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S1. Analytical solution of the 2D heat transfer process in homogeneous streambed

In this section, the analytical model developed by Shi et al. (2023) is employed as the
benchmark to generate the training dataset for the pre-training model. This model offers a
balanced trade-off between analytical simplicity and accuracy, particularly in representing
boundary conditions relevant to heat transport between surface water and groundwater.
Moreover, this model has been validated against field data, further enhancing its credibility.
The mathematical model of Shi et al. (2023) accounts for thermal convection and thermal

conduction in a homogeneous streambed, which can be described as follows:
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where T denotes temperature [°C]; t istime [T]; v, and v, referto thermal front velocities
[LT '] along the x- and z-axes, respectively. Specifically, v, = i—":qx, and v, = i—":qz, in
which g, and q, denotes the components of water Darcy flux [LT '] components along the
x- and z-axes, respectively; C,, and C, are specific volumetric heat capacities [J/(m?*-°C)]
of water and streambed, respectively; D, and D, represent the effective thermal diffusivity
along the x- and z- axes, respectively [L>T!]; L denotes the half width (L) of the river.

The above mathematical model can be analytically solved using the Green's function
method. The solution of the temperature field can be written as:
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where A, n,and 7 represent dummy variables, which correspond to the independent variables
x, z,and t, respectively. It should be noted that the groundwater flow model and heat transfer
model are coupled through g, and gq,, which are directly prescribed in this study. Therefore,
we only need to the consider boundary conditions for heat transfer model for analytical model.

Detailed procedures of solution derivation can be found in Shi et al. (2023).



S2. Numerical solution of the 2D heat transfer process in heterogeneous streambed

A numerical model using COMSOL Multiphysics (COMSOL Inc., Burlington, MA, USA)
is constructed to simulate heat transfer processes within homogeneous and heterogeneous
streambeds. To improve simulation accuracy and avoid boundary effects, the semi-infinite
geometry size was replaced by a finite range, and two infinite element domains were added at
x=1 mand z=1 m to represent the infinite boundary on the x- and z-directions,
respectively. The domain of interest is discretized using triangular elements, with a finer spatial
discretization near the river to reduce numerical truncation errors. The mesh consists of 16,998
triangular elements in total. A constant time step of 0.01 days is employed for the numerical
solution. The following values are adopted from the study of Shi et al. (2023): C,, =
4.18 X 10%]/(m3 - °C),C, = 1.82 x 10%]/(m3 - °C), q, =0.2m/d, q, = 0.3m/d, D, =
D, = 7.69 x 10~>m?/s, h(x,z) = 20°C. To validate the developed numerical model, Figure
S1 presents a comparison of temperature-time curves between the numerical and analytical
solutions at three locations. Results indicate that the numerical solution closely aligns with the
analytical solution, exhibiting small mean square error (MSE) values ranging from 0.06-0.11 °C
for selected locations, thereby confirming the accuracy of the numerical solution. In the
following analysis, the nonuniform flow and temperature fields are generated utilizing
COMSOL Multiphysics, incorporating various heterogeneous [nK fields generated through
an autocorrelated multi-Gaussian simulator. The settings of initial and boundary conditions are

shown in Figure S2.
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Figure S1. Comparison of temperature-time curves at three locations using the numerical

solution (circle symbols) and the analytical solution of this study (solid curves).
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Figure S2. Conceptual model of 2D numerical model with streambed sediment, initial and

boundary conditions. The red color zone represents the streambed with a half width of 0.32.



S3. Prediction results with the DNN and PDTL models using 200 observation points

In this section, 200 observation points are used to evaluate the performance of the DNN
and PDTL models. Figure S3 shows the prediction results with the DNN and the PDTL models
using 200 observation points for homogeneous scenario. Figure S4 - S5 present the prediction
results using 200 observation points for heterogeneous scenarios with the DNN and the PDTL
models, respectively. Results demonstrate that there is no significant difference in the
performance of the PDTL and DNN models for both homogeneous and heterogeneous
scenarios when the number of observation points increases to 200. This suggests that with
enough data, DNNs can achieve similar results by learning data patterns that reduce the impact

of physical information.
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Figure S3. Prediction results with the DNN and the PDTL models using 200 observation points
for homogeneous scenario. (al) - (a2): the distribution of observation points with the DNN and
the PDTL models; (b1) - (b2): the distribution of MAE predicted with the DNN and the PDTL
models; (cl) - (c2): the temperature time series predicted with the PDTL and DNN models at

x =0.5m, y =0.5m.
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Figure S4. Prediction results with the DNN model using 200 observation points for
heterogeneous scenarios. (al) - (a3): the distribution of observation points with o7, = 0.2,
0.5, and 1.0; (bl) - (b3): the distribution of MAE predicted with 7, = 0.2, 0.5, and 1.0;
(c1) - (c3): the temperature time series predicted with the DNN model at x = 0.5m, y = 0.5m

with o2, = 0.2, 0.5,and 1.0.
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Figure S5. Prediction results with the PDTL model using 200 observation points for
heterogeneous scenarios. (al) - (a3): the distribution of observation points with o7, = 0.2,
0.5, and 1.0; (bl1) - (b3): the distribution of MAE predicted with o2, = 0.2, 0.5, and 1.0;
(c1) - (c3): the temperature time series predicted with the PDTL model at x = 0.5m, y =

0.5m with o7, = 0.2, 0.5,and 1.0.
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