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S1. Analytical solution of the 2D heat transfer process in homogeneous streambed 

In this section, the analytical model developed by Shi et al. (2023) is employed as the 

benchmark to generate the training dataset for the pre-training model. This model offers a 

balanced trade-off between analytical simplicity and accuracy, particularly in representing 

boundary conditions relevant to heat transport between surface water and groundwater. 

Moreover, this model has been validated against field data, further enhancing its credibility. 

The mathematical model of Shi et al. (2023) accounts for thermal convection and thermal 

conduction in a homogeneous streambed, which can be described as follows: 
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where 𝑇 denotes temperature [℃]; 𝑡 is time [T]; 𝑣𝑥 and 𝑣𝑧 refer to thermal front velocities 

[LT−1] along the 𝑥- and 𝑧-axes, respectively. Specifically, 𝑣𝑥 =
𝐶𝑤

𝐶𝑠
𝑞𝑥 , and 𝑣𝑧 =

𝐶𝑤

𝐶𝑠
𝑞𝑧, in 

which 𝑞𝑥 and 𝑞𝑧 denotes the components of water Darcy flux [LT−1] components along the 

𝑥- and 𝑧-axes, respectively; 𝐶𝑤 and 𝐶𝑠 are specific volumetric heat capacities [J/(m3･℃)] 

of water and streambed, respectively; 𝐷𝑥 and 𝐷𝑧 represent the effective thermal diffusivity 

along the 𝑥- and 𝑧- axes, respectively [L2T−1]; 𝐿 denotes the half width (L) of the river. 

The above mathematical model can be analytically solved using the Green's function 

method. The solution of the temperature field can be written as:  

𝑇 = 𝐴(𝑥, 𝑧, 𝑡) [∫ ∫ 𝐸(𝜆, 𝜂)
𝐿

𝑜

∞

0
𝐵(𝑥 − 𝜆, 𝑧 − 𝜂, 𝑡)𝑑𝜆𝑑𝜂 + ∫ 𝑔(𝜏)𝐶(𝑥, 𝑧, 𝑡 − 𝜏)𝑑𝜏

𝑡

𝑜
]  (S5) 



3 

𝐴(𝑥, 𝑧, 𝑡) =
1

4
𝑒𝑥𝑝 [−

𝑣𝑧(𝑣𝑧𝑡−2𝑧)

4𝐷𝑧
−

𝑣𝑥(𝑣𝑥𝑡−2𝑥)

4𝐷𝑥
]          (S6) 

𝐵(𝑥 − 𝜆, 𝑧 − 𝜂, 𝑡) =
1

𝜋𝑡√𝐷𝑥𝐷𝑧
{𝑒𝑥𝑝 [−

(𝑧−𝜂)2

4𝐷𝑧𝑡
] − 𝑒𝑥𝑝 [−

(𝑧−𝜂)2

4𝐷𝑧𝑡
]}      

{𝑒𝑥𝑝 [−
(𝑥−𝜆)2

4𝐷𝑥𝑡
] + 𝑒𝑥𝑝⁡[−

(𝑥−𝜆)2

4𝐷𝑥𝑡
]}        (S7) 

𝐶(𝑥, 𝑧, 𝑡 − 𝜏) =
𝑧

√𝜋𝐷𝑧(𝑡−𝜏)3
𝑒𝑥𝑝⁡[−

𝑧2

4𝐷𝑧(𝑡−𝜏)
] {𝑒𝑟𝑓 [

𝐿−𝑥

√4𝐷𝑥(𝑡−𝜏)
] + 𝑒𝑟𝑓⁡[

𝐿+𝑥

√4𝐷𝑥(𝑡−𝜏)
]}  (S8) 

𝐸(𝜆, 𝜂) = ℎ(𝜆, 𝜂)𝑒𝑥𝑝⁡[−
2𝜂𝑣𝑧

4𝐷𝑧
−

2𝜆𝑣𝑥

4𝐷𝑥
]            (S9) 

𝑔(𝜏) = 𝑓(𝜏)𝑒𝑥𝑝⁡[
𝑣𝑧(𝑣𝑧𝜏)

4𝐷𝑧
+

𝑣𝑥(𝑣𝑥𝜏−2𝑥)

4𝐷𝑥
]            (S10) 

where 𝜆, 𝜂, and 𝜏 represent dummy variables, which correspond to the independent variables 

𝑥, 𝑧, and 𝑡, respectively. It should be noted that the groundwater flow model and heat transfer 

model are coupled through 𝑞𝑥 and 𝑞𝑧, which are directly prescribed in this study. Therefore, 

we only need to the consider boundary conditions for heat transfer model for analytical model. 

