream, Environ. Sci. Technol., 41, 1570–1576, https://doi.org/10.1021/es061618x, 2007. 
Download
Short summary
This study developed a novel physics-informed deep transfer learning (PDTL) approach, which integrates the physical mechanisms from an analytical model using a transfer learning technique. Results indicate that the DTL model maintains satisfactory performance even in heterogeneous conditions, with uncertainties in observations and sparse training data compared to the deep neural network (DNN) model.
Share