Detailed procedures of solution derivation can be found in Shi et al. (2023). 
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S2. Numerical solution of the 2D heat transfer process in heterogeneous streambed 

A numerical model using COMSOL Multiphysics (COMSOL Inc., Burlington, MA, USA) 

is constructed to simulate heat transfer processes within homogeneous and heterogeneous 

streambeds. To improve simulation accuracy and avoid boundary effects, the semi-infinite 

geometry size was replaced by a finite range, and two infinite element domains were added at 

𝑥 = 1  m and 𝑧 = 1  m to represent the infinite boundary on the 𝑥 - and 𝑧 -directions, 

respectively. The domain of interest is discretized using triangular elements, with a finer spatial 

discretization near the river to reduce numerical truncation errors. The mesh consists of 16,998 

triangular elements in total. A constant time step of 0.01 days is employed for the numerical 

solution. The following values are adopted from the study of Shi et al. (2023): 𝐶𝑤 =

4.18 × 106𝐽/(𝑚3 ∙ °𝐶) ,𝐶𝑠 = 1.82 × 106𝐽/(𝑚3 ∙ °𝐶) , 𝑞𝑥 = 0.2𝑚/𝑑 , 𝑞𝑧 = 0.3𝑚/𝑑 , 𝐷𝑥 =

𝐷𝑧 = 7.69 × 10−5𝑚2/𝑠, ℎ(𝑥, 𝑧) = 20°𝐶. To validate the developed numerical model, Figure 

S1 presents a comparison of temperature-time curves between the numerical and analytical 

solutions at three locations. Results indicate that the numerical solution closely aligns with the 

analytical solution, exhibiting small mean square error (𝑀𝑆𝐸) values ranging from 0.06-0.11 ℃ 

for selected locations, thereby confirming the accuracy of the numerical solution. In the 

following analysis, the nonuniform flow and temperature fields are generated utilizing 

COMSOL Multiphysics, incorporating various heterogeneous 𝑙𝑛𝐾 fields generated through 

an autocorrelated multi-Gaussian simulator. The settings of initial and boundary conditions are 

shown in Figure S2.  
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Figure S1. Comparison of temperature-time curves at three locations using the numerical 

solution (circle symbols) and the analytical solution of this study (solid curves). 

 

Figure S2. Conceptual model of 2D numerical model with streambed sediment, initial and 

boundary conditions. The red color zone represents the streambed with a half width of 0.32.  
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S3. Prediction results with the DNN and PDTL models using 200 observation points 

In this section, 200 observation points are used to evaluate the performance of the DNN 

and PDTL models. Figure S3 shows the prediction results with the DNN and the PDTL models 

using 200 observation points for homogeneous scenario. Figure S4 - S5 present the prediction 

results using 200 observation points for heterogeneous scenarios with the DNN and the PDTL 

models, respectively. Results demonstrate that there is no significant difference in the 

performance of the PDTL and DNN models for both homogeneous and heterogeneous 

scenarios when the number of observation points increases to 200. This suggests that with 

enough data, DNNs can achieve similar results by learning data patterns that reduce the impact 

of physical information. 

 

Figure S3. Prediction results with the DNN and the PDTL models using 200 observation points 

for homogeneous scenario. (a1) - (a2): the distribution of observation points with the DNN and 

the PDTL models; (b1) - (b2): the distribution of 𝑀𝐴𝐸 predicted with the DNN and the PDTL 

models; (c1) - (c2): the temperature time series predicted with the PDTL and DNN models at 

𝑥 = 0.5𝑚, 𝑦 = 0.5𝑚. 
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Figure S4. Prediction results with the DNN model using 200 observation points for 

heterogeneous scenarios. (a1) - (a3): the distribution of observation points with 𝜎𝑙𝑛𝑘
2 = 0.2, 

0.5, and 1.0; (b1) - (b3): the distribution of 𝑀𝐴𝐸 predicted with  𝜎𝑙𝑛𝑘
2 = 0.2, 0.5, and 1.0; 

(c1) - (c3): the temperature time series predicted with the DNN model at 𝑥 = 0.5𝑚, 𝑦 = 0.5𝑚 

with 𝜎𝑙𝑛𝑘
2 = 0.2, 0.5, and 1.0. 
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Figure S5. Prediction results with the PDTL model using 200 observation points for 

heterogeneous scenarios. (a1) - (a3): the distribution of observation points with 𝜎𝑙𝑛𝑘
2 = 0.2, 

0.5, and 1.0; (b1) - (b3): the distribution of 𝑀𝐴𝐸 predicted with 𝜎𝑙𝑛𝑘
2 = 0.2, 0.5, and 1.0; 

(c1) - (c3): the temperature time series predicted with the PDTL model at 𝑥 = 0.5𝑚, 𝑦 =

0.5𝑚 with 𝜎𝑙𝑛𝑘
2 = 0.2, 0.5, and 1.0. 
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